
Report No. K-TRAN: KU-01-9 FINAL REPORT

# **CRACKING AND CHLORIDE CONTENTS IN REINFORCED CONCRETE BRIDGE DECKS**

Will D. Lindquist David Darwin JoAnn P. Browning

University of Kansas Lawrence, Kansas



NOVEMBER 2005

# **K-TRAN**

A COOPERATIVE TRANSPORTATION RESEARCH PROGRAM BETWEEN: KANSAS DEPARTMENT OF TRANSPORTATION KANSAS STATE UNIVERSITY THE UNIVERSITY OF KANSAS

| 1  | Report No.                                                  | 2 Government Accession No. | 3 Recipient Catalog No.          |
|----|-------------------------------------------------------------|----------------------------|----------------------------------|
|    | K-TRAN: KU-01-9                                             |                            |                                  |
| 4  | Title and Subtitle                                          |                            | 5 Report Date                    |
|    | CRACKING AND CHLORIDE C                                     | ONTENTS IN REINFORCED      | November 2005                    |
|    | CONCRETE BRIDGE DECKS                                       |                            | 6 Performing Organization Code   |
| 7  | Author(s)                                                   |                            | 8 Performing Organization Report |
|    | Will D. Lindquist, David Darwin a                           | nd JoAnn P. Browning       | No.                              |
| 9  | <b>Performing Organization Name</b><br>University of Kansas | and Address                | 10 Work Unit No. (TRAIS)         |
|    | Civil, Environmental & Architectu                           | ral Engineering Department | 11 Contract or Grant No.         |
|    | 1530 West 15 <sup>th</sup> Street, Room 2150                |                            | C1267                            |
|    | Lawrence, Kansas 66045-7609                                 |                            |                                  |
| 12 | Sponsoring Agency Name and A                                | ddress                     | 13 Type of Report and Period     |
|    | Kansas Department of Transportat                            | ion                        | Covered                          |
|    | Bureau of Materials and Research                            |                            | Final Report                     |
|    | 700 SW Harrison Street                                      |                            | May 2001 – February 2005         |
|    | Topeka, Kansas 66603-3754                                   |                            | 14 Sponsoring Agency Code        |
|    |                                                             |                            | RE-0249-01                       |
| 15 | Supplementary Notes                                         |                            |                                  |
|    | For more information write to address                       | in block 0                 |                                  |

For more information write to address in block 9.

#### 16 Abstract

The effects of material properties, design specifications, construction practices, and environmental site conditions on the performance of reinforced concrete bridge decks were evaluated. Field surveys were performed on 59 bridges to measure deck cracking, chloride ingress, and delaminated area. The surveys were limited to steel girder bridges – bridges that are generally agreed to exhibit the greatest amount of cracking in the concrete decks. The study includes two bridge deck types with silica fume overlays. The performance of silica fume overlay decks relative to conventional overlay and monolithic decks is of particular interest due to the widespread use of silica fume overlays in the state of Kansas.

The results of the study indicate that chloride contents increase with the age of the bridge deck, regardless of deck type. In addition, concrete for all bridge deck types sampled in the same age range exhibit similar chloride contents for samples taken both at and away from cracks, regardless of deck type. For bridges within the same age range, the average chloride concentration taken away from cracks at the level of the top transverse reinforcement rarely exceeds even the most conservative estimates of the corrosion threshold for conventional reinforcement. Chloride concentrations taken at crack locations, however, can exceed the corrosion threshold in as little as nine months. Based on these observations, it appears clear that attention should be focused on minimizing bridge deck cracking rather than concrete permeability.

The study demonstrates that crack density increases with increases in the volume of cement paste and that neither higher compressive strengths nor higher concrete slumps are beneficial to bridge deck performance. In addition, crack density is higher in the end regions of decks that are integral with the abutments than decks with pin-ended girders. The results of the crack surveys indicate that cracking increases with age, although a large percentage of the cracking is established early in the life of the deck. Even with the increase in crack density over time, however, both monolithic and conventional overlay bridges cast in the 1980s exhibit less cracking than those cast in the 1990s. The differences are attributed to changes in material properties and construction procedures over the past 20 years. The trend in cracking for decks with silica fume overlays cast in the 1990s (containing 5% silica fume), however, is quite the opposite. A decrease in crack density is observed for 5% silica fume overlay decks, which appears to be the result of increased efforts to limit evaporation prior to the initiation of wet curing. Recently constructed 7% silica fume overlay decks, however, have not shown continued improvement.

In light of the chloride and cracking observations, conventional high-density overlays are recommended in lieu of silica fume overlays, and full-depth monolithic decks are recommended for new deck construction.

| 17 Key Words<br>Bridge Decks, Chloride, Concrete Mix Design, Cracking,<br>Durability, Overlay, Permeability, Shrinkage, and Silica<br>Fume |                                                                     | <b>18 Distribution Statement</b><br>No restrictions. This document is<br>available to the public through the<br>National Technical Information Service,<br>Springfield, Virginia 22161 |                     | cument is<br>rough the<br>mation Service, |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|
| <b>19 Security Classification</b><br>(of this report)<br>Unclassified                                                                      | <b>20</b> Security Classification<br>(of this page)<br>Unclassified | 21                                                                                                                                                                                     | No. of pages<br>420 | 22 Price                                  |

# CRACKING AND CHLORIDE CONTENTS IN REINFORCED CONCRETE BRIDGE DECKS

**Final Report** 

Prepared by

Will D. Lindquist

David Darwin

JoAnn P. Browning

A Report on Research Sponsored By

THE KANSAS DEPARTMENT OF TRANSPORTATION TOPEKA, KANSAS

Structural Engineering and Engineering Materials SM Report No. 78

UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC. LAWRENCE, KANSAS

November 2005

© Copyright 2005, Kansas Department of Transportation

### PREFACE

The Kansas Department of Transportation's (KDOT) Kansas Transportation Research and New-Developments (K-TRAN) Research Program funded this research project. It is an ongoing, cooperative and comprehensive research program addressing transportation needs of the state of Kansas utilizing academic and research resources from KDOT, Kansas State University and the University of Kansas. Transportation professionals in KDOT and the universities jointly develop the projects included in the research program.

### NOTICE

The authors and the state of Kansas do not endorse products or manufacturers. Trade and manufacturers names appear herein solely because they are considered essential to the object of this report.

This information is available in alternative accessible formats. To obtain an alternative format, contact the Office of Transportation Information, Kansas Department of Transportation, 700 SW Harrison, Topeka, Kansas 66603-3754 or phone (785) 296-3585 (Voice) (TDD).

### DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or the policies of the state of Kansas. This report does not constitute a standard, specification or regulation.

### ABSTRACT

The effects of material properties, design specifications, construction practices, and environmental site conditions on the performance of reinforced concrete bridge decks are evaluated. Field surveys were performed on 59 bridges to measure deck cracking, chloride ingress, and delaminated area. The surveys were limited to steel girder bridges – bridges that are generally agreed to exhibit the greatest amount of cracking in the concrete decks. The study includes two bridge deck types with silica fume overlays, one in which 5% of the cement is replaced by silica fume (19 bridges) and the other in which 7% of the cement is replaced by silica fume (11 bridges), plus decks with conventional overlays (16 bridges) and monolithic bridge decks (13 bridges). Information from the current study is combined with data from two earlier studies. In total, 27 variables are evaluated, covering bridge age, construction practices, material properties, site conditions, bridge design, and traffic volume. The performance of silica fume overlay decks relative to conventional overlay and monolithic decks is of particular interest due to the widespread use of silica fume overlays in the state of Kansas.

The results of the study indicate that chloride contents increase with the age of the bridge deck, regardless of deck type. In addition, concrete for all bridge deck types sampled in the same age range exhibit similar chloride contents for samples taken both at and away from cracks, regardless of deck type. For bridges within the same age range, the average chloride concentration taken away from cracks at the level of the top transverse reinforcement rarely exceeds even the most conservative estimates of the corrosion threshold for conventional reinforcement. Chloride concentrations taken at crack locations, however, can exceed the corrosion threshold in as little as nine months. Based on these observations, it appears clear that

ii

attention should be focused on minimizing bridge deck cracking rather than concrete permeability.

The study demonstrates that crack density increases with increases in the volume of cement paste and that neither higher compressive strengths nor higher concrete slumps are beneficial to bridge deck performance. In addition, crack density is higher in the end regions of decks that are integral with the abutments than decks with pin-ended girders. The results of the crack surveys indicate that cracking increases with age, although a large percentage of the cracking is established early in the life of the deck. Even with the increase in crack density over time, however, both monolithic and conventional overlay bridges cast in the 1980s exhibit less cracking than those cast in the 1990s. The differences are attributed to changes in material properties and construction procedures over the past 20 years. The trend in cracking for decks with silica fume overlays cast in the 1990s (containing 5% silica fume), however, is quite the opposite. A decrease in crack density is observed for 5% silica fume overlay decks, which appears to be the result of increased efforts to limit evaporation prior to the initiation of wet curing. Recently constructed 7% silica fume overlay decks, however, have not shown continued improvement.

In light of the chloride and cracking observations, conventional high-density overlays are recommended in lieu of silica fume overlays, and full-depth monolithic decks are recommended for new deck construction.

iii

### ACKNOWLEDGEMENTS

This report is based on research performed by Will D. Lindquist in partial fulfillment of the requirements for the MSCE degree from the University of Kansas. Funding for this research was provided by the Kansas Department of Transportation (KDOT) under the K-Tran Project No. KU-01-9.

Oversight of this project was provided by Dan Scherschligt, KDOT, Bureau of Design. Bridge deck construction data and traffic control for the bridge surveys was provided by KDOT personnel. Personnel from the KDOT Bureau of Materials and Research obtained the concrete samples and performed the chloride content tests. The efforts of all those who participated are gratefully acknowledged, with special thanks to Mark Walker, KDOT, Bureau of Materials and Research.

# **TABLE OF CONTENTS**

| ABSTRACT                                               | ii  |
|--------------------------------------------------------|-----|
| ACKNOWLEDGEMENTS                                       | iv  |
| LIST OF TABLES                                         | x   |
| LIST OF FIGURES                                        | xiv |
| CHAPTER 1:INTRODUCTION                                 | 1   |
| 1.1 General                                            | 1   |
| 1.2 Significance of Bridge Deck Cracking               | 1   |
| 1.3 Types of Bridge Deck Deterioration                 | 2   |
| 1.3.1 Crack Classification Based on Causes of Cracking | 2   |
| 1.3.2 Crack Classification Based on Orientation        | 5   |
| 1.4 Corrosion                                          | 6   |
| 1.5 Silica Fume                                        | 7   |
| 1.6 Chloride Concentrations                            | 8   |
| 1.7 Bridge Deck Overlay Specifications                 | 10  |
| 1.8 Previous Work                                      | 13  |
| 1.8.1 Literature Review                                | 14  |
| 1.8.2 Primary Factors Affecting Cracking               | 41  |
| 1.9 Object and Scope                                   | 41  |
| CHAPTER 2:DATA COLLECTION                              | 43  |
| 2.1 General                                            | 43  |
| 2.2 Bridge Selection                                   | 43  |
| 2.3 Data Sources                                       | 46  |
| 2.4 Survey Techniques                                  | 47  |
| 2.5 Chloride Content Test                              | 48  |
| 2.6 Crack Density Determination                        | 49  |
| CHAPTER 3:CHLORIDE DATA AND DIFFUSION PROPERTIES       | 52  |
| 3.1 General                                            | 52  |
| 3.2 KDOT District 1 Salt Usage                         | 54  |

| 3.3 On and Off Crack Chloride Concentrations                         | 55 |
|----------------------------------------------------------------------|----|
| 3.3.1 Off Crack Chloride Concentrations                              | 57 |
| 3.3.1 On Crack Chloride Concentrations                               | 58 |
| 3.4 Fick's Equation Modeling                                         | 59 |
| 3.4.1 Surface Concentrations                                         | 60 |
| 3.4.2 Diffusion Coefficients                                         | 63 |
| 3.4.2.1 Monolithic Decks                                             | 63 |
| 3.4.2.2 Conventional Overlay Decks                                   | 64 |
| 3.4.2.3 Silica Fume Overlay Decks                                    | 66 |
| 3.4.3 Diffusion Coefficient Age-Correction                           | 67 |
| 3.4.4 Comparison of Deck Diffusion Coefficients                      | 69 |
| 3.5 Diffusion Coefficients Versus Silica Fume Overlay Specifications | 71 |
| 3.6 Effects of Concrete Properties on Diffusivity                    | 73 |
| 3.6.1 Slump                                                          | 76 |
| 3.6.2 Air Content                                                    | 77 |
| 3.6.3 Water-Cementitious Material Ratio                              | 79 |
| 3.6.4 Percent Volume of Water and Cementitious Material              | 81 |
| 3.6.5 Water and Cement Content                                       | 82 |
| 3.6.6 Compressive Strength                                           | 83 |
| CHAPTER 4: TIME AS A VARIABLE IN BRIDGE DECK                         |    |
| CRACKING                                                             | 85 |
| 4.1 General                                                          | 85 |
| 4.2 Inclusion of Data from Previous Studies in Kansas                | 86 |
| 4.3 Bridge Deck Cracking Versus Time                                 | 88 |
| 4.4 Crack Density Versus Construction Era                            | 90 |
| 4.5 Crack Density Versus Silica Fume Overlay Specification           | 92 |
| 4.6 Material Properties Versus Construction Date                     | 94 |
| 4.6.1 Slump                                                          | 95 |
| 4.6.2 Air Content                                                    | 96 |
| 4.6.3 Percent Volume of Water and Cementitious Materials             | 96 |

| 4.6.4 Water Content                                                                                              | 97                                                                               |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 4.6.5 Cementitious Material Content                                                                              | 98                                                                               |
| 4.6.6 Water-Cementitious Material Ratio                                                                          | 98                                                                               |
| 4.6.7 Compressive Strength                                                                                       | 99                                                                               |
| 4.7 Site Conditions Versus Construction Date                                                                     | 99                                                                               |
| 4.7.1 Minimum Daily Air Temperature                                                                              | 100                                                                              |
| 4.7.2 Maximum Daily Air Temperature                                                                              | 101                                                                              |
| 4.7.3 Average Daily Air Temperature                                                                              | 102                                                                              |
| 4.7.4 Daily Air Temperature Range                                                                                | 102                                                                              |
| 4.8 Bridge Design Versus Construction Date                                                                       | 103                                                                              |
| 4.8.1 Structure Type                                                                                             | 103                                                                              |
| 4.8.2 Deck Thickness                                                                                             | 103                                                                              |
| 4.8.3 Transverse Bar Spacing                                                                                     | 104                                                                              |
| 4.8.4 Top Reinforcing Bar Cover                                                                                  | 104                                                                              |
| 4.8.5 Transverse Bar Size                                                                                        | 104                                                                              |
|                                                                                                                  |                                                                                  |
| CHAPTER 5: CRACK SURVEY EVALUATION AND RESULTS                                                                   | 105                                                                              |
| CHAPTER 5:CRACK SURVEY EVALUATION AND RESULTS<br>5.1 General                                                     |                                                                                  |
|                                                                                                                  | 105                                                                              |
| 5.1 General                                                                                                      | 105<br>107                                                                       |
| <ul><li>5.1 General</li><li>5.2 Influence of Deck Type</li></ul>                                                 | 105<br>107<br>108                                                                |
| <ul><li>5.1 General</li><li>5.2 Influence of Deck Type</li><li>5.3 Influence of Material Properties</li></ul>    | 105<br>107<br>108<br>109                                                         |
| <ul> <li>5.1 General</li> <li>5.2 Influence of Deck Type</li> <li>5.3 Influence of Material Properties</li></ul> | 105<br>107<br>108<br>109<br>110                                                  |
| <ul> <li>5.1 General</li> <li>5.2 Influence of Deck Type</li> <li>5.3 Influence of Material Properties</li></ul> | 105<br>107<br>108<br>109<br>110<br>112                                           |
| <ul> <li>5.1 General</li> <li>5.2 Influence of Deck Type</li> <li>5.3 Influence of Material Properties</li></ul> | 105<br>107<br>108<br>109<br>110<br>112<br>113                                    |
| <ul> <li>5.1 General</li> <li>5.2 Influence of Deck Type</li> <li>5.3 Influence of Material Properties</li></ul> | 105<br>107<br>108<br>109<br>110<br>112<br>113<br>114                             |
| <ul> <li>5.1 General</li> <li>5.2 Influence of Deck Type</li> <li>5.3 Influence of Material Properties</li></ul> | 105<br>107<br>108<br>109<br>110<br>112<br>113<br>114<br>116                      |
| <ul> <li>5.1 General</li> <li>5.2 Influence of Deck Type</li></ul>                                               | 105<br>107<br>108<br>109<br>110<br>112<br>113<br>114<br>116<br>117               |
| <ul> <li>5.1 General</li> <li>5.2 Influence of Deck Type</li> <li>5.3 Influence of Material Properties</li></ul> | 105<br>107<br>108<br>109<br>110<br>112<br>113<br>114<br>116<br>117<br>118        |
| <ul> <li>5.1 General</li></ul>                                                                                   | 105<br>107<br>108<br>109<br>110<br>112<br>113<br>114<br>116<br>117<br>118<br>120 |

| 5.4.4 Daily Air Temperature Range              | 122 |
|------------------------------------------------|-----|
| 5.5 Influence of Design Parameters             | 123 |
| 5.5.1 Structure Type                           | 124 |
| 5.5.2 Transverse Reinforcing Bar Size          | 125 |
| 5.5.3 Transverse Reinforcing Bar Spacing       | 126 |
| 5.5.4 Deck Thickness                           | 128 |
| 5.5.5 Top Cover                                | 128 |
| 5.5.6 Girder End Condition                     | 130 |
| 5.5.7 Span Type                                | 132 |
| 5.5.8 Bridge Skew                              | 133 |
| 5.5.9 Span Length                              | 133 |
| 5.5.10 Bridge Length                           | 134 |
| 5.6 Influence of Bridge Contractor             | 135 |
| 5.7 Influence of Traffic                       | 136 |
| 5.7.1 Average Annual Daily Traffic (AADT)      | 137 |
| 5.7.2 Load Cycles                              | 138 |
| CHAPTER 6:SUMMARY, CONCLUSIONS, AND            |     |
| RECOMMENDATIONS                                | 140 |
| 6.1 Summary                                    | 140 |
| 6.2 Conclusions                                | 141 |
| 6.2.1 Chloride Data and Diffusion Properties   | 141 |
| 6.2.2 Time as a Variable in Deck Cracking      | 142 |
| 6.3.3 Crack Survey and Evaluation and Results  | 143 |
| 6.3 Recommendations                            | 145 |
| REFERENCES                                     | 147 |
| APPENDIX A: BRIDGE DECK DATA                   | 285 |
| APPENDIX B: BRIDGE DECK SURVEY SPECIFICATION   | 291 |
| APPENDIX C: CRACK DENSITY CALCULATION PROGRAM  |     |
| LISTING                                        | 293 |
| ADDENIDIV D. DDIDGE DECK OHLODIDE CONTENTS AND |     |

**APPENDIX D: BRIDGE DECK CHLORIDE CONTENTS AND** 

| DIFFUSION DATA                                     | 318 |
|----------------------------------------------------|-----|
| APPENDIX E: FIELD SURVEY RESULTS AND AGE-CORRECTED |     |
| CRACK DENSITIES                                    | 353 |

# LIST OF TABLES

| <u>Table</u> |                                                                                                                                                                                                                                                                                  | Page |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1          | Bridge deck cracking studies included in the review of literature                                                                                                                                                                                                                | 153  |
| 1.2          | Factors affecting bridge deck cracking (Krauss and Rogalla 1996)                                                                                                                                                                                                                 | 154  |
| 1.3          | Primary factors found to increase cracking based on previous research                                                                                                                                                                                                            | 155  |
| 2.1          | Bridge deck types included in the current study and the studies by Schmitt and Darwin (1995, 1999) and Miller and Darwin (2000)                                                                                                                                                  | 156  |
| 3.1          | KDOT District One Salt Usage History                                                                                                                                                                                                                                             | 156  |
| 3.2          | Time to corrosion threshold for uncracked concrete based on data from Figs. 3.1 through 3.4                                                                                                                                                                                      | 157  |
| 3.3a         | Average apparent surface concentration build-up rates [kg/m <sup>3</sup> /month (kg/m <sup>3</sup> /year)] and standard deviations for all bridge types                                                                                                                          | 157  |
| 3.3b         | Average apparent surface concentration build-up rates [lb/yd <sup>3</sup> /month (lb/yd <sup>3</sup> /year)] and standard deviations for all bridge types                                                                                                                        | 158  |
| 3.4          | Student's t-test for mean effective diffusion coefficients $D_{eff}$ versus placement age                                                                                                                                                                                        | 159  |
| 3.5          | Average rate of change for effective diffusion coefficients $D_{eff}$ obtained from dummy variable regression analysis                                                                                                                                                           | 160  |
| 3.6          | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus placement age                                                                                                                                                                           | 160  |
| 3.7          | The time (years) to reach corrosion threshold levels at a depth of 76 mm (3 in.) based on adjusted effective diffusion coefficients $D_{eff}^{*}$ calculated from data obtained within the first 48 months of deck construction using Fick's Second Law of Diffusion [Eq. (1.2)] | 161  |
| 3.8          | The time (years) to reach corrosion threshold levels at a depth of 76 mm (3 in.) based on adjusted effective diffusion coefficients $D_{eff}^{*}$ calculated from data obtained between 48 and 96 months of deck construction using Fick's Second Law of Diffusion [Eq. (1.2)]   | 161  |
| 3.9          | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus special provision number                                                                                                                                                                | 162  |

| 3.10 | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus concrete slump                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.11 | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus air content                                                   |
| 3.12 | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus water-cementitious material ratio                             |
| 3.13 | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus percent volume of water and cement                            |
| 3.14 | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus water content                                                 |
| 3.15 | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus cement content                                                |
| 3.16 | Student's t-test for mean adjusted effective diffusion coefficients $D_{eff}^{*}$ versus concrete compressive strength                                 |
| 4.1  | Cracking rates obtained from dummy variable regression analysis 171                                                                                    |
| 4.2  | Student's t-test for mean crack diversity versus date of construction for individual bridge decks                                                      |
| 4.3  | Student's t-test for mean crack density corrected to an age of<br>78 months versus silica fume special provision number for<br>individual bridge decks |
| 5.1  | Student's t-test for mean crack density versus bridge deck type 174                                                                                    |
| 5.2  | Student's t-test for mean crack density versus water content 174                                                                                       |
| 5.3  | Student's t-test for mean crack density versus cement content 175                                                                                      |
| 5.4  | Student's t-test for mean crack density versus percent volume of water and cementitious materials                                                      |
| 5.5  | Student's t-test for mean crack density versus water-cement ratio 177                                                                                  |
| 5.6  | Student's t-test for mean crack density versus concrete slump 178                                                                                      |
| 5.7  | Influence of slump on crack density corrected for water content for monolithic placements obtained using a dummy variable analysis 179                 |

| 5.8  | Student's t-test for mean crack density versus percent air content                                                                                                     | 180 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.9  | Student's t-test for mean crack density versus compressive strength                                                                                                    | 181 |
| 5.10 | Student's t-test for mean crack density versus average air temperature                                                                                                 | 182 |
| 5.11 | Student's t-test for mean crack density versus minimum air temperature                                                                                                 | 183 |
| 5.12 | Student's t-test for mean crack density versus maximum air temperature                                                                                                 | 184 |
| 5.13 | Student's t-test for mean crack density versus daily air temperature range                                                                                             | 185 |
| 5.14 | Student's t-test for mean crack density versus structure type                                                                                                          | 186 |
| 5.15 | Student's t-test for mean crack density versus top transverse bar size                                                                                                 | 187 |
| 5.16 | Student's t-test for mean crack density versus top transverse bar spacing                                                                                              | 188 |
| 5.17 | Influence of top transverse bar spacing on crack density corrected<br>for bar size for overlay decks obtained using dummy variable<br>analyses                         | 188 |
| 5.18 | Student's t-test for mean crack density versus deck thickness                                                                                                          | 189 |
| 5.19 | Student's t-test for mean crack density versus top cover                                                                                                               | 189 |
| 5.20 | Probability of subsidence (settlement) cracking of fresh concrete<br>based on cover depth, transverse bar size, and concrete slump<br>(Dakhil, Cady, and Carrier 1975) | 190 |
| 5.21 | Cracking rates for end sections of silica fume and conventional overlays obtained from a dummy variable regression analysis                                            | 190 |
| 5.22 | Student's t-test for mean crack density versus girder end condition                                                                                                    | 191 |
| 5.23 | Student's t-test for mean crack density versus span type                                                                                                               | 192 |
| 5.24 | Student's t-test for mean crack density versus bridge skew                                                                                                             | 193 |
| 5.25 | Student's t-test for mean crack density versus span length                                                                                                             | 194 |

| Student's t-test for mean crack density versus bridge length                                                                           | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Student's t-test for mean crack density versus bridge contractor                                                                       | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Student's t-test for mean crack density versus average annual daily traffic (AADT)                                                     | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Average rate of change of crack density as a function of load cycles obtained from dummy variable regression analyses                  | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Average rate of change of age-corrected crack density as a function<br>of load cycles obtained from dummy variable regression analyses | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bridge data and deck properties for 7% Silica Fume Overlays                                                                            | 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mix design information for 7% silica fume overlay bridge placements                                                                    | 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Field information and site conditions for 7% silica fume overlay bridge placements                                                     | 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chloride concentration data                                                                                                            | 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Calculated surface concentrations and diffusion coefficients                                                                           | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Field survey results and age-corrected crack densities for all bridge decks                                                            | 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Crack densities for individual bridge placements                                                                                       | 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Crack densities for end sections                                                                                                       | 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Crack densities and data for individual spans                                                                                          | 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bridge traffic data                                                                                                                    | 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                        | Student's t-test for mean crack density versus bridge contractor<br>Student's t-test for mean crack density versus average annual<br>daily traffic (AADT)<br>Average rate of change of crack density as a function of load cycles<br>obtained from dummy variable regression analyses<br>Average rate of change of age-corrected crack density as a function<br>of load cycles obtained from dummy variable regression analyses<br>Bridge data and deck properties for 7% Silica Fume Overlays<br>Mix design information for 7% silica fume overlay bridge<br>placements<br>Field information and site conditions for 7% silica fume overlay<br>bridge placements<br>Chloride concentration data<br>Field survey results and age-corrected crack densities for all bridge<br>decks<br>Crack densities for individual bridge placements<br>Crack densities for end sections<br>Crack densities for end sections |

## **LIST OF FIGURES**

| <u>Figure</u> |                                                                                                                                                                                  | Page  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2.1           | Breakdown of the number of bridges selected from each county                                                                                                                     | . 199 |
| 3.1           | Chloride content taken away from cracks interpolated at a depth of 25.4 mm (1.0 in.) versus placement age                                                                        | . 200 |
| 3.2           | Chloride content taken away from cracks interpolated at a depth of 50.8 mm (2.0 in.) versus placement age                                                                        | . 201 |
| 3.3           | Chloride content taken away from cracks interpolated at a depth of 63.5 mm (2.5 in.) versus placement age                                                                        | . 202 |
| 3.4           | Chloride content taken away from cracks interpolated at a depth of 76.2 mm (3.0 in.) versus placement age                                                                        | . 203 |
| 3.5           | Chloride content taken on cracks interpolated at a depth of 25.4 mm (1.0 in.) versus placement age                                                                               | . 204 |
| 3.6           | Chloride content taken on cracks interpolated at a depth of 50.8 mm (2.0 in.) versus placement age                                                                               | . 205 |
| 3.7           | Chloride content taken on cracks interpolated at a depth of 63.5 mm (2.5 in.) versus placement age                                                                               | . 206 |
| 3.8           | Chloride content taken on cracks interpolated at a depth of 76.2 mm (3.0 in.) versus placement age                                                                               | . 207 |
| 3.9           | Linear trend lines for interpolated chloride data taken on and off of cracks at four depths                                                                                      | . 208 |
| 3.10          | Box-and-whisker plot of the base level chloride contents for all<br>Bridge deck types                                                                                            | . 209 |
| 3.11          | Box-and whisker plot of the difference between the maximum and<br>Minimum apparent surface concentration and the top sample taken<br>from off-crack locations for each placement | . 209 |
| 3.12          | Apparent surface concentration $C_o$ calculated from Fick's Second<br>Law versus the measured chloride content away from cracks at<br>9.5 mm for monolithic bridge decks         | . 210 |
| 3.13          | Apparent surface concentration $C_o$ calculated from Fick's Second                                                                                                               |       |

|      | Law versus the measured chloride content away from cracks at 9.5 mm for conventional overlays                                                                            | 210 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.14 | Apparent surface concentration $C_o$ calculated from Fick's Second<br>Law versus the measured chloride content away from cracks at<br>9.5 mm for silica fume overlays    | 211 |
| 3.15 | Average apparent surface concentration $C_o$ calculated from Fick's Second Law versus bridge deck placement age at the time of sampling                                  | 211 |
| 3.16 | Average apparent surface concentration $C_o$ calculated from Fick's Second Law for the current study versus the results based on data obtained by Miller and Darwin 2000 | 212 |
| 3.17 | Average apparent surface concentration $C_o$ calculated from Fick's Second Law versus age of placement for monolithic deck placements.                                   | 212 |
| 3.18 | Average apparent surface concentration $C_o$ calculated from Fick's Second Law versus age of placement for conventional overlay deck placements                          | 213 |
| 3.19 | Average apparent surface concentration $C_o$ calculated from Fick's Second Law versus age of placement for silica fume overlay deck placements                           | 213 |
| 3.20 | Effective diffusion coefficient $D_{eff}$ versus age of placement                                                                                                        | 214 |
| 3.21 | Effective diffusion coefficient $D_{eff}$ versus age for monolithic bridge placements                                                                                    | 215 |
| 3.22 | Mean effective diffusion coefficient $D_{eff}$ versus placement age for monolithic bridge placements                                                                     | 215 |
| 3.23 | Box-and-whiskers plot of effective diffusion coefficients $D_{eff}$ for monolithic placements sampled at an age of 96 months or greater                                  | 216 |
| 3.24 | Effective diffusion coefficient $D_{eff}$ versus age for conventional overlay bridge placements                                                                          | 216 |
| 3.25 | Mean effective diffusion coefficient $D_{eff}$ versus placement age range for conventional overlay bridge placements                                                     | 217 |
| 3.26 | Box-and-whiskers plot of effective diffusion coefficients $D_{eff}$ for                                                                                                  |     |

|      | conventional overlay bridge placements in three age ranges                                                                                                                                               | . 217 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.27 | Effective diffusion coefficient $D_{eff}$ versus age for silica fume overlay bridge placements                                                                                                           | . 218 |
| 3.28 | Mean effective diffusion coefficient $D_{eff}$ versus placement age range for silica fume overlay bridge placements                                                                                      | . 218 |
| 3.29 | Box-and-whiskers plot of effective diffusion coefficients $D_{eff}$ for silica fume overlay bridge placements in two age ranges                                                                          | . 219 |
| 3.30 | Mean effective diffusion coefficient $D_{eff}$ and adjusted mean effective diffusion coefficient $D_{eff}^*$ versus bridge deck type for individual placements between 0 and 48 months old.              | . 219 |
| 3.31 | Mean effective diffusion coefficient $D_{eff}$ and adjusted mean effective diffusion coefficient $D_{eff}^*$ versus bridge deck type for individual placements between 48 and 96 months old.             | . 220 |
| 3.32 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus special provision number for silica fume overlay placements between 0 and 48 months and 48 and 96 months old | . 220 |
| 3.33 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete slump for 5% silica fume overlay placements between 0 and 48 months and 48 and 96 months old        | . 221 |
| 3.34 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete slump for 5% and 7% silica fume overlay placements between 0 and 48 months old                      | . 221 |
| 3.35 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete slump for conventional overlay placements between 48 and 96 months and 96 and 144 months old        | . 222 |
| 3.36 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete slump for monolithic placements older than 120 months                                               | . 222 |
| 3.37 | Adjuted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus air content for 5% silica fume overlay placements between 0 and 48 months and 48 and 96 months old            | . 223 |
| 3.38 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus air content for 5% and 7% silica fume overlay                                                                |       |

|      | placements between 0 and 48 months old                                                                                                                                                                           | . 223 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.39 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus air content for conventional overlay placements between 48 and 96 months and 96 and 144 months old                   | . 224 |
| 3.40 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus air content for monolithic bridge placements older than 120 months                                                   | . 224 |
| 3.41 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus water-cementitious material ratio for silica fume overlay placements.                                                | . 225 |
| 3.42 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus water-cement ratio for conventional overlay placements.                                                              | . 225 |
| 3.43 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus water-cement ratio for monolithic bridge placements older than 120 months                                            | . 226 |
| 3.44 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete slump for monolithic bridge placements older than 120 months                                                | . 226 |
| 3.45 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus water content for monolithic bridge placements older than 120 months.                                                | . 227 |
| 3.46 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus cement content for monolithic bridge placements older than 120 months                                                | . 227 |
| 3.47 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete compressive strength for 5% silica fume overlay placements between 0 and 48 months and 48 and 96 months old | . 228 |
| 3.48 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete compressive strength for 5% silica fume and 7% silica fume overlay placements between 0 and 48 months old   | . 228 |
| 3.49 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete compressive strength for conventional                                                                       |       |

|      | overlay placements between 48 and 96 months and 96 and 144 month old                                                                                                              | . 229 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.50 | Adjusted mean effective diffusion coefficient $D_{eff}^{*}$ of individual placements versus concrete compressive strength for monolithic bridge placements older than 120 months. | . 229 |
| 4.1  | Crack density of entire monolithic bridge decks evaluated in the current study and by Schmitt and Darwin (1995) and/or Miller and Darwin (2000)                                   | . 230 |
| 4.2  | Crack density of entire conventional overlay bridge decks evaluated<br>in the current study and by Schmitt and Darwin (1995) and/or<br>Miller and Darwin (2000)                   | . 231 |
| 4.3  | Crack density of entire silica fume overlay bridge decks evaluated<br>in the current study and by Schmitt and Darwin (1995) and/or<br>Miller and Darwin (2000)                    | . 232 |
| 4.4  | Correlation of crack density of entire bridge decks for bridges<br>evaluated in the current study and by Schmitt and Darwin<br>(1995)                                             | . 233 |
| 4.5  | Correlation of crack density of entire bridge decks for bridges<br>evaluated in the current study and by Miller and Darwin (2000)                                                 | . 233 |
| 4.6  | Correlation of crack density of entire bridge decks for bridge<br>evaluated by Miller and Darwin (2000) and by Schmitt and Darwin<br>(1995)                                       | . 234 |
| 4.7  | Crack density of entire bridge decks versus bridge age for all monolithic decks included in the analysis                                                                          | . 234 |
| 4.8  | Crack density of entire bridge decks versus bridge age for all conventional overlays included in the analysis                                                                     | . 235 |
| 4.9  | Crack density of entire bridge decks versus bridge age for all silica fume overlays included in the analysis                                                                      | . 235 |
| 4.10 | Mean crack density of entire bridge decks versus date of construction for all monolithic decks included in the analysis                                                           | . 236 |
| 4.11 | Mean crack density of entire bridge decks versus date of construction for all conventional overlays included in the analysis                                                      | . 236 |
| 4.12 | Mean crack density of entire bridge decks versus date of construction                                                                                                             |       |

|      | for all silica fume overlays included in the analysis                                                                                                    | . 237 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4.13 | Mean crack density of entire bridge decks corrected to an age of 78 months versus special provision revision number for silica fume overlay bridge decks | . 237 |
| 4.14 | Average concrete slump versus placement date for monolithic decks and overlay subdecks                                                                   | . 238 |
| 4.15 | Average concrete slump versus placement date for overlay placements                                                                                      | . 238 |
| 4.16 | Average air content versus placement date for monolithic decks and overlay subdecks                                                                      | . 239 |
| 4.17 | Average concrete air content versus placement date for overlay placements                                                                                | . 239 |
| 4.18 | Percent volume of water and cement versus placement date for<br>monolithic decks and overlay subdecks                                                    | . 240 |
| 4.19 | Percent volume of water and cementitious materials versus placement<br>date for overlay placements                                                       | . 240 |
| 4.20 | Water content versus placement date for monolithic decks and overlay subdecks                                                                            | . 241 |
| 4.21 | Water content versus placement date for overlay placements                                                                                               | . 241 |
| 4.22 | Cement content versus placement date for monolithic decks and overlay subdecks                                                                           | . 242 |
| 4.23 | Water/cement ratio versus placement date for monolithic decks and overlay subdecks                                                                       | . 242 |
| 4.24 | Water/cementitious material ratio versus placement date for overlay placements                                                                           | . 243 |
| 4.25 | Average concrete compressive strength versus placement date for monolithic decks and overlay subdecks                                                    | . 243 |
| 4.26 | Average concrete compressive strength versus placement date for overlay placements                                                                       | . 244 |
| 4.27 | Minimum daily temperature versus placement date for monolithic deck and overlay subdecks                                                                 | . 244 |

| 4.28 | Minimum daily temperature versus placement date for overlay placements                                                                           | . 245 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4.29 | Maximum daily temperature versus placement date for monolithic deck and overlay subdecks                                                         | . 245 |
| 4.30 | Maximum daily temperature versus placement date for overlay placements.                                                                          | . 246 |
| 4.31 | Average temperature versus placement date for monolithic deck and overlay subdecks                                                               | . 246 |
| 4.32 | Average temperature versus placement date for overlay placements                                                                                 | . 247 |
| 4.33 | Daily air temperature range versus placement date for monolithic deck and overlay subdecks                                                       | . 247 |
| 4.34 | Daily air temperature range versus placement date for overlay placements                                                                         | . 248 |
| 4.35 | Bridge deck superstructure type versus date of placement for all bridge deck types                                                               | . 248 |
| 4.36 | Deck thickness versus the last day of concrete placement                                                                                         | . 249 |
| 4.37 | Transverse bar spacing versus the last day of concrete placement                                                                                 | . 249 |
| 4.38 | Top cover versus the last day of concrete placement                                                                                              | . 250 |
| 4.39 | Transverse bar spacing versus the last day of concrete placement                                                                                 | . 250 |
| 5.1  | Mean crack density for individual placements corrected to an age of<br>78 months versus bridge deck type                                         | . 251 |
| 5.2  | Mean crack density for individual placements corrected to an age of 78 months versus water content for 5% and 7% silica fume overlay placements. | . 251 |
| 5.3  | Mean crack density for individual placements corrected to an age of 78 months versus water content for conventional overlay placements           | . 252 |
| 5.4  | Mean crack density for individual placements corrected to an age of 78 months versus water content for overlay subdeck placements                | . 252 |
| 5.5  | Mean crack density for individual placements corrected to an age of                                                                              |       |

|      | 78 months versus water content for monolithic placements                                                                                                                | 253 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.6  | Mean crack density for individual placements corrected to an age of 78 months versus cement content for overlay subdeck placements                                      | 253 |
| 5.7  | Mean crack density for individual placements corrected to an age of 78 months versus cement content for monolithic placements                                           | 254 |
| 5.8  | Mean crack density for individual placements corrected to an age of 78 months versus percent volume of water and cement for overlay subdeck placements                  | 254 |
| 5.9  | Mean crack density for individual placements corrected to an age of 78 months versus percent volume of water and cement for monolithic placements.                      | 255 |
| 5.10 | Mean crack density for individual placements corrected to an age of 78 months versus water-cement ratio for overlay subdeck placements                                  | 255 |
| 5.11 | Mean crack density for individual placements corrected to an age of 78 months versus water-cement ratio for monolithic placements                                       | 256 |
| 5.12 | Mean crack density for individual placements corrected to an age of 78 months versus concrete slump for 5% and 7% silica fume overlay placements.                       | 256 |
| 5.13 | Mean crack density for individual placements corrected to an age of 78 months versus concrete slump for conventional overlay placements.                                | 257 |
| 5.14 | Mean crack density for individual placements corrected to an age of 78 months versus concrete slump for subdeck placements                                              | 257 |
| 5.15 | Mean crack density for individual placements corrected to an age of 78 months versus percent concrete slump for monolithic placements                                   | 258 |
| 5.16 | Mean crack density for individual placements corrected to an age of 78 months versus air content for 5% and 7% silica fume overlay and conventional overlay placements. | 258 |
| 5.17 | Mean crack density for individual placements corrected to an age of 78 months versus air content for overlay subdeck placements                                         | 259 |
| 5.18 | Mean crack density for individual placements corrected to an age of 78 months versus air content for monolithic placements                                              | 259 |

| 5.19 | Mean crack density for individual placements corrected to an age of 78 months versus compressive strength for 5% and 7% silica fume overlay placements.                            | . 260 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5.20 | Mean crack density for individual placements corrected to an age of 78 months versus compressive strength for conventional overlay placements.                                     | . 260 |
| 5.21 | Mean crack density for individual placements corrected to an age of 78 months versus compressive strength for subdeck placements                                                   | . 261 |
| 5.22 | Mean crack density for individual placements corrected to an age of 78 months versus compressive strength for monolithic placements                                                | . 261 |
| 5.23 | Mean crack density for individual placements corrected to an age of 78 months versus average air temperature for 5% and 7% silica fume overlay and conventional overlay placements | . 262 |
| 5.24 | Mean crack density for individual placements corrected to an age of 78 months versus average air temperature for overlay subdeck placements.                                       | . 262 |
| 5.25 | Mean crack density for individual placements corrected to an age of 78 months versus average air temperature for monolithic placements                                             | . 263 |
| 5.26 | Mean crack density for individual placements corrected to an age of 78 months versus minimum air temperature for 5% and 7% silica fume overlay and conventional overlay placements | . 263 |
| 5.27 | Mean crack density for individual bridge decks corrected to an age of 78 months versus minimum air temperature for overlay subdeck placements.                                     | . 264 |
| 5.28 | Mean crack density for individual placements corrected to an age of 78 months versus minimum air temperature for monolithic bridge placements.                                     | . 264 |
| 5.29 | Mean crack density for individual placements corrected to an age of 78 months versus maximum air temperature for 5% and 7% silica fume overlay and conventional overlay placements | . 265 |
| 5.30 | Mean crack density for individual bridge decks corrected to an age of 78 months versus maximum air temperature for overlay subdeck placements                                      | . 265 |
| 5.31 | Mean crack density for individual placements corrected to an age of                                                                                                                |       |

|      | 78 months versus maximum air temperature for monolithic placements                                                                                                                     | 266 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.32 | Mean crack density for individual placements corrected to an age of 78 months versus daily air temperature range for 5% and 7% silica fume overlay and conventional overlay placements | 266 |
| 5.33 | Mean crack density for individual bridge decks corrected to an age of 78 months versus daily air temperature range for overlay subdeck placements.                                     | 267 |
| 5.34 | Mean crack density for individual placements corrected to an age of 78 months versus daily air temperature range for monolithic bridge placements.                                     | 267 |
| 5.35 | Mean crack density for entire bridge decks corrected to an age of 78 months versus structure type, based on deck type, for all bridge deck types                                       | 268 |
| 5.36 | Mean crack density for entire bridge decks corrected to an age of 78 months versus structure type for all bridge deck types                                                            | 268 |
| 5.37 | Mean crack density for entire bridge decks corrected to an age of 78 months versus top transverse reinforcing bar size for 5% and 7% silica fume overlay bridges.                      | 269 |
| 5.38 | Mean crack density for entire bridge decks corrected to an age of 78 months versus top transverse reinforcing bar size for conventional overlay bridges.                               | 269 |
| 5.39 | Mean crack density for entire bridge decks corrected to an age of 78 months versus top transverse reinforcing bar size for monolithic bridges.                                         | 270 |
| 5.40 | Mean crack density for entire bridge decks corrected to an age of 78 months versus top transverse reinforcing bar size for all bridge deck types                                       | 270 |
| 5.41 | Mean crack density for entire bridge decks corrected to an age of 78 months versus top transverse bar spacing for 5% and 7% silica fume and conventional overlay bridges               | 271 |
| 5.42 | Top transverse bar spacing versus top transverse bar size for 5% and 7% silica fume and conventional overlay bridges                                                                   | 271 |
| 5.43 | Mean crack density for entire bridge decks corrected to an age of 78                                                                                                                   |     |

|      | months versus deck thickness for 5% and 7% silica fume overlay bridges                                                                                                    | 272 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.44 | Mean crack density for entire bridge decks corrected to an age of 78 months versus deck thickness for conventional overlay bridges                                        | 272 |
| 5.45 | Mean crack density for entire bridge decks corrected to an age of 78 months versus deck thickness for monolithic bridges                                                  | 273 |
| 5.46 | Mean crack density for entire bridge decks corrected to an age of 78 months versus top cover for monolithic bridges                                                       | 273 |
| 5.47 | Mean crack density of end sections corrected to an age of 78 months versus girder end condition for 5% and 7% silica fume overlay and conventional overlay bridges        | 274 |
| 5.48 | Ratio of end section crack density to the crack density of the entire deck versus girder end condition for 5% and 7% silica fume overlay and conventional overlay bridges | 274 |
| 5.49 | Mean crack density for individual spans corrected to an age of 78 months versus span type for 5% and 7% silica fume overlay and conventional overlay bridges              | 275 |
| 5.50 | Mean crack density for individual spans corrected to an age of 78 months versus span type for monolithic bridges                                                          | 275 |
| 5.51 | Mean crack density for entire bridge decks corrected to an age of 78 months versus bridge skew for 5% and 7% silica fume overlay and conventional overlay bridges         | 276 |
| 5.52 | Mean crack density for entire bridge decks corrected to an age of 78 months versus bridge skew for monolithic bridges                                                     | 276 |
| 5.53 | Mean crack density for individual spans corrected to an age of 78 months versus span length for 5% and 7% silica fume overlay bridges                                     | 277 |
| 5.54 | Mean crack density for individual spans corrected to an age of 78 months versus span length for conventional overlay bridges                                              | 277 |
| 5.55 | Mean crack density for individual spans corrected to an age of 78 months versus span length for monolithic bridges                                                        | 278 |
| 5.56 | Mean crack density for entire bridge decks corrected to an age of 78 months versus bridge length for 5% and 7% silica fume overlay,                                       |     |

|      | conventional overlay, and monolithic bridges                                                                                                                                            | 278 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.57 | Mean crack density for individual placements corrected to an age of 78 months versus bridge contractor (names withheld) for 5% and 7% silica fume overlay placements                    | 279 |
| 5.58 | Mean crack density for individual placements corrected to an age of 78 months versus bridge contractor (names withheld) for conventional overlay placements.                            | 279 |
| 5.59 | Mean crack density for individual placements corrected to an age of 78 months versus bridge contractor (names withheld) for monolithic placements.                                      | 280 |
| 5.60 | Mean crack density for entire bridge decks corrected to an age of 78 months versus traffic volume for 5% and 7% silica fume overlay and conventional overlay bridges                    | 280 |
| 5.61 | Mean crack density for entire bridge decks corrected to an age of 78 months versus traffic volume for monolithic bridges                                                                | 281 |
| 5.62 | Crack density and dummy variable analysis results for entire bridge decks versus total number of load cycles for 5% and 7% silica fume overlay bridges                                  | 281 |
| 5.63 | Crack density and dummy variable analysis results for entire bridge decks versus total number of load cycles for conventional overlay bridges                                           | 282 |
| 5.64 | Crack density and dummy variable analysis results for entire bridge decks versus total number of load cycles for monolithic bridges                                                     | 282 |
| 5.65 | Crack density and dummy variable analysis results for entire bridge decks corrected to an age of 78 months versus total number of load cycles for 5% and 7% silica fume overlay bridges | 283 |
| 5.66 | Crack density and dummy variable analysis results for entire bridge<br>decks corrected to an age of 78 months versus total number of load<br>cycles for conventional overlay bridges    | 283 |
| 5.67 | Crack density and dummy variable analysis results for entire bridge decks corrected to an age of 78 months versus total number of load cycles for monolithic bridges                    | 284 |

Appendix E Figures are available separately in a separate PDF by contacting KDOT at <u>library@ksdot.org</u>.

### CHAPTER 1:

### **INTRODUCTION**

#### 1.1 General

The corrosion of reinforcing steel in bridge decks is a significant financial and safety problem that is exacerbated by bridge deck cracking and deicing chemicals, primarily sodium chloride and calcium chloride. Since the early 1960s, transportation agencies have worked to identify the primary factors contributing to bridge deck cracking. Many recommendations have been made that have resulted in material and design specification changes, more stringent weather limitations on concrete placement, and improved construction procedures. Bridge deck cracking has, however, remained a significant problem warranting continued attention. At the same time, efforts to limit the corrosion of reinforcing steel through the use of epoxy coatings, increased cover, and high-density concrete overlays have become widely accepted. Another method that has become increasing popular, especially in the state of Kansas, is the use of concrete overlays containing silica fume. The use of silica fume slows the ingress of chlorides due to greatly reduced permeability and, in some cases, concretes containing silica fume have performed well. As with other technological innovations, however, questions regarding both short and long-term field performance exist. Silica fume concrete, especially in bridge deck applications, is certainly not an exception.

### **1.2** Significance of Bridge Deck Cracking

Cracks in bridge decks provide the principal path for deicing chemicals to reach reinforcing steel and accelerate freeze-thaw damage. Cracks may also extend through the full thickness of a deck and cause accelerated corrosion of the supporting girders. A 2002 estimate places the direct cost associated with corrosion of highway bridges at \$8.3 billion annually, with indirect user costs as much as ten times that amount (Yunovich et al. 2002). Information gathered by the Federal Highway Administration (FHWA) for the state of Kansas indicates that in 2002 approximately 25 percent of the bridges were classified as structurally deficient or functionally obsolete.

Although these classifications are not based exclusively on the condition of bridge decks, the bridge decks are primary factors affecting this rating. According to Virmani and Clemeña (1998), the corrosion of bridge deck reinforcing steel is a significant contributor to superstructure deterioration.

### **1.3** Types of Bridge Deck Deterioration

Bridge deck deterioration can be classified by either the causes of the deterioration or by the physical description and orientation. The most predominant form of bridge deck deterioration is cracking. Bridge deck cracking is also commonly categorized by the cause or the orientation and physical characteristics of the cracks.

#### 1.3.1 Crack Classification Based on Causes of Cracking

Bridge deck cracking is the result of a complex interaction of multiple factors that are not yet fully understood. Cracks are typically categorized into two main groups: cracks that occur while the concrete is still plastic and cracks that occur after the concrete has hardened. Plastic shrinkage cracking and subsidence cracking have been identified and occur in plastic concrete, while thermal shrinkage cracking, drying shrinkage cracking, and flexural cracking are believed to be the primary causes of cracking in hardened concrete.

The causes of and remedies for plastic shrinkage cracking are well known. Plastic shrinkage cracks occur in fresh concrete when the rate of surface evaporation exceeds the rate at which concrete bleed water reaches the surface. As water from the surface of the deck is

removed by evaporation, negative capillary pressures form and cause the paste to shrink. Since this occurs predominately at the surface of the deck, differential shrinkage between the top layer and the underlying layer create tensile stresses that are likely to create surface cracks. The concrete bleeding rate, a primary factor in plastic shrinkage cracking, can be reduced for a number of reasons. The use of fine pozzolans and other mineral admixtures or finely ground cements reduces bleeding. In addition, increasing the rate of cement hydration, the use of air entrained air, and a reduction of the water content of the concrete reduces bleeding and makes concrete more susceptible to plastic shrinkage cracking (Mindess, Young, and Darwin 2003). Many methods have been successfully employed to mitigate plastic shrinkage cracking during concrete placement. Admixtures that increase the bleeding rate, evaporation retarders, windbreaks, curing compounds, cooling the concrete or its constituents, and the early application of wet burlap and polyethylene have all been used in various combinations to successfully eliminate plastic shrinkage cracking.

Subsidence or settlement cracking occurs as fresh concrete settles around reinforcing bars near the surface of the deck. Since these cracks occur directly above and parallel to the deck reinforcement, settlement cracks provide a direct path for deicing chemicals to reach the reinforcing steel. Settlement cracks are caused by a local tensile stress concentration resulting from fresh concrete subsiding on either side of the reinforcing steel. The probability of settlement cracks occurring increases with increasing bar size, increasing slump, and decreasing concrete cover (Dakhil, Cady, and Carrier 1975). In addition to forming visually observable cracks, weakened planes in the concrete above the reinforcing bars may also increase the probability of cracking after the concrete has hardened (Babaei and Fouladgar 1997).

Thermal bridge deck cracking results from thermally-induced shrinkage and restraint provided by girders, deck reinforcement, shear studs, and abutments. As concrete cures, hydration results in increasing concrete temperatures and expansion. This initial expansion during hydration causes little or no stress in the plastic concrete. The concrete hardens in a "stress-free" condition by the time it reaches its peak temperature. As the concrete begins cooling to the ambient temperature, it shrinks; girders and other structural elements, however, restrict the shrinkage and induce tensile stresses. These tensile stresses can result in cracks if the thermally-induced stress exceeds the tensile capacity of the deck. These stresses may also leave the deck more susceptible to cracking caused by other factors (Babaei and Purvis 1996).

Drying shrinkage results from water loss in the cement paste and causes cracking in a manner similar to thermal shrinkage. Water contained in capillary pores, hardened calcium silicate gel (calcium silicate hydrate or C–S–H), and solid surfaces is lost causing shrinkage. In bridge decks, the shrinkage is restrained. Drying shrinkage, however, occurs over a much longer period than other types of shrinkage and allows concrete creep to alleviate a portion of the tensile stress. Although many factors affect drying shrinkage, shrinkage caused by water loss from the C–S–H gel is the most significant. By maximizing the aggregate content (the concrete constituent that resists shrinkage) and minimizing the paste content, overall shrinkage can be reduced. Other mix design factors, such as cement type and fineness, aggregate type and size, admixtures, and member geometry, also affect the amount of drying shrinkage (Mindess, Young, and Darwin 2003).

In addition to cracks caused by the restraint of volume changes, directly applied loads are also responsible for bridge deck cracking. Flexural cracks typically occur in negative moment

regions as a result of dead and live loads. Finally, the placing sequence during construction can affect the tensile stresses induced in a bridge deck, both during and after construction.

#### **<u>1.3.2 Crack Classification Based on Orientation</u>**

In a 1970 study, the Portland Cement Association categorized bridge deck cracks into five distinct groups: transverse, longitudinal, diagonal, pattern or map, and random cracking (*Durability* 1970). A sixth category, D-cracking, was defined but not found on any of the decks examined. The following observations and definitions were developed as part of that extensive study (described in Section 1.8).

**Transverse cracks** are fairly straight and occur perpendicular to the roadway centerline. Transverse cracks have been the focus of many studies because they are generally recognized as both the most common and the most detrimental form of cracking (*Durability* 1970, Krauss and Rogalla 1996, Eppers and French 1998, Le and French 1998). Transverse cracks frequently occur directly above transverse reinforcement and can extend completely through the deck (*Durability* 1970).

**Longitudinal cracking** is primarily found in slab bridges. These cracks are typically straight and run parallel to the roadway centerline above the void tubes in hollow-slab bridges and above the longitudinal reinforcement in solid-slab bridges. Like transverse cracks, these cracks frequently occur before the bridge is open to traffic and can extend completely through the deck (*Durability* 1970, Eppers and French 1998).

**Diagonal cracking** typically occurs near the ends of skewed bridges and over singlecolumn piers. Generally, these cracks are parallel and occur at an angle other than 90 degrees with respect to the roadway centerline (*Durability* 1970). Diagonal cracks are typically shallow in depth and do not follow any distinct pattern. The likely causes of these cracks are inadequate

design details near abutments, resulting in flexural cracking and drying shrinkage induced cracking.

**Pattern or map cracking** consists of interconnected cracks of any size. They are generally shallow in depth and are not believed to significantly affect bridge performance (*Durability* 1970). Both drying shrinkage and plastic shrinkage are thought to be the primary causes. Finally, **random cracks** are irregularly shaped cracks that do not fit into any of the other classifications. These cracks occur frequently, but there is no clear relationship between their occurrence and bridge deck characteristics (*Durability* 1970).

### 1.4 Corrosion

Corrosion of reinforcing steel is caused by a number of factors that can lead to cracking and more detrimental forms of deterioration, such as surface spalling and delamination. These latter forms of deterioration are principally caused by the volume expansion that accompanies the corrosion of reinforcing steel. Cracks over reinforcing steel, inadequate concrete cover, chloride diffusion through concrete, and the use of deicing chemicals containing chlorides all play an important factor in reinforcing steel corrosion (*Durability* 1970).

The high alkalinity of the concrete pore water creates a tightly adhering film that passivates the steel and provides protection in addition to the physical properties of the concrete. Unfortunately, this passivating layer can be penetrated by chloride ions, applied as deicing salts, and leave the deck reinforcing steel vulnerable to corrosion. The typical wetting and drying cycles experienced by bridge decks aggravates this problem. The corrosion rate and the time until concrete repairs are needed are influenced by the amount of concrete cover protecting the steel, the application rate of deicing salts, and the concrete permeability (ACI Committee 222 1998). For corrosion to occur, both oxygen and water must be present.

### 1.5 Silica Fume

To create durable and less permeable concrete, silica fume is used as a partial replacement of portland cement. Silica fume is produced as a by-product during the production of silicon metal or ferrosilicon alloys and consists of very small spherical particles. During cement hydration, silica fume reacts with calcium hydroxide (CH) and forms calcium-silicate hydrate (C–S–H) through the pozzolanic reaction. In addition to the supplementary C–S–H produced, the fine spherical particles act as filler between cement and aggregate particles and within the cement paste matrix (Whiting, Detwiler, and Lagergren 2000). The addition of silica fume in concrete results in a stronger, denser, and less permeable concrete. Research has shown that in hardened concrete, although the total porosity is not reduced, the number of large capillary pores is reduced, thus increasing the likelihood of a discontinuous pore system (ACI Committee 234 1996).

Although silica fume is also associated with improved durability, high strength, high early-strength, and abrasion resistance, the primary use of silica fume in bridge decks is to provide corrosion protection through the use of a low permeability bridge deck. There is, however, concern with the use of silica fume in concrete bridge decks. Silica fume is approximately 100 times finer than portland cement and has a correspondingly high surface area (Detwiler, Whiting, and Lagergren 1999). This high surface area results in a cohesive mix with a substantially increased water demand. Typically, this increase in water demand is offset through the use of a high-range water reducer and selecting a target slump approximately 50 mm (2 in.) more than would be used for conventional concretes. The high surface area of silica-fume, however, reduces the total amount and rate of bleeding, leaving the concrete especially susceptible to plastic shrinkage cracking (ACI Committee 234 1996).

### **1.6 Chloride Concentrations**

Although the transport of chloride ions in hardened concrete is controlled in part by absorption and capillary action or wicking, the predominant mechanism is "ionic diffusion through the water-filled pore system" (Whiting and Mitchell 1992). Fick's Second Law of Diffusion is frequently used to model chloride migration through concrete and is shown in Eq. (1.1).

$$\frac{\partial C}{\partial t} = D\left(\frac{\partial^2 C}{\partial x^2}\right) \tag{1.1}$$

where

x = Depth t = Time C = chloride concentration D = diffusion coefficient

Although this equation generally models chloride migration through concrete well, there are three principal problems with its application to concrete. First, Fick's Second Law assumes that the material, concrete in this case, is both permeable and homogeneous. Concrete is permeable, but it is certainly not homogeneous. Second, the diffusion properties of the material cannot change with respect to time or concentration of the diffusant. Generally concrete becomes less permeable as hydration progresses and as chloride concentrations within the concrete increase. Lastly, Fick's Second Law assumes that no chemical reactions or binding between the material and the diffusant occur. Young concrete violates this assumption because aluminates generated during the hydration process can chemically bind with chloride ions and prevent further ingress into the concrete (Whiting and Detwiler 1998).

To solve Eq. (1.1) and arrive at the form of the equation that is most commonly used, two additional assumptions must be made; these are applied as an initial condition and a boundary

condition for the differential equation. First, the initial chloride content is assumed to be zero throughout the sample, and second, the surface concentration is assumed to be constant throughout the life of the sample. Both of these additional assumptions are again violated by concrete exposed to deicers. Chlorides are contained in aggregates and admixtures and are commonly found in concrete before any deicing salts are applied. Secondly, chlorides are applied to bridge decks seasonally and are subject to rain, traffic, and other conditions that increase and then decrease the surface concentration throughout the year. Despite these shortcomings, Fick's Second Law is commonly used and serves as a useful tool to measure relative differences between different bridge decks. With the application of the two assumptions, an error-based function can be obtained and readily applied to experimental data (Suryavanshi, Swamy, and Cordew 2002).

$$C(x,t,C_o,D_{eff}) = C_o \cdot \left[1 - erf\left(\frac{x}{2 \cdot \sqrt{t \cdot D_{eff}}}\right)\right]$$
(1.2)

where

x = Depth t = Time  $C_o = apparent surface concentration$   $D_{eff} = effective diffusion coefficient$  erf = error function

Typically, because of the assumptions made in solving the differential equation, terms such as "apparent" and "effective" are used to describe the surface concentration and diffusion coefficient obtained through the use of this technique.

# 1.7 Bridge Deck Overlay Specifications

Two types of rigid overlays were examined in this study: conventional high-density concrete overlays and silica fume modified overlays. The 59 bridges included in this study were constructed between 1984 and 2002. Because of this wide range in construction dates, these bridges represent a variety of construction procedures and specifications. During this period, one of the most significant revisions to standard construction practices for deck overlays has been the use of silica fume to modify the concrete. Additional requirements that are included in the specifications covering silica fume outline curing procedures, placing and finishing equipment, concrete mix designs, and temperature restrictions. The specifications usually provide a range of acceptable values and procedures. For this reason most of the individual factors (e.g., cement content and air temperature) and their effect on deck cracking and permeability are examined in Chapters 3, 4, and 5. It is important, however, to begin with the general requirements used for the design and construction of each bridge deck, especially for individual factors that are not typically recorded in construction records.

The conventional overlay specifications applicable to this study (section 720 of the Standard Specifications) are Special Provisions 90P–95, 90P–95–R1, and 90P–95–R2. They require the use of Type II or Type I/II portland cement and a minimum cement content of 371 kg/m<sup>3</sup> (625 lb/yd<sup>3</sup>). In addition, the maximum water-cement ratio is specified as 0.38, the required entrained air content is  $6.0 \pm 2.0$  percent, and the maximum slump is 19 mm (<sup>3</sup>/<sub>4</sub> in.). The maximum aggregate size is 12.5 mm (<sup>1</sup>/<sub>2</sub> in.), and the ratio of coarse aggregate to fine aggregate is specified as 50:50 by weight. At least one oscillating screed is required to finish the deck, and drum roller finishing equipment is not allowed. These provisions do not require

fogging. Application of a liquid membrane forming curing compound followed by wet burlap and polyethylene for a minimum of 72 hours is required.

The current conventional overlay specification (90M–95–R4) requires an air content of  $6.5 \pm 1.5$  percent and allows the use of Type IP cement in addition to Type II and Type I/II cement. The slump can be chosen by the contractor and set between 50 and 125 mm (2 and 5 in.) with a tolerance of 25 percent or 18 mm (0.7 in.), whichever is larger. To begin placement, the estimated evaporation rate must be below 1.0 kg per square meter per hour (0.2 lb per square foot per hour). If the evaporation rate is estimated to exceed 1.0 kg/m<sup>2</sup>/hr (0.2 lb/ft<sup>2</sup>/hr) at anytime during placement, additional measures such as windbreaks, fogging, cooling the concrete or its constituents must be used to create and maintain satisfactory environmental conditions. A drum roller may be used in lieu of an oscillating screed. In addition to the liquid membrane, a precure material is required immediately after the surface is struck off and the final cure with wet burlap and polyethylene is extended to at least seven days. Any additional measures taken during placement to reduce the evaporation rate must be continued during the finishing operation until the wet burlap is in place.

The silica fume overlay specifications applicable to this study represent two primary groups of specifications. The first group, special provisions 90P–158–R1 through 90P–158–R6 require Type II or Type I/II portland cement with a minimum cement content of 354 kg/m<sup>3</sup> (595 lb/yd<sup>3</sup>) and a minimum silica fume content of 18 kg/m<sup>3</sup> (30 lb/yd<sup>3</sup>), equal to 5 percent by weight of cement and 4.8 percent by weight of cementitious materials. The maximum water to cementitious material ratio is 0.40; the required air content is  $6.0 \pm 2.0$  percent; and the target slump can be selected by the contractor and set between 50 mm and 125 mm (2 and 5 in.). The maximum aggregate size is 12.5 mm (½ in.), and the ratio of coarse aggregate to fine aggregate

is specified as 50:50 by weight. Prior to placing the overlay, a portland cement grout with a water-cement ratio of 0.60 must be brushed on to the dry subdeck. At least one oscillating screed is required to finish the deck, and drum roller finishing equipment is not allowed. The allowable tolerance for the chosen slump changed from 25 mm (1 in.) for special provisions 90P-158-R1 through 90P-158-R4 to the larger of 25 percent of the chosen slump or 18 mm (<sup>3</sup>/<sub>4</sub> in.) beginning with special provision 90P-158-R5.

The second group of overlay specifications (90M–95–R8, 90M–95–R9, 90M–95–R10) added the option of using Type IP cement and decreased the minimum cement content to 346 kg/m<sup>3</sup> (583 lb/yd<sup>3</sup>) while increasing the minimum silica fume content to 26 kg/m<sup>3</sup> (44 lb/yd<sup>3</sup>), equal to a 7 percent replacement of portland cement by weight of cementitious materials. The maximum water to cementitious material ratio is 0.37, down from 0.40. Air content, slump, and aggregate content have the same requirements as the most recent conventional overlay provision.

The finishing and curing requirements have changed significantly since the first silica fume overlay special provision (90P-158). For provisions 90P-158 through 90P-158-R2, curing is achieved with wet burlap covered with white polyethylene sheeting for at a minimum of 72 hours. An onsite silica fume technical representative from the silica fume manufacturer is required to be on the job site during the initial placements. The technical representative may require a precure material and/or fogging after the surface is struck-off with an oscillating screed. Special provision 90P-158-R3 requires the use of a Type 1-D liquid curing compound immediately after finishing in addition to a curing period of seven days. This provision (90P-158-R3) also requires fogging and/or the application of a precure material during the finishing operation.

The requirements for special provisions 90P-158-R4 through 90P-158-R6 have become increasing stringent. The estimated evaporation rate must be below 1.0 kg per square meter per hour (0.2 lb per square foot per hour). If the evaporation rate is estimated to exceed 1.0 kg/m<sup>2</sup>/hr (0.2 lb/ft<sup>2</sup>/hr) at anytime during placement, additional measures such as windbreaks, fogging, cooling the concrete or its constituents must be used to create and maintain satisfactory environmental conditions. These provisions also require the use of both fogging and a precure material during the finishing operation. The Type 1-D membrane must be applied immediately behind the tining operation, and measures must be taken to ensure that the burlap remains wet for the entire curing period. An important change was implemented in special provision 90M-158-R7. The grout previously used to cover the surface of the subdeck prior to overlay placement is no longer required. Instead, the surface must be thoroughly wetted at least two hours prior to placement and the damp surface must be maintained until the overlay is placed.

Only minor changes have occurred since the development of the first 7 percent silica fume overlay special provision (90M-95-R8). The curing requirements have not changed. In addition to the requirements set forth in 90M-158-R7, rather than continuous fogging throughout the finishing operation, these provisions allow intermittent fogging during finishing if the estimated evaporation rate is below  $1.0 \text{ kg/m}^2/\text{hr}$  ( $0.2 \text{ lb/ft}^2/\text{hr}$ ). This change helps to ensure that water does not begin to pond on the overlay surface during periods of low evaporation. If the evaporation rate is above  $1.0 \text{ kg/m}^2/\text{hr}$  ( $0.2 \text{ lb/ft}^2/\text{hr}$ ), continuous fogging is still required until the wet burlap is in place.

## **1.8 Previous Work**

Several studies have been undertaken to ascertain the principal causes and remedies for bridge deck cracking. Ten studies are summarized in this section including two studies of bridge decks

in Kansas (Schmitt and Darwin 1995, Miller and Darwin 2000) that serve as a basis and template for this research. The studies range from large multi-state bridge examinations (*Durability* 1970) to smaller laboratory projects (Dakhil, Cady, and Carrier 1975). Each study selected for review represents a unique perspective, substantial advance, or significant body of research on the causes and remedies of bridge deck cracking. The ten studies are summarized in Table 1.1.

# <u>1.8.1 Literature Review</u>

1. <u>Schmitt and Darwin 1995</u>: In 1995, Schmitt and Darwin completed a study of steel girder bridges located primarily in northeastern Kansas. This study was the first of three in Kansas with the goal of determining the primary factors that lead to bridge deck cracking. The study included recommendations for alternate design and construction methods to improve bridge deck performance based on field surveys of 37 composite bridge decks [15 monolithic, 20 high-density (conventional) concrete overlay, 2 silica fume overlay], and 3 monolithic non-composite bridge decks.

Information obtained from the field surveys was compared with thirty-one variables compiled from construction diaries, weather logs, mix designs, and bridge plans to determine and quantify the primary factors affecting bridge deck durability. The field surveys were performed by marking all of the cracks on the bridge deck and transferring these marks to a scale drawing of the deck. The drawings were scanned, and crack densities, in linear meters of crack per square meter of bridge deck, were calculated for each deck from the crack maps through the use of computer programs. In addition to the entire bridge deck, crack densities were also calculated for individual spans, individual placements, and the first and last 3 m (10 ft) of each bridge deck. Due to the inherent differences in the bridge deck types included in the study, most of the variables were analyzed separately for each deck type.

Based on the analysis, Schmitt and Darwin (1995, 1999) reached several conclusions. With respect to monolithic, conventional overlay, and silica-fume overlay bridge decks, they found that the deck type had little influence on the amount of cracking. Bridges with integral abutments showed increased cracking when compared to pin-ended girders (approximately 2 to 3 times). Of the bridges examined with integral abutments,

as the attached length of the deck along the abutment increases, the amount of cracking in the end sections of the deck increases. Cracking also appeared to increase with the average annual daily traffic (AADT). Finally, for the bridges included in the study, those built before 1988, on average, exhibited less cracking than those built after 1988. For monolithic bridge decks, Schmitt and Darwin observed that crack density increases with increasing concrete slump, percent of concrete volume occupied by water and cement, water content, cement content, and compressive strength. Cracking was also found to increase with an increase in water-cement ratio, although it was noted that this trend was only established for the water-cement ratios used in the bridge decks, 0.40, 0.42, and 0.44. Crack density was found to decrease with increasing amounts of entrained air, with significant decreases observed when the air content exceeded 6.0 percent. Of the environmental factors examined, the researchers found that increases in the maximum air temperature and daily air temperature range on the day of casting correlated with an increase in crack density.

Several conclusions were also drawn with respect to decks with overlays. Crack density was found to increase with increases in placement length and bridge length, and to some extent bridge skew. As for monolithic bridge decks, crack density was found to increase with an increase in maximum daily air temperature on the day of casting, although the trend was not as clear. In addition, crack density was found to increase with increases in the average air temperature and the daily air temperature range. Of the design factors examined, cracking was more severe in decks that contained No. 19 (No. 6) top transverse bars than for decks containing No. 16 (No. 5) bars or a combination of No. 13 and No. 16 (No. 4 and No. 5) bars. Crack density was also more severe in bridge decks with top transverse bar spacing greater than 150 mm (6.0 in.) and for decks with overlays that were placed with zero slump concrete.

Based on their study, Schmitt and Darwin (1995, 1999) made three primary recommendations to reduce cracking in concrete bridge decks. First, the volume of water and cement should not exceed 27.0 percent of the concrete for monolithic bridge deck placements or for the subdeck of two-layer bridge decks. Second, the minimum air content for monolithic bridge decks should be 6.0 percent, and finally concrete used for overlays should not be placed with zero slump. In addition to the three primary

recommendations, Schmitt and Darwin (1995) recommended several additional practices to consider before designing and placing concrete bridge decks. First, designers should be made aware that increased cracking occurs for fixed-ended girders compared to pinended girders. Second, closer consideration should be given to the high air temperature and the average daily air temperature when scheduling deck placements. Third, for monolithic bridge decks, the lowest possible slump that still allows reasonable and proper placement and consolidation should be used, with a maximum of 50 mm (2.0 in.). Additionally, shorter placement lengths, especially for overlays, and limiting the top transverse reinforcement to No. 13 or No. 16 (No. 4 or No. 5) bars spaced at 150 mm (6.0 in.) or less should be considered when designing bridge decks. Lastly, fog sprays should be specified for silica-fume overlays to prevent the possibility of extensive plastic shrinkage cracking.

2. <u>Miller and Darwin 2000</u>: In 2000, Miller and Darwin completed a follow-up study to the previous Kansas Department of Transportation sponsored research (Schmitt and Darwin 1995, 1999). In addition to gathering information with respect to the primary factors that contribute to bridge deck cracking, the performance of bridge decks containing silica fume overlays was compared with conventional high-density concrete overlay bridge decks. Forty composite continuous steel girder bridges, 11 of which were included in the previous study by Schmitt and Darwin (1995, 1999), were surveyed and studied using the same procedures and sources previously outlined. The new study included three bridge decks. For the two types of overlay decks, comparisons were made to both the overlay properties and the properties of the bridge subdecks. In addition to the crack density surveys, each bridge deck was evaluated for pavement roughness, chloride content, and performance in rapid chloride permeability test (RCPT) to provide additional points of comparison.

Chloride samples were taken from nearly all of the bridge deck placements included in the study at 19 mm ( $\frac{3}{4}$  in.) increments to a depth of 95 mm ( $\frac{3}{4}$  in.). Three locations on-cracks and three locations off-cracks were sampled for each placement. The samples were tested for chloride content, and Fick's equation was fitted to the resulting profiles using a least-squares technique. An equivalent surface concentration and

effective diffusion coefficient [see Eq. (1.2)] were calculated for each placement and used to evaluate the ability of the concrete to resist chloride ingress. In addition to chloride sampling, concrete cores were taken to perform the rapid chloride permeability test in accordance with ASTM C 1202 (AASHTO T 277) "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration," except that the cores were only 38 mm (1.5 in.) thick rather than the standard 51 mm (2 in.). This was done because the majority of the silica fume overlays sampled were only 38 mm (1.5 in.) thick. The rapid chloride permeability test (RCPT) measures the electrical conductance of concrete by imposing an electrical potential across a sample and measuring the total charge that passed through the sample in a specified time. The results of the chloride diffusion analyses and rapid chloride permeability tests (RCPT) were compared with the material properties and field data of the deck placements.

For ages between 500 and 1500 days, the effective diffusion coefficients for the silica fume and conventional overlays were found to be similar. Silica fume overlay bridge decks, however, had much lower RCPT values than either the conventional overlay or monolithic bridge decks, possibly highlighting the deficiencies of this method for evaluating permeability when mixes with mineral admixtures are compared to mixes without mineral admixtures. The researchers also concluded that there was no correlation between either the effective diffusion coefficients or the RCPT values and concrete slump for overlay bridges. For silica fume overlays, the effective diffusion coefficient was found to increase slightly as the air content increased. For conventional overlays, RCPT values increased as air content increased. Chloride contents were found to increase with age, regardless of the bridge deck type. Additionally, at similar ages, both silica fume and conventional overlay decks had similar chloride contents. At a depth of 75 mm (3 in.), these values exceeded the corrosion threshold of conventional steel in less than 500 days for samples taken directly on cracks. Most of the silica fume overlay and conventional overlay decks, however, were not in the same age ranges, limiting the ability to provide accurate comparisons.

Several conclusions were made with respect to cracking tendency. Silica fume overlay decks constructed in 1997 and 1998 were found to have lower crack densities than older silica fume overlay decks. Monolithic and conventional overlay decks built

between 1989 and 1995, however, had higher crack densities than bridges of the same type constructed earlier. It was also found that conventional and silica fume overlay decks of approximately the same age had similar levels of cracking. Although the level of cracking in the newer silica fume overlay bridge decks decreased compared to the older silica fume overlays, they exhibited crack densities that were similar to conventional overlay bridge decks.

With respect to the causes of bridge deck cracking, several observations were made. Increases in slump, compressive strength, water content, cement content, and percent volume of water and cement in monolithic bridges and bridge subdecks correlated with increased deck cracking, regardless of the overlay type. Presumably, any cracks formed in the subdeck reflected through into the overlay. In addition to subdecks, conventional overlays placed with zero slump and silica fume overlays placed with slumps greater than 90 mm (3.5 in.) showed high crack densities. For monolithic decks, as the water-cement ratio increased, the crack density increased. This trend was not observed for deck overlays or subdecks. Finally, for monolithic bridge decks, crack density was significantly lower for decks with over 6 percent entrained air than for decks with less air.

Several environmental conditions were associated with an increase in crack density. Although not all of the trends were found in all three bridges types, an increase in crack density was found to coincide with increases in the average air temperature, low air temperature, maximum air temperature, and daily air temperature range for the date of concrete placement. For silica fume overlays in particular, as the relative humidity increased, crack density decreased. In addition, silica fume overlays that were treated with a precure material and fogged during and after finishing exhibited less cracking.

Several design related factors were found to affect cracking. In general, Miller and Darwin concluded that crack density was not affected by bridge length, span length, span type (interior or exterior), bridge skew, or steel girder type. Crack density was, however, found to increase with increasing sizes of transverse reinforcement and bar spacing. As observed by Schmitt and Darwin (1995), the girder end condition was also found to have a significant effect on the crack density of the first and last 3 m (10 ft) of the bridge deck. Bridges constructed with fixed-ended girders had crack densities nearly

three times higher than bridges built with pinned-ended girders. Finally, the pavement roughness indices for monolithic, conventional overlay, and silica fume overlay bridges were found to be nearly identical.

Based on the results of the study, Miller and Darwin made three primary recommendations with respect to the performance of Kansas bridge decks. First, the data obtained in the study indicated that silica fume overlays provide no advantage over conventional overlays in terms of crack density, effective diffusion coefficient, or chloride content, either on or off cracks. Miller and Darwin, however, recommended a reexamination of the silica fume overlay decks when they were in the same age range as the conventional overlay decks. Second, a maximum cementitious material content and/or compressive strength should be added to the specifications for both subdecks and overlays. Third, fogging should be used immediately after finishing and the use of a precure material with fogging should be expanded to cover conventional overlays, monolithic decks, and bridge subdecks.

3. **Portland Cement Association 1970:** The Portland Cement Association (PCA) completed one of the earliest studies intended to both characterize and investigate the causes of bridge deck deterioration in 1970 (*Durability* 1970). The cooperative study began in 1961 with the goal of gaining a better understanding of both the causes of and remedies for concrete bridge deck deterioration. The study had four specific objectives: to determine the types and extent of durability problems, to determine the causes of different types of deterioration, to improve the durability of future bridge decks, and to develop methods to mitigate the deterioration of existing bridge decks. To meet these objectives, the study included a detailed investigation of 70 bridge decks in four states, random surveys of over 1000 bridge decks.

The random surveys of over 1000 bridges built from 1940 to 1962 included a summary of the deterioration observed and the span in which the deterioration occurred. The primary purpose of the random surveys was to determine the types and extent of bridge deck deterioration. The types of deterioration recorded (on standard data sheets) included scaling, various types of cracking, rusting, surface spalls, joint spalls, and popouts. In addition to quantifying the types and relative levels of deterioration, the data

also permitted general relationships and observations to be made as functions of deck age, bridge type, traffic volume, use of air-entrained concrete, etc.

The data from the random surveys indicated that the most severe instances of scaling occurred in decks cast with non-air-entrained concrete. Cracking occurred in approximately two-thirds of the bridge decks, with transverse cracking being the most prevalent. Transverse cracking appeared to increase with age and span length and had a higher incidence for continuous spans and decks supported by steel girders.

The detailed investigations made on the 70 bridge decks from four states included sketches of the observed deterioration for each deck, the collection of concrete cores for laboratory study, and an examination of related construction and design documentation. The 70 bridges included in the investigation represented a wide range of ages, locations, structure types, and degrees of deterioration. The primary purpose of these detailed investigations was to determine the causes of bridge deck deterioration. Several types of bridge deck deterioration observed from both the detailed field investigations and the laboratory tests were categorized into three groups: scaling, cracking, and surface spalling.

As with the results from the random surveys, in the detailed investigations, scaling was found to be most severe on bridge decks cast with non-air-entrained concrete, although some isolated areas of scaling were found on air-entrained concrete decks. Based on laboratory measurements of the air content and air void distribution in these decks, scaling was found to be caused by localized deficiencies in the air content. In addition to deficiencies in air content, scaling was also found on some decks with a high water-cement ratio paste at the deck surface. Chloride tests performed on samples of airentrained concrete showed no correlation with scaling.

Cracking was categorized by orientation (described in Section 1.2), with transverse cracking occurring most frequently. The laboratory analysis of cores taken from cracked sections indicated that transverse cracks typically occurred directly above the reinforcing steel. Steel girder bridges had transverse cracks at regularly spaced intervals over the entire length of the deck and, in some instances, had closely spaced transverse cracks in negative moment regions that typically occurred over the top reinforcement. Transverse cracking for decks on steel girders was found to be the result

of many factors, the most important of which were thought to be the restraint provided by the girders on the slab and the local tensile stress concentration caused by subsiding plastic concrete around the top transverse reinforcement. In a similar manner, longitudinal cracks were typically caused by top longitudinal reinforcement or void tubes in hollow-slab bridges.

Diagonal cracking was typically found at the corners of skewed bridges and was considered to be the result of structural deformations caused by loading. Pattern cracking was generally found to be shallow and most likely caused by drying shrinkage. Finally, random cracking, although not the source of major deck deterioration, was found on most bridge decks. The report identified a number of likely factors for random cracking, the most significant of which were wheel loads, shrinkage, temperature stresses, reactive aggregates, and small imperfections in the concrete.

Surface spalls were often observed on decks with inadequate cover and were found to be caused most often by the increase in volume of the reinforcing steel caused by corrosion. In addition to the corrosion products, another factor suggested by the PCA was the pressure generated by freezing liquids in cracks around reinforcing bars.

The final phase of the study included the calculation of the vibrational characteristics for each bridge. The theoretical vibrational characteristics of 46 out of the 70 bridges included in the detailed investigation were calculated using empirical equations developed by Nieto-Ramierez and Veletsos (1966) that compared very well to the actual measured values. The fundamental natural frequency, speed parameter, and impact value were calculated for each bridge and compared with the level of deck deterioration and structure type. The speed parameter quantifies the dynamic response of a bridge as a function of vehicle velocities. The impact value, or dynamic increment of moment, describes the bridge oscillation caused by a smoothly rolling vehicle. Based on these calculations, it was concluded that the vibration characteristics of the bridge superstructure was not a primary factor contributing to the deterioration of concrete bridge decks. Because the bridges included in this part of the study were built between 1940 and 1960, the designs were relatively conservative, in terms of strength and stiffness, when compared with designs after 1960. It was noted that the added flexibility in bridges built after 1960 could prove to be detrimental to bridge deck durability.

Based primarily on the results of the detailed investigation, the Portland Cement Association made several recommendations with regard to concrete mix design, bridge design, and construction practices. To limit the amount of shrinkage that occurred in the deck, the largest maximum size aggregate should be used to minimize the concrete's paste content. The recommended slump should be between 50 and 75 mm (2 and 3 in.) to reduce the effects of excess bleeding, drying shrinkage, and cracking noted in the detailed investigation. The concrete cover should be at least 50 mm (2 in.) over the top reinforcement in areas where deicers are used and at least 38 mm (1.5 in.) in all other areas. In addition to the cover requirements, the report recommended that adequate deck drainage be emphasized during the design phase to reduce surface scaling in gutter areas. Lastly, during deck construction, cover should be checked to ensure that the design specifications are being met.

4. <u>Dakhil, Cady, and Carrier 1975:</u> Because of the concern that cracks directly over the top reinforcement lead to corrosion and subsequent spalling, Dakhil, Cady, and Carrier (1975) set out to quantify the effects of three variables on the tendency to produce subsidence (settlement) cracking in fresh concrete. The three variables examined in the study were depth of cover, concrete slump, and reinforcing bar size. In addition to the examination of these three variables, a photoelastic study to ascertain the magnitudes of tensile stresses above the reinforcement, and a corrosion study to verify the effects of cracks on corrosion activity were performed.

To determine the relative importance of these variables, a complete test matrix was designed with four depths of cover [19 mm (0.75 in.), 25 mm (1 in.), 38 mm (1.5 in.), and 51 mm (2 in.)], three slumps [51 mm (2 in.), 76 mm (3 in.), and 102 mm (4 in.)], and three reinforcing bar sizes [No. 13 (No. 4), No. 16 (No. 5), No. 19 (No. 6)]. A total of 108 specimens were examined 4 hours after each placement for any signs of cracking that were apparent to the unaided eye. The data indicated that both the occurrence and the severity of cracking decreased with increasing covers, lower slumps, and smaller bar sizes. Depth of cover was found to be the most important factor affecting cracking, with no cracks developing with 51 mm (2 in.) cover except in combination with the highest slump and the two largest bar sizes. Based on the results of the cracking data, the

following regression equation was developed to predict the probability of subsidence cracking based on the bar cover, bar size, and concrete slump:

$$p = \frac{1.5e^{y} - 0.5}{1 + e^{y}} \tag{1.3}$$

where

$$y = 1.37 - 0.58x_1 - 0.56x_2 + 0.27x_3 \tag{1.4}$$

p = probability of a crack to occur

 $x_1$  = concrete cover, in.

 $x_2$  = concrete cover divided by nominal bar size

 $x_3 = \text{concrete slump, in.}$ 

Limitations of this study, as they pertain to subsidence cracking, include the absence of admixtures and only monitoring plastic concrete for cracking. Although subsidence cracking in plastic concrete occurs regularly, the PCA study (*Durability* 1970) indicated that 46 out of 60 cores taken on cracks over reinforcement had cracks intersecting aggregate. This indicated that the cracks most likely occurred after the concrete had hardened.

In the photoelastic portion of the study, concrete cover, modeled using a photoelastic gelatin, was the only variable examined. The cover ranged from 19 mm ( $\frac{3}{4}$  in.) to 51 mm (2 in.) over a single No. 16 (No. 5) reinforcing bar. The gelatin models revealed that the maximum tensile stress was located directly over the reinforcement and increased four fold (from 0.3 to 1.2 psi in the model) as the cover decreased from 51 to 19 mm (2 to  $\frac{3}{4}$  in.).

The corrosion study examined 18 specimens (13 cracked and 5 uncracked) that contained No. 16 (No. 5) bars with 19 mm ( $\frac{3}{4}$  in.) or 38 mm (1.5 in.) cover. The specimens were exposed to salt solutions, and the corrosion potential of the reinforcing steel was measured to determine corrosion activity. All of the cracked specimens showed more negative corrosion potentials that the uncracked specimens, corresponding to higher corrosion activity of the embedded bars. This portion of the study helped to validate the research and quantify the importance of maintaining uncracked concrete.

5. <u>Poppe 1981:</u> In an effort to determine the factors that affect the durability of concrete bridge decks, Poppe (1981) examined the effect of variables involving design, construction, and material properties that were thought to influence durability (specifically deck cracking). Bridges were constructed during the study to determine the effect of each variable. Individual parameters were varied between bridges and placements and compared with control bridge decks and placements.

The bridge decks and placements were compared using a cracking index calculated from the crack surveys. Crack surveys were performed by first dividing the bridge into a grid delineated using the girder lines and 3 m (10 ft) longitudinal stations. Within each section of the grid, cracks were marked and sized according to their width. The cracking index was calculated by dividing the total number of cracks by the total number of grids. In addition to counting the cracks, wider cracks were given more weight, under the assumption that wide cracks are more harmful. The resulting weighted average was used to compare control bridge decks with modified bridge decks.

Based on the data obtained in this study, several conclusions were made. Increasing the thickness of concrete bridge decks above the common thickness (in California at the time of the study) of 159 mm (6.25 in.) resulted in reduced cracking. Reinforcing steel placement and formwork had little effect on deck cracking. Unfavorable weather conditions, including wind, heat, and low humidity had the biggest effect on deck cracking out of all of the construction practices considered. During the curing process, the use of membrane curing compounds was recommended when wind or low humidity was encountered during placement. None of the other placing and finishing variables studied had a significant effect on deck cracking. Under favorable environmental conditions, the use of shrinkage compensating cement reduced deck cracking by about 25 percent when compared to bridge decks built with Type II cement. Finally, the use of differing amounts of entrained air appeared to have no effect on deck cracking.

6. <u>North Carolina State 1985:</u> In 1985, investigators at North Carolina State completed a two volume study examining the effects of construction, material related, and structural parameters on transverse cracking of bridge decks (Cheng and Johnston 1985, Perfetti, Johnston, and Bingham 1985). A total of 72 bridges constructed between

1972 and 1981 were evaluated in the study. Of the 72 bridges, 52 had steel girders and 20 had prestressed concrete girders; 35 had simple spans, while 37 had both continuous and simple spans or continuous spans only.

In the first volume of the study (Cheng and Johnston 1985), data obtained from plans, construction diaries, and weather and test records were compared with transverse cracking observed in field surveys. The second volume of the study (Perfetti, Johnston, and Bingham 1985) sought to relate the field survey results with the superstructure type, deck casting sequence, and vibrational characteristics of the superstructure. During the field surveys, the number of major and minor transverse cracks were recorded and used to quantify the number of cracks per linear foot of bridge deck (CLF) using the following expression:

$$CLF = [MACR + (MICR / 4)] / LENGTH$$
(1.5)

Where

- MACR = the number of Major Transverse Cracks, defined as cracks that could be followed completely across the bridge deck, or cracks that extended from one edge of the deck to the roadway centerline
- MICR = the number of Minor Transverse Cracks, defined as shorter transverse cracks that typically occurred close to the edge of the deck, at parapet joints, or at intersecting vertical drain pipes

LENGTH = appropriate span or bridge length inspected

The field surveys showed that, as observed in the PCA study (*Durability* 1970), transverse cracks occurred most often above the top reinforcing bars. The surveys also indicated, again corroborating with the PCA study, that transverse cracking was more severe on continuous spans than on simple spans and on steel girder bridges than on prestressed concrete girder bridges. The average crack spacings, organized by the span/girder type, were:

| Continuous Steel       | 3.0 m (10 ft)    |
|------------------------|------------------|
| Continuous Prestressed | 4.3 m (14 ft)    |
| Simple Steel           | 27.4 m (90 ft)   |
| Simple Prestressed     | 129.2 m (424 ft) |

Based on the results of the field surveys, several conclusions were drawn in the first volume of the study. Conditions during placement in which the relative humidity was less than 60 percent and the ambient air temperature was below 7° C (45° F) were found to increase the incidence of transverse cracking. The researchers suggested that low ambient temperatures may aggravate surface evaporation rates, and low temperatures may increase the effects of thermal shrinkage due to a large temperature difference between the cool girders and warm concrete. In addition, concrete bridge decks cast with 7.5 percent air showed lower amounts of transverse cracking than decks with lower quantities of entrained air. Other than air content, however, no clear relationships were found between transverse cracking and mix design parameters. Alternating casting sequences for continuous girder bridges to reduce flexural tension by placing the positive moment regions followed by the negative moment regions were recommended. For steel girder bridges, as the girder yield strength increased, the incidence of transverse cracking increased. Bridge decks placed with slumps below 75 mm (3 in.) with concrete strengths at the extremes of the strength range [24-52 MPa (3500-7500 psi)] had a slight tendency towards increased cracking.

The second volume of the study was designed to compare observed transverse cracking with calculated vibration characteristics and to model and calculate deck stresses induced by different deck casting sequences. Comparisons were made using a theoretical vibration analysis and finite element models of the deck casting sequence. The vibration analysis was performed using the same equations used in the PCA study (*Durability* 1970). Like the 1970 PCA study, Perfetti et al. (1985) concluded that there were no consistent relationships between the incidence of cracking and the calculated vibration characteristics of the bridges examined. Finite element analysis was used to evaluate bridge decks under dead and live loads both during and after construction. No correlation was found between transverse cracking and the residual maximum dead load

stresses in the deck induced during the casting sequence alone; a relationship was found to exist, however, between the total tensile stresses in the deck developed by the dead load stresses in addition to the live load stress envelopes. The cracking stress threshold was found to be approximately 1.7 MPa (250 psi). Stresses above this level, which are due to the combined effects of dead and live loads plus the effects of other environmental and material properties, appear to cause increased cracking. Alternating casting sequences that help lower the total tensile stresses in the deck by placing positive moment regions followed by negative moment regions were recommended.

Based on both the theoretical vibration analysis and the finite element model, three primary observations were made with respect to structural considerations. First, based on the field surveys, bridges with simple spans and prestressed concrete girders will exhibit the least amount of transverse cracking. Second, based on the finite element analysis, the maximum concrete tensile stress induced by dead load plus live load should be limited to 1.7 MPa (250 psi). Finally, alternating placement sequences, as opposed to continuous placing sequences, were recommended to minimize dead loads and help limit the total tensile stresses in the deck.

7. <u>Babaei and Purvis 1996:</u> In a 1996 study by Babaei and Purvis for the Pennsylvania Department of Transportation (PennDOT), the causes and methods to mitigate premature cracking were investigated. The project was completed in three phases. The first phase included a "walk-by" survey of 111 Pennsylvania bridge decks and an in-depth study of 12 decks with the goal of determining the types, significance, and causes of premature cracking in bridge decks. The second phase consisted of field tests and the observation of eight bridge deck construction projects with the intent of identifying any construction or design procedures that may lead to cracking. The third phase consisted of laboratory work to substantiate the findings from the first two phases. In addition to the three primary phases, two supplementary research studies were completed to test Type K cement and the effectiveness of an "inverted bar" detail, which places the longitudinal reinforcement above the transverse reinforcement, in reducing crack widths.

Of the 111 bridges surveyed, 51 were prestressed concrete girder bridges, 41 were prestressed concrete spread box-beam bridges, and 19 were steel girder bridges, all built

within 5 years of the study. The surveys indicated that transverse cracking occurred more frequently than other types of cracking and occurred in both positive and negative moment regions. Simply supported bridges were found to perform better than continuous span bridges, presumably because of the negative moments present in continuous bridges. The in-depth surveys of 12 simply supported bridges included crack mapping, crack width measurements, top reinforcement cover and location measurements, and concrete coring.

Based on the data obtained from the in-depth surveys and comparisons with design and construction records, Babaei and Purvis observed that most of the transverse cracks were directly above the top transverse reinforcing bars and extended down at least to the level of the bars. In addition, based on concrete cores, the transverse cracks typically intersected the coarse aggregate particles, indicating that the cracks formed after the concrete had hardened. Thermal shrinkage and drying shrinkage were thought to largely control cracking in these decks.

Phase two of the study included field tests, and the observation of eight bridge decks under construction. During the construction of the eight bridge decks, concrete temperature was recorded throughout the curing process and concrete samples were taken to determine thermal and drying shrinkage, respectively. Based on observations of construction procedures, two practices were identified for their potential to cause cracking: delaying curing the concrete in hot weather and adjusting the water content of the mix after the truck had left the ready-mix plant.

Temperature measurements were taken at the construction site to estimate the amount of thermal shrinkage. Field samples were tested in the laboratory to measure the amount of drying shrinkage. Thermal shrinkage was estimated using the maximum difference between the concrete temperature during a period up to 8.5 hours after casting and the ambient air temperature. The ambient temperature was assumed to be the temperature of the underlying girders since no artificial heating was employed during the construction of the decks. The difference between the maximum concrete temperature and the corresponding ambient air temperature was assumed to contribute to thermal shrinkage at a rate of 9.9 microstrain per degree C (5.5 microstrain per degree F). Deck drying shrinkage was estimated from free-shrinkage specimens cured for 7 days, the same as the bridge decks, and measured for up to 112 days after casting. The drying shrinkage measured from the  $76 \times 76 \times 254$  mm ( $3 \times 3 \times 10$  in.) free-shrinkage specimens was divided by 2.5 to account for the lower volume-to-surface ratio of the specimen compared to the deck. Thermal stresses ranged from 0 to 170 microstrain and drying shrinkage ranged from 192 to 580 microstrain.

Based on analytical work, the authors found that a thermal shrinkage of 228 microstrain may initiate cracking in only a few days. Unlike thermal shrinkage, drying shrinkage occurs over a much longer period of time, allowing concrete creep properties to help diminish cracking. The cracking threshold, based on the sum of thermal and drying shrinkage, was found to be 400 microstrain. Average crack spacings were calculated for each bridge deck based on the total long-term shrinkage displacement of the deck and an average crack width of 0.25 mm (0.01 in.). The results of the shrinkage study correlated very well with the observations in the field. The only four bridges that showed cracking were also predicted to crack from the thermal and drying shrinkage results. The authors concluded that, to limit the average crack spacing to a minimum of 9 m (30 ft), two conditions had to be met: the 28-day drying shrinkage must be limited to 400 microstrain (corresponding to a long-term shrinkage of 700 microstrain), and the maximum temperature differential between the concrete and the girders must be limited to 12° C (22° F), corresponding to a thermal shrinkage of 121 microstrain, "for at least 24 hours after placement."

The final phase of the study examined the effects of aggregate type, cement source, and fly ash on shrinkage. In total, thirty  $76 \times 76 \times 254$  mm ( $3 \times 3 \times 10$  in.) free-shrinkage specimens were produced, with three specimens for each concrete mix tested. The study indicated that "soft" aggregates, typically with high absorption and a low specific gravity, undergo higher amounts of drying shrinkage than "hard." They proposed limiting fine aggregate absorption to a maximum of 1.5 percent and coarse aggregate absorption to a maximum of 0.5 percent.

The investigation of the effect of cement source was conducted for three Type I cements supplied by different sources, and one Type II cement. The study showed that drying shrinkage can vary significantly (as much as 108 percent) depending on the cement supplier. Fly ash was found to increase the drying shrinkage when used as a

partial replacement for cement, although it was noted that very few specimens were used and that the fly ash results should not yet be generalized.

In addition to the three primary phases of the study, two additional supplemental research projects were completed. The use of Type K cement in bridge decks and placing the longitudinal reinforcing steel above the transverse reinforcement ("inverted bar" detail) were examined as possible methods to reduce deck cracking. Several problems were encountered in the five bridge deck placements with Type K cement. Two of the bridges developed extensive cracking. They contained a "soft" coarse aggregate (sandstone) and did not provide useful information with regard to Type K cement. Based on a limited number of restrained shrinkage tests (ASTM C 878) performed in conjunction with these five bridge deck placements, the researchers recommended 200 microstrain as the maximum allowable 28-day restrained shrinkage. The "inverted bar" detail was used on two bridge decks; it was found to have no effect on the number of cracks and did not control crack widths. The researchers concluded that the potential benefits of the "inverted bar" detail were overshadowed by the large bar cover depths. The cover depths were 70 and 76 mm (2.75 and 3.00 in.) and, although the longitudinal bar was closer to the surface with the "inverted bar" detail, the bars were embedded too deep in the concrete for the benefits to be observed.

8. *Krauss and Rogalla 1996*: In 1996, Krauss and Rogalla completed a multipart study to determine the major factors that contribute to early transverse cracking of bridge decks. The extensive study included a literature review, a survey of multiple transportation agencies, laboratory testing, bridge deck instrumentation, and an analytical study of the stresses resulting from different combinations of variables thought to influence bridge deck cracking. The primary focus of the project was to identify and rank, in order of importance, the factors thought to contribute to cracking from variables in three categories: bridge design, materials, and construction procedures. The results of their study are presented in Table 1.2 and described below.

The survey was intended to get a more comprehensive understanding of current design practices and construction techniques and their perceived contribution to cracking. Fifty-two transportation agencies responded to the survey. Of the 52 respondents, 62

percent believed early transverse cracking to be a significant problem. Even the agencies that did not believe early transverse cracking to be a problem reported extensive cracking. Although the results varied, the primary construction factors thought to contribute to cracking were improper curing, thermal effects, wind, and air temperature. The bridge deck concrete mix design and resulting concrete shrinkage were thought to be the primary material-related factors, while bridge deck deflections were thought to be the primary design-related factors leading to increased cracking.

The field study involved the instrumentation of the Portland-Columbia Bridge between Pennsylvania and New Jersey. A system was installed to monitor the strains and temperatures of the girders and deck, beginning during the deck replacement and continuing for several months. Although the results obtained from this specific bridge could not be generalized to include all bridges, the results were helpful in confirming the theoretical analysis and providing a general understanding of early transverse cracking.

A series of equations were derived in the analytical study to calculate the stresses developed in a composite reinforced bridge deck subjected to temperature and shrinkage conditions. The stresses measured in the Portland-Columbia Bridge were very similar to the stresses predicted from the derived equations. Shrinkage and thermal stresses were calculated for more than 18,000 additional combinations of bridge geometry and material properties. Shrinkage stresses were found to be affected primarily by material properties rather than design parameters. Some of the design factors found to increase shrinkage stresses were girder depth, deck thickness, and narrower girder spacings. In addition, steel studs or channels and stay-in-place steel forms were found to increase deck stresses. In particular, stay-in-place forms were found to create non-uniform shrinkage that has the tendency to produce large tensile stresses at the deck surface.

Laboratory testing included the development of a restrained ring test to measure cracking tendency of different deck mixes. In addition, free-shrinkage specimens and strength cylinders were made to help relate cracking tendency with shrinkage, strength, modulus of elasticity, and creep characteristics. Thirty-nine concrete mixtures were investigated using the restrained ring test. The effects of water-cement ratio, cement

content, aggregate size and type, high-range water reducers, silica fume, set accelerators and retarders, air entrainment, freeze-thaw cycles, evaporation rate, curing, and shrinkage-compensating cement were examined and ranked by importance.

Based on the laboratory study, several trends with respect to cracking tendency were observed. Cracking tendency was found to increase with increasing cement content and decreasing water-cement ratios. Free shrinkage but not necessarily cracking tendency, was found to be directly proportional to the concrete paste content. Cracking tendency generally decreased the most with a low cement content mix. Typically slump was not found to influence cracking in the restrained shrinkage test; however, the researchers recommended a slump of at least 75 mm (3 in.) to avoid problems with consolidation. Silica fume was found to increase cracking tendency, while the addition of a high-range water reducer and type F fly ash was found to slightly decrease the cracking tendency. Set accelerators were found to have a minimal effect on cracking tendency, and the addition of set retarders produced mixed results. The researchers cautioned that concrete mixtures with retarders require attentive curing to avoid plastic shrinkage cracking. The use of air entraining agents was not found to have an effect on cracking tendency. Both the diffusion properties and Poisson's Ratio were found to only have a minor effect on cracking. Above all else, Krauss and Rogalla found that aggregate type had the most significant material-related effect on cracking. Restrained ring specimens with hard trap rock aggregate cracked relatively late, as did other angular aggregates when compared with round aggregates. Aggregate shrinkage characteristics were also found to be an important factor affecting cracking tendency. The researchers recommended that aggregates should be selected based on the results of the restrained ring test.

Several recommendations were made with respect to material and environmental aspects to minimize thermal stresses. Effort should be made to minimize paste contents and cements with a high heat of hydration. Lower cement contents should be specified in addition to 28-day compressive strengths between 21 and 28 MPa (3000 and 4000 psi). Krauss and Rogalla suggest a maximum cement content 306 kg/m<sup>3</sup> (517 lb/yd<sup>3</sup>) used in

conjunction with a 38 mm (1.5 in.) maximum size aggregate. In addition, they suggested that bridge deck concrete should be specified based on 56 or 90 day compressive strength to encourage lower heat of hydration concrete mixes. High water contents, although they result in higher paste contents, were not found to increase cracking tendency. [This is in contrast to the field observations of Babaei and Purvis (1996).] Krauss and Rogalla suggest that the increased water content may result in increased creep and consequently decreased cracking tendency. Both the creep characteristics and the modulus of elasticity of the concrete were found to have a major effect on bridge deck cracking. In an effort to reduce concrete temperatures and solar radiation effects, concrete should be cast in the late afternoon or evening, and cast with a temperature below  $27^{\circ}$  C ( $80^{\circ}$  F). The coefficient of thermal expansion, although limited in range, was found to have a moderate effect on cracking. Krauss and Rogalla (1996) found that the time of casting and weather conditions can have a major effect on bridge deck cracking.

Based on the results of the literature review, field instrumentation, theoretical analysis, and laboratory study, several additional recommendations were made. Based on both the literature review and the transportation agency surveys, cracking was found to be most prevalent on continuous steel girder bridges. Thinner decks were found to have higher stresses and should be at least 200 to 230 mm (8 to 9 in.) thick; the analysis also showed, however, that both the span and girder size could complicate the relationship between deck thickness and cracking. In addition, the use of epoxy-coated bars was found to likely increase the number and width of deck cracks, although Krauss and Rogalla recommended that bridges subjected to deicing chemicals should contain some type of corrosion-resistant reinforcement. A minimum cover of 50 mm (2 in.) should be used to avoid the likelihood of settlement cracking; furthermore, the top and bottom bars should be offset to avoid the likelihood of full depth cracking. Traffic-induced vibrations were found not to effect deck cracking. In fact, reducing the deck flexibility (and increasing the likelihood of traffic-induced vibrations) was found to decrease early transverse cracking. The transportation agency survey gave mixed results with respect to the effect of traffic volume on cracking although Krauss and Rogalla (1996) found no

correlation. Additional design-related factors including quantity of reinforcement in the deck, reinforcing bar size, stud spacing, and skew were found to only have a minor effect on bridge deck cracking.

Inadequate curing was the most common construction related concern with respect to early transverse cracking expressed by transportation agencies, and this concern was verified in the laboratory portion of the study. Decks should be cast with the aforementioned temperature condition with windbreaks and immediate water fogging when the evaporation rate exceeds  $1.0 \text{ kg/m}^2/\text{hr} (0.2 \text{ lb/ft}^2/\text{hr})$ . Misting or the use of a monomolecular film immediately after screeding, applying two coats of a curing compound before the concrete surface dries, moist curing with wet burlap for at least 7 days, using a curing membrane following the wet cure, and grooving the deck after the curing period with a diamond saw to avoid delays caused by tining the fresh concrete should be required. Construction-induced stresses were typically found to be below the amount required to create deck cracking. Alternate placing sequences as opposed to continuous placing sequences were found to reduce negative bending stresses in continuous bridges; negative bending stresses, however, were found to only have a minor effect on bridge deck cracking. The type and number of reinforcement ties, construction loads, and the number of revolutions in the concrete truck prior to placement were found to have no effect on bridge deck cracking.

9. <u>University of Minnesota 1998</u>: Researchers at the University of Minnesota completed a two-phase study on transverse cracking in bridge decks (Eppers, French, and Hajjar 1998, Le, French, and Hajjar 1998). The first phase consisted of field observations and a review of documentation for 72 bridge decks in Minnesota. The bridges included 34 simply supported prestressed girder bridges, 34 continuous steel plate-girder bridges, and 4 continuous steel, wide-flange girder bridges. The results of the field investigation were compared with design, material, and construction data. The second phase of the study consisted of both a shrinkage study and a parametric study. For the shrinkage study, two concrete bridge deck mixes were tested under field conditions and their free-shrinkage characteristics were measured with respect to time. The parametric study

consisted of a nonlinear finite element analysis of different bridge decks using the shrinkage characteristics obtained from the shrinkage study. The goal of the parametric study was to isolate the influence of individual parameters on transverse cracking, a task that was difficult to perform in the field study.

The field investigation of the 72 bridges included crack surveys and the assignment of bridge-deck-condition ratings. The rating scale ranged from 9, for areas with no cracks, to 5, for areas with a high crack density and large crack widths. Based on these ratings, the dominant design factors found to influence deck cracking were the girder type, end support condition, depth, and spacing, the deck thickness, and the top transverse bar size. In addition, continuous steel girder bridges showed increased amounts of cracking when compared with simply supported prestressed girder bridges. Based on the survey results, several recommendations were made with respect to bridge design, with the goal of reducing longitudinal restraint, believed to be the primary cause of tensile deck stresses. These included reducing deck continuity over interior supports by using expansion joints, using larger girder spacings, and using fewer and smaller shear studs. In addition, for steel girder bridges, it was found that the use of No. 16 (No. 5) bars resulted in less cracking than No. 19 (No. 6) bars. Bar size was not found to be a significant factor for prestressed girder bridges.

In addition to bridge design related recommendations, several concrete mix design and construction related recommendations were made. These recommendations were based on the comparison of field survey results with mix proportions and concrete properties for 21 bridges. First, Eppers et al. (1998) recommended a maximum cement content between 386 and 392 kg/m<sup>3</sup> (650 and 660 lb/yd<sup>3</sup>), in conjunction with a low water-cement ratio. Coarse and fine aggregate contents should be maximized to reduce the volume of paste. Bridge deck concrete mixes that performed well contained between 1068 and 1098 kg/m<sup>3</sup> (1800 and 1850 lb/yd<sup>3</sup>) of coarse aggregate and approximately 712 kg/m<sup>3</sup> (1200 lb/yd<sup>3</sup>) of fine aggregate. Finally, the minimum air content for bridge deck mixes should be between 5.5 and 6.0 percent.

In an effort to reduce the peak hydration temperature and the temperature differential between the ambient air temperature and core concrete temperature, several other recommendations were made. These recommendations were based on the field investigation and rating of 18 decks supported by prestressed and steel girders. Concrete decks should only be placed when the low ambient air temperature is above 4 to 7° C (40 to 45° F), and the maximum temperature is below 29 to 32° C (85 to 90° F). In addition, the daily temperature range should be less than 28° C (50° F). The best results were found to occur when the high ambient air temperature was between 18 to 21° C (65 and 70° F), and the low ambient air temperature was between approximately 7 to 10° C (45 and 50° F).

To overcome some of the limitations of the field study, namely, the inability to isolate individual parameters and determine their effect on bridge deck cracking, a nonlinear finite element analysis was performed. A shrinkage study performed using the current Minnesota Department of Transportation (MnDOT) concrete deck mix (at the time of the report) and a previous MnDOT mix was performed to gain information about the shrinkage characteristics with respect to time. The results of the shrinkage study, combined with the ACI 209 recommended shrinkage curve, were then used in a finite element model to more accurately represent the shrinkage characteristics of bridge decks. The ACI 209 shrinkage curve model is a standard equation used to predict concrete shrinkage strain over time. Curing time, relative humidity, member thickness, slump, fine aggregate content, cement content, and air content are used in the model. Two bridges, a simply supported prestressed concrete bridge and a two-span continuous steel girder bridge, were selected for the parametric study from the 72 bridges investigated in the field study as the base cases for the parametric study. In the analysis, individual parameters, such as construction timelines, shrinkage properties, end conditions, deck modulus, and temperature differentials, were changed to determine their effects on transverse cracking.

The analysis showed that over a period of 10,000 days, a prestressed girder bridge with a typical construction timeline, including strand tensioning, girder casting, strand

release, and deck casting, showed no signs of transverse cracking. The researchers concluded that this was due to the lack of restraint offered by the simple supports and the tendency of the concrete girders to shrink with the deck. In addition to new bridge construction, a redecking scenario was also modeled with an initial girder age of 20 years. In this situation, the model showed deck cracking, presumably due to the additional restraint provided by girders that had already undergone shrinkage. In all situations, the results obtained in the parametric study generally agreed with behavior observed in the field. To further corroborate the results of the parametric study with a continuous steel girder bridge with three or more spans, a third bridge was also investigated. Again, the results of the parametric study corroborated observations from the field investigation

Based on the results of the parametric study, the primary cause of deck cracking was found to be the differential shrinkage between the concrete deck and supporting girders. The deck modulus was found to have an impact on deck cracking. As the modulus decreased, the tensile stress in the deck dropped and the girder was able to shrink more before cracking occurred. The initial shrinkage rate, rather than the ultimate shrinkage, was found to have the most significant effect on transverse deck cracking. It was concluded that creep probably offset the tensile stresses at later ages. The degree to which the end conditions were restrained was also found to have a significant effect on transverse cracking: although girder stiffness, cross-frames, and splice locations dictated crack locations, the fixed-fixed end restraint case resulted in the most severe cases of transverse cracking.

10. *Whiting and Detwiler 1998*: In a study completed in 1998, Whiting and Detwiler examined the use of silica fume in concrete bridge decks. The study had several objectives, ranging from evaluating the cracking tendency of silica fume concrete to determining the bond properties of silica fume overlay concrete. Two primary mixes were developed: an "overlay" mix and a "full-depth" mix. Concrete mixes for each of these applications were made with a number of silica fume contents and water-cementitious ratios. Both the full-depth and the overlay mixes were tested for their

ability to resist chloride ingress, to determine the amount of drying shrinkage, and to determine the optimum mix design parameters for silica fume concrete.

The cracking tendency and drying shrinkage portion of the study evaluated fulldepth mixes with a cementitious material content of approximately 370 kg/m<sup>3</sup> (620  $lb/yd^{3}$ ) and overlay mixes with a cementitious material content of approximately 415  $kg/m^3$  (700 lb/yd<sup>3</sup>). The water-cementitious material ratio (w/cm) varied from 0.35 to 0.45 for full-depth mixes and from 0.30 to 0.40 for overlay mixes. The silica fume content was varied from 0 to 12 percent by mass of total cementitious material content. The slump for both mixtures was greater than 75 mm (3 in.), obtained through the use of a high-range water reducer, and the air contents of full-depth and overlay mixes were  $6 \pm$ 1.5 and 7.5  $\pm$  1.5 percent, respectively. Unrestrained drying shrinkage specimens measured  $75 \times 75 \times 254$  mm ( $3 \times 3 \times 10$  in.); restrained ring test specimens, developed by Krauss and Rogalla (1996), measured 150 mm (5.9 in.) high and 75 mm (3 in.) thick and were cast around a 19 mm (0.75 in.) thick steel ring with an outside diameter of 300 mm (11.8 in.). Before testing began, the specimens made from the full-depth mix and the specimens made with the overlay mix were cured for 7 and 3 days, respectively. These curing times were selected to simulate typical best practices for full-depth decks and deck overlays.

The drying shrinkage results, measured over a period of 64 weeks, indicated that both the overlay and full-depth mixes with lower water-cementitious material ratios had the least amount of shrinkage. Drying shrinkage for the overlay mixes was generally larger, even with the lower water-cementitious material ratios, presumably due to higher paste contents and shorter moist curing periods. As the silica fume content was increased from 0 to 12 percent, less of an increase in the w/cm ratio was required to increase total shrinkage. For a fixed w/cm ratio, the researchers found that the total shrinkage increased with increases in silica fume content primarily at the extremes of the w/cm ratio range (0.35 and 0.45 for full-depth mixes and 0.30 and 0.40 for overlay mixes). Mixes with w/cm ratios near the median (0.40 for full-depth mixes and 0.35 for overlay mixes) exhibited virtually no change in long-term drying shrinkage as the silica fume content increased, even to 12 percent. The tests indicated that at early ages (four days), the rate of shrinkage increased significantly as silica fume contents increased for all water-cementitious material ratios.

The results of the cracking tendency tests, reported in terms of time-to-cracking, revealed that cracking tendency was highly sensitive to the length of the curing period. Curing periods of 1 and 7 days were used on the full-depth mixes to determine the effect of curing on cracking tendency. An increased quantity of silica fume was found to increase cracking when the concrete was cured for only 1 day, while, that same amount of silica fume had little effect on cracking when the concrete was moist cured for 7 days. Additionally, the mixes that contained higher cementitious material contents were also found to have an increased tendency to crack, although the effects were not as great as decreasing the length of curing from 7 to 1 day.

The ability of silica fume concrete to delay chloride ingress was also tested with the primary objective of determining an optimum silica fume content and w/cm ratio. The specimens were prepared and tested in general accordance with AASHTO T 259. The curing period was reduced from 14 days to 7 days for full-depth mixes and to 3 days for overlay mixes, a more precise sampling technique was used, and the ponding period was extended to 180 days. Following ponding, 1 mm (0.04 in.) layers of concrete were milled from a 100 mm (4 in.) diameter core and tested for chloride content. The apparent diffusion coefficient was calculated by fitting the observed chloride profile with Fick's Second Law of Diffusion using a least-squares technique. Results of the study indicated that the optimum silica fume content was approximately 6 percent. Little additional benefit was obtained by increasing the silica fume content above 6 percent. Although decreasing the w/cm ratio improved diffusion properties, the benefits became less significant as silica fume contents were increased, especially to 6 percent.

In addition to the shrinkage, permeability, and cracking properties of the mixes, the compressive strength, modulus of elasticity, overlay bond properties, and thermal expansion properties were tested. The compressive strength increased by as much as 10 MPa (1450 psi) when silica fume was increased from 0 to 6 percent by mass; additional

increases in silica fume content did not appear to effect strength. Although silica fume increased strength, the mixes with the lowest w/cm ratios consistently produced the highest strengths. The modulus of elasticity, measured in compression tests at 28 and 90 days, was also found to increase as the silica fume content increased. The researchers concluded that the increases in elastic modulus and compressive strength observed for the silica fume concretes most likely does not result in increased cracking. This assertion was later verified by the cracking tendency tests. This observation disagrees with findings by Krauss and Rogalla (1996).

The bond strength of silica fume overlays to the subdeck was tested using the procedures outlined in ACI 503R-93. The specimens were mixed and cast at 35° C (95° F) to simulate field conditions that have been known to cause problems with overlay placements. The results indicated that bond strength only slightly increased with silica fume contents over 6 percent by mass; these differences, however, were statistically insignificant. The bond strength was not improved for overlays containing less than 6 percent silica fume by mass. Because of concern that thermal shrinkage could be aggravated by silica fume in concretes, the coefficient of thermal expansion was determined for various full-depth and overlay mixes. The results indicated very little difference in thermal expansion for full-depth mixes, regardless of the silica fume contents, but the coefficients were still within the typical range of conventional concretes.

Based on all aspects of the study, two primary recommendations were made. The discussion of the results indicated that 6 percent was the optimum percentage of silica fume, although the researchers recommended a silica fume content between 6 and 8 percent by mass of cementitious material. Additional silica fume did not provide significant added reinforcing steel protection given the high cost. The researchers also recommended a moist curing period of at least seven days.

## **1.8.2** Primary Factors Affecting Cracking

Although bridge deck cracking is clearly the result of a complex combination of variables, several factors are thought to be more significant than others. Based on the reports reviewed in Section 1.8.1, the primary factors thought to contribute to bridge deck cracking are summarized in Table 1.3. This table only includes factors that were found to significantly affect bridge deck cracking.

#### **1.9 Object and Scope**

Since the publication of the PCA report (*Durability* 1970), many analytical and field studies have been conducted, with varying results, to determine the primary factors that affect bridge deck cracking and methods to mitigate them. Few field studies, however, have been performed that include the reexamination of bridge decks over a period of several years to evaluate performance, in terms of cracking and permeability, as a function of age. In three Kansas studies, including that reported here, 86 bridges have been surveyed, 49 of which have been surveyed two or more times.

This report reviews the 59 field surveys performed for this study in conjunction with 76 additional surveys performed over the past 10 years. The 59 surveys cover 30 silica fume overlay, 16 conventional overlay, and 13 monolithic bridge decks. Crack densities, reported in linear meters of crack per square meter of bridge deck, are calculated for each bridge, concrete placement, and span based on the survey data. Chloride samples are taken from each concrete placement and used to determine effective diffusion coefficients, surface concentrations, and the time to reach the chloride corrosion threshold. Plans, information from construction diaries, mix designs, and weather conditions are compiled and compared to crack density and chloride data to

identify the principal factors that contribute to bridge deck cracking and elevated chloride contents in both cracked and intact concrete.

## CHAPTER 2

# **DATA COLLECTION**

# 2.1 General

Field surveys were performed on 59 bridge decks to determine the amount of deck cracking, chloride ingress, and delaminated area. Bridges with both monolithic and overlay decks supported by steel girders were included in the evaluation. The overlay bridge decks included decks with conventional high-density or silica fume overlays on concrete subdecks. The silica fume decks were constructed under a number of specifications that include two principal overlay types, one in which 5% of the cement is replaced by silica fume and the other in which 7% is replaced by silica fume. The three types of bridge decks were evaluated to determine their relative effectiveness in limiting cracking and chloride ingress.

Previous work by Schmitt and Darwin (1995, 1999) and Miller and Darwin (2000) has shown that several variables contribute to bridge deck cracking and concrete permeability. Based primarily on this work, multiple variables from four categories were compiled for comparison with observed bridge deck performance. The four categories included material properties, design specifications, construction practices, and environmental site conditions. Data for these categories was available from Schmitt and Darwin (1995, 1999) and Miller and Darwin (2000) for 49 out of the 59 bridge decks. Information for the other ten bridges was obtained from KDOT records.

## 2.2 Bridge Selection

Of the 59 bridges selected for this study, 49 had been investigated by Schmitt and Darwin (1995, 1999), Miller and Darwin (2000), or both. This provided the opportunity to re-examine bridges

and allowed cracking to be measured over time for individual bridges and similar groups of bridges. As in the earlier studies, the current study was limited to composite steel girder bridges. This type of bridge not only represents a significant percentage of the bridges in Kansas, but is also generally acknowledged as providing the most deck restraint and having the highest levels of cracking (*Durability* 1970, Cheng and Johnston 1985, Perfetti, Johnston, and Bingham 1985, Krauss and Rogalla 1996, Eppers, French, and Hajjar 1998, Le, French, and Hajjar 1998).

Of the 59 bridges evaluated in this study, 30 bridges had silica fume overlay decks, 16 had conventional overlay decks, and 13 had monolithic decks. Twenty of the silica fume overlay decks had been previously examined by Miller and Darwin (2000); these decks were made with concrete containing a 5% silica fume replacement of cement by weight. The ten silica fume overlays unique to this study were made with concrete containing a 7% silica fume replacement of cementitious materials by weight.

Table 2.1 summarizes the bridge decks examined in this and the two earlier studies. Several of the bridges have been surveyed on more than one occasion. The numbers in parentheses indicate the number of bridges that have been surveyed in previous studies. For instance, this study includes 13 monolithic decks, 12 of which were previously examined by Schmitt and Darwin (1995, 1999) and 4 of which were previously examined by Miller and Darwin (2000). The bridge deck surveys performed as a part of the previous studies all included a crack survey. Schmitt and Darwin (1995, 1999) did not perform chloride sampling, and neither of the previous studies checked deck delamination.

The ten 7% silica fume overlay bridges added to this study reflect the most recent special provisions to the standard construction specifications in Kansas. At the time these bridges were selected for the study, only 13 steel girder bridges of this type had been constructed

in Kansas. Since all of these bridges were relatively new, the construction and design documentation needed to complete the evaluation was readily available from KDOT district offices. Location and the ability to safely perform a field survey determined which of the 13 bridges were selected for the study.

The 49 bridges from the previous reports were selected for a variety of reasons. Originally, bridges were chosen by Schmitt and Darwin (1995, 1999), aside from deck type, based on the type of steel girder used, the ability to safely survey the bridge, the availability of relevant bridge documentation, and the bridge location. In Kansas they found that, of steel girder bridges, 39 percent were SMCC (steel beam, composite continuous), 31 percent were SWCC (steel welded plate girder, composite continuous), and 11 percent were SWCH (steel welded plate girder, composite continuous and haunched). Nine other types accounted for the remaining 19 percent, with no single type more than 4 percent of the total. Bridges were selected to approximate these percentages. After analysis of the results, Schmitt and Darwin (1995, 1999) found no correlation between steel girder type and cracking tendency. In light of this determination, Miller and Darwin (2000) used similar guidelines, with the exception of girder type.

In total, 77 bridges located primarily in northeastern Kansas have been surveyed. The bridges are located in 15 counties, as shown in Figure 2.1. Overall, the surveys have included 17 monolithic, 30 conventional high-density overlay, and 30 silica fume modified concrete overlay decks representing 161 individual concrete placements. Of these bridges, 13 monolithic, 16 conventional overlay, and 20 silica fume overlay bridge decks have been surveyed two or more times.

# 2.3 Data Sources

Information for the bridges unique to this study was collected from a variety of sources. The bridge design plans were obtained from the Kansas Department of Transportation (KDOT) Bureau of Design, located in Topeka, Kansas. Information obtained from the these plans includes, deck width, bridge length, span lengths, number of spans, bridge skew, deck thickness, top cover thickness, overlay thickness, reinforcing bar size, bar spacing, and barrier type. Average annual daily traffic (AADT) and bridge location were obtained from the KDOT Bridge Log. Additional information acquired through the Construction Management System (CMS) database included the concrete mix design, air content, slump, compressive strength, and bridge contractor. Concrete placement date, length, and width and the environmental site conditions on the date of concrete placement were gathered from construction diaries available from KDOT district offices. The environmental site conditions included in the construction diaries were daily high and low temperatures. Information for previously surveyed bridge decks was taken from the respective reports (Schmitt and Darwin 1995, Miller and Darwin 2000). Information obtained for the remaining 7% silica fume overlay decks is presented in Appendix A.

Although the amount and availability of data for bridges has improved markedly compared to that available for the first two studies, there are still areas that need improvement. Evaporation rates, for instance, are required to be checked for silica fume overlays to ensure they are below 1.0 kg/m<sup>2</sup>/hr; they are, however, rarely found in any construction diaries or notes. Similarly, the concrete temperature, relative humidity, and wind speed during placement are typically not found, but are required elements to estimate the evaporation rate. Additionally, placement start and finish time were rarely mentioned. This data would be especially beneficial when evaluating the performance of silica fume modified concrete with low water-cement ratios.

# 2.4 Survey Techniques

An on-site survey was performed for each of the 59 bridges included in this study. The surveys included a detailed crack survey, overlay sounding, and chloride sampling. The sounding was performed by dragging chains over the deck and identifying areas where the overlay had separated from the subdeck. A distinct "hollow" sound can be heard when the chains are dragged over debonded areas. Chloride surveys were performed by KDOT personnel and did not necessarily occur on the same date that the crack survey and sounding was performed.

Prior to arriving at a bridge, a drawing of the bridge deck, including all boundary areas, was made at a scale of 1 inch equals 10 feet (the required scale for the image analysis programs). Several guidelines were followed for each survey with the intent of minimizing any differences that may result from changing personnel. Three to six inspectors performed each survey on days that were at least partly sunny with a minimum temperature of 16° C (60° F). In addition, the entire deck surface was required to be completely dry before beginning the survey. Traffic control was maintained to ensure that at least one lane was clear of traffic and available to the surveyors. Prior to identifying and marking cracks, a  $5 \times 5$  ft (1.52  $\times$  1.52 m) grid was marked on the available surface of the deck. Inspectors then began to mark cracks that were visible while bending at the waist. Once a crack was identified, the entire crack was marked, even if parts of the crack were not initially visible while bending at the waist. The cracks were marked with lumber crayons and then transferred to the scale drawing using the grids on the deck and the drawing as a guide. The consistent use of these guidelines allowed the results from the two previous studies to be incorporated into this research with confidence that the results were not biased by the survey technique. In addition, and unique to this project, following the crack survey, unbonded areas were located by dragging chains over the entire surface of the deck and

recorded on the scale drawing. A draft specification describing the crack survey techniques is presented in Appendix B.

In addition to the crack survey, KDOT personnel took concrete samples from the decks and tested them for chloride content. Three locations on cracks and three locations away from cracks were sampled for each concrete placement. At each of these locations, powdered concrete samples were obtained using a hammer drill fitted with a hollow 19 mm (<sup>3</sup>/<sub>4</sub> in.) bit attached to a vacuum. Five powdered samples were taken at the following 19 mm (<sup>3</sup>/<sub>4</sub> in.) increments: 0–19 mm (0–0.75 in.), 19–38 mm (0.75–1.5 in.), 38–57 mm (1.5–2.25 in.), 57–76 mm (2.25–3 in.), and 76–95 mm (3–3.75 in.). For decks that had been sampled previously (Miller and Darwin 2000), new samples were taken within 150 mm (6 in.) of the earlier sampling points.

## 2.5 Chloride Content Test

Each of the powdered samples was tested for water-soluble chloride content using a method similar to that described in ASTM C 1218. The powdered samples were obtained with a plastic cup and filter attached to the vacuum drill. The chloride testing procedure, outlined by KDOT Method 601 involved following twelve steps: (1) Place a 400 ml beaker onto a top loading balance and then tare the balance. (2) Retrieve the filter paper from the sample cup, and using scissors cut the filter paper into at least 3 pieces and place the pieces into the beaker. (3) Add the remaining material from the sample cup into the beaker. (4) Note and record the mass of the sample to 0.01 grams. (5) Add approximately 150 ml of distilled water to the beaker. (6) Place a lid on the beaker and place the beaker on a hot plate, set to high heat, and allow the solution to boil for approximately 20 minutes. (7) Remove the beaker from the hot plate and allow it to cool to near room temperature. (8) Vacuum filter the solution through No. 1 Whatman filter paper in a two-piece Buchner filter funnel catching the filtrate in a 500 ml vacuum flask. Police and rinse

the beaker with hot distilled water, placing the rinse fluids into the funnel. (9) Pour the contents of the vacuum flask into a 250 ml plastic Mettler titration beaker. Again, rinse the flask using hot distilled water and pour the rinse fluids into the plastic beaker. (10) Add approximately 5 ml of concentrated nitric acid and then distilled water until the volume is approximately 300 ml. (11) Titrate the sample on the Mettler DL70 Automatic Titrator (KDOT Method 2120) using a chloride ion specific electrode in combination with a silver/silver chloride reference electrode and 1.0N standardized silver nitrate titrant solution (KDOT Method 2005). The chloride content (kg/m<sup>3</sup>) can then be calculated by dividing the product of the volume of silver nitrate titrant (ml), normal concentration of the silver nitrate titrant solution (mmol/ml), and the constant 81.27 kg• g/m<sup>3</sup>• mmol by the difference of the mass of concrete sample and filter paper (g) and the

mass of filter paper (g).

# 2.6 Crack Density Determination

To compare the relative degrees of cracking for different bridges as a function of material, construction, design, and environmental factors, a quantitative measure was calculated for each bridge, placement, span, and end section. The crack density, in linear meters of crack per square meter of bridge deck, was determined directly from field surveys using several computer programs.

Multiple steps were required to prepare the field crack maps for crack analysis. The first step was to digitally scan the crack maps at 100 dots per inch (dpi) as grayscale tagged image file format (TIFF) files with 256 shades of gray. Since the ultimate goal was to calculate crack lengths from scaled drawings, it was important that the crack map scale and scanned image resolution be exactly 1 in. equals 10 ft and 100 dpi, respectively. Equally as important, if the crack map included more than one page (which was often the case), the individual scanned files

were combined into one TIFF image of the entire uninterrupted bridge deck surface; every effort was made to accurately align the images. A black line one pixel in width was added from the top edge of the image down to the top left corner of the bridge deck. This line indicated the starting point for the program to begin looking for cracks. All other boundary lines and other markings or notes that did not represent cracks were removed from the image to ensure that extraneous lines were not counted as cracks. Finally, any cracks that bent by more than 15° or that intersected other cracks were separated into single straight lines to ensure that the program accurately calculated the distance between crack end points. The file was then saved as an uncompressed TIFF image.

The TIFF images were then converted to ASCII files containing image data using two programs created by Dr. John Gauch of the University of Kansas. These Linux-based programs create an ASCII file with the gray scale of each pixel recorded as a number between zero and 255 (zero for black and 255 for white). After removing unrelated information from the beginning and end of each ASCII file, the files were ready for analysis. In the two previous studies, Schmitt and Darwin (1995, 1999) and Miller and Darwin (2000) used a FORTRAN program to calculate crack lengths from the ASCII file. The FORTRAN program groups "dark" pixels together and, by finding the end points of the groups, calculates the distance between those points.

This FORTRAN program was used not only because it was available, but also to ensure that consistent procedures and methods were used for each of the three studies. Any pixels that were darker than a gray level of 200 were classified as "dark" and were assumed to represent part of a crack. These "dark" pixels were grouped together and the straight-line distance between the end points was calculated. Finally, the crack density was calculated as the sum of

all crack lengths (m) divided by the appropriate deck surface area (m<sup>2</sup>). In addition, it was also possible to calculate the total length of cracks with a specified angle or within a specified range of angles. A listing of the crack measurement program, as modified for this study, appears in Appendix C.

## CHAPTER 3

# **CHLORIDE DATA AND DIFFUSION PROPERTIES**

## 3.1 General

The chloride contents of samples taken at varying depths from uncracked concrete and at crack locations are plotted versus time. Regardless of bridge deck type, at all depths, chloride contents taken at cracks can exceed the corrosion threshold of conventional steel within a few months. At a depth of 76.2 mm (3.0 in.), chloride contents taken from uncracked concrete rarely exceed the corrosion threshold of conventional steel. Based on the samples taken from uncracked concrete, an effective diffusion coefficient and apparent chloride surface concentrations are calculated for each deck placement. These diffusion properties are compared with the age of the placement at the time of sampling and concrete properties and mix design parameters to determine their relative influence on deck performance. The diffusion characteristics represent an average diffusivity over the life of the bridge deck and generally decrease over time as the hydration products and salt fill the concrete properties.

Several methods are used to describe the findings of the analyses of chloride data and the diffusion properties of the decks sampled in this study. These are described next.

"Box-and-whisker" plots, beginning with Fig. 3.10, are used to characterize the variability within a specific group of data. The minimum, 25<sup>th</sup> percentile, median, 75<sup>th</sup> percentile, and maximum values are presented in each plot and follow a standard format. The minimum and maximum values are represented by dashed lines and are located at the extremes of the data range. The 25<sup>th</sup> and 75<sup>th</sup> percentile values form a box representing the middle 50% of the data. A line through the middle of each box represents the median value for the data range.

Plots of effective diffusion coefficients for each deck type versus the age of the placement at the time of sampling, concrete mix design, and material properties show a significant amount of scatter. To facilitate the analysis, histograms, beginning with Fig. 3.22, are used to provide a clear illustration of the trends. Each bar, or category, represents a range of values for the variable under consideration and is defined by the midpoint. The size of the range is equal to the difference between the midpoints of consecutive categories. In many cases, the sample sizes and the differences between the means of categories are small. The Student's t-test is used to determine whether the differences between two samples represent significant differences between the populations.

The Student's t-test is a parametric test that is frequently used when samples are small and the true population characteristics are unknown. The t-test relies on the means of the two sample groups, the size of the samples, and the standard deviation of each group to determine statistical significance. Specifically, the test is used to determine whether differences in the sample means, X<sub>1</sub> and X<sub>2</sub>, represent differences in the population means,  $\mu_1$  and  $\mu_2$ , at a specified level of significance  $\alpha$ . For example,  $\alpha = 0.05$  indicates a five percent chance that the test will incorrectly identify (or a 95% chance of correctly identifying) a statistically significant difference in sample means when, in fact, there is no difference. A two-side test is used in the analyses performed, meaning that there is a probability of  $\alpha/2$  that  $\mu_1 > \mu_2$  and  $\alpha/2$  that  $\mu_1 < \mu_2$ when in fact,  $\mu_1$  and  $\mu_2$  are equal.

The results of the statistical evaluation for each histogram are presented in Tables 3.4, 3.6 and 3.9 through 3.16. The tables follow a standard format. Each group of data is compared with the other groups for each histogram. These differences are tested at four  $\alpha$  levels: 0.20, 0.10, 0.05, and 0.02. Differences between samples that are statistically significant at the given level of

 $\alpha$  are followed by a "Y" and differences that are not statistically significant at the given level of  $\alpha$  are followed by an "N" in Tables 3.4 through 3.16.

Three silica fume bridges (89-184, 89-187, and 30-93) are included in the evaluation of chloride contents, bridge age, construction date, and deck type, but are not included in the analysis of any other material-related variables. Bridges 89-184 and 89-187 were constructed in 1990 as experimental decks before the first silica fume special provision (90P-158) was written. In addition, both of these decks have a 57 mm (2.25 in.) overlay rather than a standard 38 mm (1.5 in.) overlay currently in use. More importantly, these decks have erratic diffusion properties and do not accurately reflect the performance of current silica fume overlays. The more recently constructed 7% silica fume overlay bridge (30-93) is excluded from the material analysis because in addition to the silica fume, this bridge deck contains a 33% replacement of cement with slag cement (ground granulated blast furnace slag) by weight of cementitious materials.

Except for these three bridges, all of the samples taken from bridge decks in this study and by Miller and Darwin (2000) are included in the comparisons. Diffusion properties for all bridge decks, regardless of the originating study, are calculated using the methods described in Section 3.4. As discussed in Section 2.2, Schmitt and Darwin (1995, 1999) did not collect chloride data.

# 3.2 KDOT District 1 Salt Usage

Deicing salts are applied to roads to improve driving conditions before, during, and after winter precipitation. Typical salt application rates range from between 28 to 85 kilograms per kilometer of driving lane (100 to 300 lbs. per single lane-mile). KDOT District 1 applies rock salt at a rate of 85 kg/lane·km (300 lb/lane·mile). In addition, KDOT applies a salt brine pretreatment consisting of 23% salt to bridge decks when frost is expected and the temperature is between -9°

and 0° C (15° and 32° F). The salt brine pretreatment is applied at a rate of 94 to 118 liters per kilometer of driving lane (40 to 50 gallons per single lane-mile).

Ninety percent of the samples included in this study and the previous study (Miller and Darwin 2000) are from KDOT District 1. District 1 encompasses 17 counties in northeast Kansas. The total centerline length of roads treated in District 1 is 2,889 km (1,795 mi.), and the total length of all driving lanes is 7,313 km (4,544 mi.). Rock salt usage, including the salt used in the pretreatment, for District 1 over the past seven years is presented in Table 3.1. With an average lane width of 3.7 m (12 ft), the average surface application rate per year over the past seven years is 1.24 kg/m<sup>2</sup> (2.28 lb/yd<sup>2</sup>). This approximation is below the actual value for bridge decks because they are often treated more frequently than other driving surfaces.

## 3.3 On and Off Crack Chloride Concentrations

Bridge deck chloride contents taken from uncracked concrete are plotted as a function of the age of the deck placement at the time of sampling in Figs. 3.1 through 3.4 for varying depths and are described in Section 3.3.1. Chloride contents taken at crack locations are plotted as a function of age in Figs. 3.5 through 3.8 for varying depths and are described in Section 3.3.2. Each plot includes data corresponding to one of four depths, 25.4 mm (1.0 in.), 50.8 mm (2.0 in.), 63.5 mm (2.5 in.), and 76.2 mm (3.0 in.). The five 19 mm (<sup>3</sup>/<sub>4</sub> in.) powdered samples taken at three locations, on and off cracks, (as described in Section 2.4) are used to generate these plots. The mean depths for the 19 mm (<sup>3</sup>/<sub>4</sub> in.) samples are 9.5 mm (0.375 in.), 28.6 mm (1.125 in.), 47.6 mm (1.875 in.), 66.7 mm (2.625 in.), and 85.7 mm (3.375 in.). These depths represent the midpoints of the five samples taken at each of the six locations; these depths, however, are not of particular interest because reinforcement is not placed at these levels. The on and off-crack chloride concentrations found in Figs. 3.1 through 3.8 are linearly interpolated from the raw data

using the midpoints of each sample. The raw chloride content data are tabulated in Table D.1 of Appendix D.

Each of the on-crack and off-crack plots includes a linear trend line, prediction intervals, and for comparison, a line representing the lower limit of accepted values for the corrosion threshold of conventional reinforcing steel [0.60 kg/m<sup>3</sup> (1.0 lb/yd<sup>3</sup>)]. The upper prediction interval, labeled as 20% U, indicates the concentration of chloride as a function of time that has a 20% probability of being exceeded. Conversely, the lower prediction interval, labeled as 20% L, indicates the concentration of chloride as a function of time that has an 80% probability of being exceeded. Figure 3.9 is a summary plot of the linear trend lines, both on and off cracks, for each of the four depths examined.

Although the data points in Figs. 3.1 through 3.8 are identified by bridge deck type, the linear trend lines and prediction intervals are generated using all of the data presented for each plot, both with the exception of the oldest monolithic decks. This is done based on two observations. First, the off-crack chloride concentrations rarely exceed the corrosion threshold of conventional steel for any bridge deck type at 63.5 mm (2.5 in.) and 76.2 mm (3.0 in.). Second, the on-crack chloride concentration data appear to be independent of bridge deck type. Differences in diffusion properties as a function of deck type will be examined in Section 3.4.

Based on the data in Figs. 3.1 through 3.8, it is apparent that attention should be focused on minimizing bridge deck cracking. Adequate reinforcing steel protection is provided by uncracked concrete, and the protection is independent of deck type. This assertion is discussed further in the diffusion analysis presented in Section 3.4.

Many factors affect the chloride corrosion threshold level for conventional reinforcing steel. Commonly accepted values for the corrosion threshold fall between 0.60 and  $1.20 \text{ kg/m}^3$ 

(1.0 and 2.0 lb/yd<sup>3</sup>). McDonald, Pfeifer, and Sherman (1998) report that the corrosion threshold for damaged ECR is similar to that of conventional reinforcement.

#### 3.3.1 Off Crack Chloride Concentrations

Figures 3.1 through 3.4 compare the chloride contents for uncracked concrete plotted versus the age of the deck placement at the time of sampling. The figures show a nearly linear increase in chloride content with age. Typically, chloride contents for silica fume (5% and 7%) overlay, conventional overlay, and monolithic bridge decks in the same age range [< 156 months (13 years)] taken away from cracks at a depth of 76.2 mm (3.0 in.) are below even the most conservative estimates of the corrosion threshold for conventional reinforcement  $[0.6 \text{ kg/m}^3 (1.0 \text{ kg/m}^3)]$  $\frac{1}{yd^3}$ . In contrast, for the oldest decks included in this study [limited to monolithic decks older than 168 months (14 years)], 42% of the samples exceed the corrosion threshold; based on trends in the data for bridges just below 156 months, however, this does not represent the expected behavior of the more recently constructed decks. As a summary of Figs. 3.1 through 3.4, Fig. 3.9 shows the linear trend lines for chloride contents both on and off cracks versus age at each depth for all bridge decks. Based on the regression equations for the trend lines, as well as the upper and lower 20% prediction intervals, times to reach the corrosion threshold are calculated for each depth and shown in Table 3.2. These calculations do not take into account the differences in diffusion properties between deck types; differences that will be addressed in Section 3.4.

As indicated in Table 3.2, at the standard top reinforcement cover depth now used in Kansas of 76.2 mm (3.0 in.), 20% of the chloride samples taken off cracks from randomly selected bridge decks can be expected to exceed 0.6 kg/m<sup>3</sup> (1.0 lb/yd<sup>3</sup>) in 160 months (13.3 years), 50% in 254 months (21.2 years), and 80% in 349 months (29.1 years). For a corrosion

threshold of 1.2 kg/m<sup>3</sup> (2.0 lb/yd<sup>3</sup>), these numbers increase to 410 months (34.2 years), 504 months (42.0 years), and 599 months (49.9 years), respectively. At either corrosion threshold level and for all types of bridge decks, the benefits of using a 76.2 mm (3.0 in.) cover and uncracked concrete are unmistakable.

## 3.3.2 On Crack Chloride Concentrations

Figures 3.5 through 3.8 show chloride contents taken on cracks plotted against the age of the placement at the time of sampling. As for the off-crack data, the chloride concentrations increase nearly linearly with age. The values, however, are markedly higher than for the samples taken away from cracks. At cracks, the average chloride concentration at a depth of 76.2 mm (3.0 in.) can exceed the corrosion threshold of conventional reinforcement in as little as nine months, regardless of deck type. By 24 months, the chloride concentrations increase steadily as the sample depth decreases, regardless of the placement age.

There appears to be no correlation between deck type and chloride concentration, reaffirming the decision to combine the chloride concentration data for all of the bridge deck types. At depths of 63.5 mm (2.5 in.) and 76.2 mm (3.0 in.), a disproportionate number of samples taken from monolithic decks fall below the

20% L. In fact, over 60% of the samples taken from monolithic decks older than 144 months fall below the lower 20% prediction intervals at those depths. This observation is likely due to the fact that the monolithic decks included in this study have lower traffic volumes than the overlay decks. Lower traffic volume roads are treated with deicing chemicals less often than the higher volume roads.

### 3.4 Fick's Equation Modeling

Despite some of the shortcomings inherent to modeling chloride ingress through uncracked concrete using Fick's Second Law of Diffusion, Eq. (1.1), it provides a useful method to compare concrete permeabilities based on measured chloride ion concentrations. The chloride concentrations of the samples taken from three crack free locations for each placement are used to calculate an effective diffusion coefficient ( $D_{eff}$ ) and apparent chloride surface concentrations ( $C_o$ ). The solution to Fick's Second Law, Eq. (1.2), has four degrees of freedom, depth d, time t, surface concentration  $C_o$ , and the effective diffusion coefficient  $D_{eff}$ .

$$C(x,t,C_o,D_{eff}) = C_o \cdot \left[1 - erf\left(\frac{x}{2 \cdot \sqrt{t \cdot D_{eff}}}\right)\right]$$
(1.2)

The apparent surface concentration  $C_o$  and the effective diffusion coefficient  $D_{eff}$  are unknown, but can be estimated using an iterative least-squares curve fitting technique. The age of the sample is used as the total time *t* and is calculated as the difference between sample date and placement date. Since each sample represents a region with a depth of 19 mm (<sup>3</sup>/<sub>4</sub> in.), the concentration *C* from Eq. (1.2) is numerically integrated between the end points of the samples and divided by the total depth of the samples, 19 mm (<sup>3</sup>/<sub>4</sub> in.), to obtain average chloride concentration for each sample according to Fick's Second Law. This process is performed for each sample (five samples for each location) during each iteration of the minimization process. To begin the calculation, three apparent surface concentrations (one for each sample location) and one effective diffusion coefficient are assumed as initial values for each placement. The minimization solver in Microsoft Excel 2000 modifies the surface concentrations and diffusion coefficient to minimize the sum of the squared differences between the measured chloride concentrations and the average chloride concentrations predicted by Fick's Second Law. This process is performed for each placement and the results are used to estimate bridge deck performance. The calculated diffusion data are tabulated in Table D.2 of Appendix D.

In many cases, bridge deck concrete contains chlorides from sources other than deicing salts. Water, aggregates, and admixtures can contain chlorides (base level chlorides) that must be subtracted from the measured chloride concentrations prior to the diffusion analysis. One base level chloride content is estimated for each placement by examining the chloride contents taken from uncracked concrete at all depths and sample locations for that placement. Chloride concentrations that do not differ by more than 0.05 kg/m<sup>3</sup> (0.08 lb/yd<sup>3</sup>) from the measured chloride concentration at the deepest level of each sample are considered to be the base level chloride concentrations for that placement. The "box-and-whiskers" plot in Fig. 3.10 shows the variability in base levels for all bridge deck types. Average base levels range between 0 and 0.37 kg/m<sup>3</sup> (0 and 0.62 lb/yd<sup>3</sup>), but fifty percent of the base level concentrations fall between 0.02 and 0.17 kg/m<sup>3</sup> (0.03 and 0.29 lb/yd<sup>3</sup>), with a median concentration of 0.11 kg/m<sup>3</sup> (0.19 lb/yd<sup>3</sup>). Further analysis reveals that there is no discernable difference between base levels taken from different deck types.

#### 3.4.1 Surface Concentrations

Due to the variable nature of applying deicing chemicals to bridge decks, an apparent surface concentration is calculated for each off-crack sample location, (three apparent surface concentrations for each placement). This improves the chloride diffusion model by more accurately depicting field conditions. The median difference between the calculated maximum and minimum apparent surface concentration for each placement is 2.68 kg/m<sup>3</sup> (4.52 lb/yd<sup>3</sup>). By

way of comparison, the median difference between the maximum and minimum chloride concentrations at the shallowest sample depth for an individual placement is  $1.55 \text{ kg/m}^3$  (2.61 lb/yd<sup>3</sup>). It is obvious that there is a large variation in surface concentration for each placement.

The variability of the apparent surface concentrations is summarized in Fig. 3.11. The maximum difference between the calculated maximum and minimum apparent chloride concentration for a placement is 10.08 kg/m<sup>3</sup> (16.99 lb/yd<sup>3</sup>). The corresponding 75<sup>th</sup> percentile value is 4.16 kg/m<sup>3</sup> (7.01 lb/yd<sup>3</sup>). The variability of the chloride concentrations taken at the shallowest sample depth is also shown in Fig. 3.11. The maximum difference between the minimum and maximum chloride concentration for each placement is 5.72 kg/m<sup>3</sup> (9.64 lb/yd<sup>3</sup>), and the 75<sup>th</sup> percentile value is 2.28 kg/m<sup>3</sup> (3.84 lb/yd<sup>3</sup>). The large difference in variability between apparent surface concentrations taken from the same placement justifies the use of three apparent surface concentrations for each placement (one for each sample location). In addition, this information highlights the importance of calculating an apparent surface concentration rather than estimating a concentration based on samples taken near the surface of the deck. There is a large chloride concentration gradient near the deck's surface that must be taken into account.

The calculated apparent surface concentration is compared with the measured chloride content at the shallowest depth [centered at 9.5 mm (0.375 in.)] at each location for monolithic (MONO), conventional overlay (CO), and silica fume overlay (5% SFO, 7% SFO) bridge decks in Figs. 3.12, 3.13, and 3.14, respectively. For each figure, the data are identified based on the originating study. A linear regression line forced through the origin is included in the plots, and in all cases, lies above the 45-degree line. The slope of these regression lines can be interpreted as a relative measure of the performance of the three deck types over time. Higher slopes indicate a greater differential between apparent surface concentrations and actual chloride

contents taken from just under the surface. The greater the differential, the greater the gradient of the chloride content profile near the deck's surface. These unit-less slopes for monolithic, conventional overlay, and silica fume overlay decks are 1.28, 1.54, and 1.75, respectively.

As would be expected, the apparent surface concentrations increase with deck age, as indicated in Fig. 3.15. In Fig. 3.16, the apparent surface concentrations calculated using data from this study are compared with the values calculated based on the data gathered earlier by Miller and Darwin (2000) for decks that were surveyed in both studies. Eighty-one percent of the points lie above the 45-degree line, indicating generally increasing surface concentrations over time. The greatest differential between concentrations occurs for placements with a low calculated surface concentration based on data from the earlier study. The trend line, for the range of data included, indicates a decrease in the rate of chloride build-up as surface concentrations (and therefore time) increase. Figures 3.17, 3.18, and 3.19 show the average apparent surface concentration versus placement age at the time of sampling for monolithic, conventional overlay, and silica fume overlay bridge placements, respectively. Lines connect data for placements surveyed both by Miller and Darwin (2000) and in the current study. The average apparent surface concentration build-up rates, calculated as the average slopes of these lines, are presented in Tables 3.3 a and b for each deck type. The build-up rate for monolithic, conventional overlay, and silica fume overlay bridges are 0.504, 0.204, and 0.660 kg/m<sup>3</sup>/year (0.850, 0.344, and 1.112 lb/yd<sup>3</sup>/year), respectively. The average build-up rate for all bridge deck types is  $0.456 \text{ kg/m}^3/\text{year}$  (0.769 lb/yd<sup>3</sup>/year). The standard deviations are high relative to the average build-up rates, indicating the high variability in surface concentrations found in the field.

### <u>3.4.2 Diffusion Coefficients</u>

The effective diffusion coefficients ( $D_{eff}$ ) calculated using Fick's Second Law of Diffusion provide a useful tool to compare the permeabilities of different bridge deck concretes. A lower diffusion coefficient indicates a higher resistance to chloride ion penetration. Figure 3.20 shows the diffusion coefficients calculated for all bridge placements surveyed in this study and by Miller and Darwin (2000) as a function of age at the time of sampling. In general, the diffusion coefficients appear to decrease over time, and particularly for the overlay decks, show much less variation over time. Continued hydration and the deposition of salt in the concrete pores over time may partially account for the decrease in diffusion coefficients. In addition, modeling chloride diffusion in bridge decks as if the chloride surface concentrations are constant (as done here), rather than increasing underestimates the diffusion coefficients.

Miller and Darwin (2000) expressed concern over the accuracy in determining diffusion coefficients for bridges under 500 days old. Their concern was that younger bridges may not have been exposed to the quantity of deicing salts required to develop a profile that can be accurately modeled by Fick's Second Law.

Because the calculated effective diffusion coefficients appear to be highly dependent on age, the bridges are divided based on the age of the deck at the time of sampling. The effective diffusion coefficients for each bridge deck type are compared in three age categories: (1) 0 to 48 months, (2) 48 to 96 months, and (3) over 96 months.

#### 3.4.2.1 Monolithic Decks

Figure 3.21 shows the effective diffusion coefficients versus time for monolithic bridge deck placements. Lines connect the data for placements that have been sampled two times; for monolithic decks, only the four youngest placements have been sampled twice. For

three of the four placements surveyed on two occasions, the diffusion coefficients decreased with time. Figure 3.22 shows the mean effective diffusion coefficients for the monolithic placements in three age categories: 0 to 48 months, 48 to 96 months, and greater than 96 months. The mean effective diffusion coefficients for these categories are 0.09, 0.17, and 0.16 mm<sup>2</sup>/day. Only one placement falls into the first category (and is therefore ineligible for statistical comparisons), and there is no statistical difference in the diffusion properties for the remaining two age categories (Table 3.4).

The variability of diffusion coefficients for monolithic placements older than 96 months is shown in Fig. 3.23. This is the only age category for monolithic placements with enough data to construct a box-and-whiskers plot. Substantial variation exists between the diffusion coefficients taken for the 15 placements older than 96 months. The  $D_{eff}$  ranges from 0.06 to 0.29 mm<sup>2</sup>/day. Fifty percent of the values fall between 0.11 and 0.22 mm<sup>2</sup>/day, with a median of 0.15 mm<sup>2</sup>/day.

#### 3.4.2.2 Conventional Overlay Decks

The effective diffusion coefficients for the conventional overlay deck placements are plotted versus time in Fig. 3.24. Thirty-six individual placements are shown, 35 of which were surveyed twice. Of the 35 placements sampled by Miller and Darwin (2000) and as part of this study, 23 exhibit diffusion coefficients that have decreased with time. The values of  $D_{eff}$  for the remaining 12 placements increased, but at an average rate of less than half the absolute value of  $D_{eff}$  for the 23 decks with decreasing effective diffusion coefficients. The diffusion coefficients for the conventional overlay decks are highly dependent on the age of sampling (Fig. 3.24). Figure 3.25 presents the mean effective diffusion coefficients for three age groups: 0 to 48 months, 48 to 96 months, and greater the 96 months. Six of the placements surveyed as a part of this study and by Miller and Darwin (2000) fall into the 48 to 96 month category two times. They were first surveyed shortly after 48 months and surveyed again just before they reached 96 months. For these placements, the results of the first study are included in the first age category, 0 to 48 months. The mean effective diffusion coefficient decreased from 0.15 mm<sup>2</sup>/day for the first age category to 0.08 mm<sup>2</sup>/day for the remaining two age categories. The differences between the first age category and the two remaining categories are statistically significant at  $\alpha = 0.02$  (Table 3.4).

The variability of diffusion coefficients for conventional overlay placements for each age category is shown in Fig. 3.26. There is virtually no difference in effective diffusion coefficients in terms of variability or performance for decks sampled between 48 and 96 months and decks sampled between 96 and 144 months. The 33 conventional overlay placements in the 48 to 96 month category have diffusion coefficients that range from 0.03 to 0.26 mm<sup>2</sup>/day with a median of 0.07 mm<sup>2</sup>/day. Fifty percent of the values fall between 0.05 and 0.10 mm<sup>2</sup>/day. The 28 conventional overlay placements in the 96 to 144 month category also have diffusion coefficients that range from 0.03 to 0.26 mm<sup>2</sup>/day. Fifty percent of the values fall between 0.07 mm<sup>2</sup>/day. Fifty percent of the values fall between 0.07 mm<sup>2</sup>/day. Fifty percent of the values fall between 0.07 mm<sup>2</sup>/day. Fifty percent of the values fall between 0.07 mm<sup>2</sup>/day. Fifty percent of the values fall between 0.04 and 0.09 mm<sup>2</sup>/day, only slightly lower than the previous age group. Substantial differences exist, however, between the diffusion coefficients taken for the 8 placements in the first age group, 0 to 48 months. These placements have diffusion coefficients that range from 0.05 to 0.22 mm<sup>2</sup>/day, with a median of 0.16 mm<sup>2</sup>/day. This information (Figs. 3.25 and 3.26) clearly identifies the importance and advantage of sampling bridge placements older than 48 months to identify the long-term diffusion properties of concrete in bridge decks.

#### 3.4.2.3 Silica Fume Overlay Decks

Two types of silica fume decks are included in this study. These include decks built under special provisions 90M-150-R1 through R7 containing 5% silica fume and decks built under special provisions 90M-150-R8 and R9 containing 7% silica fume. All of the bridge decks containing 5% silica fume were sampled by both Miller and Darwin (2000) and as a part of this study. The effective diffusion coefficients are plotted as a function of age in Fig. 3.27. Data points connected by lines indicate bridges that have been surveyed twice. As with the conventional overlay decks, the diffusion coefficients generally decrease over time (Fig 3.27). Of the 42 placements surveyed twice, the effective diffusion coefficients decreased for 31 placements and increased for 11 placements. As before, the average rate of increase is half the rate of the absolute value of decrease. Figure 3.28 presents the mean effective diffusion coefficients for the three age categories: 0 to 48 months, 48 to 96 months, and greater than 96 months. The mean effective diffusion coefficient decreases significantly  $(0.13 \text{ mm}^2/\text{day to } 0.07$  $mm^2/day$ ) for the 5% silica fume decks as the age range increases from between 0 and 48 months to between 48 and 96 months. The mean effective diffusion coefficient increases to 0.11  $mm^2/day$  in the last age category (Fig. 3.28); this category, however, contains only four placements from bridges 89-187 and 89-184, which were constructed prior to the first silica fume special provision.

The variability of  $D_{eff}$  for the silica fume overlay decks is shown in Fig. 3.29. There is a wider range in diffusion coefficients for the 7% silica fume overlays than for the 5% silica fume overlays sampled between the ages of 0 and 48 months.  $D_{eff}$  for the 7% silica fume overlay decks ranges from 0.02 mm<sup>2</sup>/day to 0.38 mm<sup>2</sup>/day, with a median of 0.11 mm<sup>2</sup>/day. Fifty percent of these coefficients fall between 0.09 and 0.27 mm<sup>2</sup>/day. For the 5% silica fume

overlays, diffusion coefficients range from  $0.02 \text{ mm}^2/\text{day}$  to  $0.32 \text{ mm}^2/\text{day}$ , with a median of  $0.10 \text{ mm}^2/\text{day}$ . Fifty percent of these coefficients fall between 0.07 and 0.18 mm<sup>2</sup>/day. The variability in the effective diffusion coefficients decreases even further for the 5% silica fume overlays sampled between the ages of 48 and 96 months. Although the diffusion coefficients range from 0.02 mm<sup>2</sup>/day to 0.27 mm<sup>2</sup>/day, the median is 0.06 mm<sup>2</sup>/day and half of the values fall between 0.04 and 0.09 mm<sup>2</sup>/day. Figure 3.29, like Fig 3.26 for the conventional overlay data, again highlights the importance of analyzing placements older than 48 months.

The difference, in terms of bridge deck performance, between a 5% and a 7% silica fume overlay is of particular interest. The comparison between silica fume overlay types is restricted to bridges with ages between 0 and 48 months due to the limited age range of the available 7% silica fume overlays. The mean effective diffusion coefficient decreases (0.17 mm<sup>2</sup>/day to 0.13 mm<sup>2</sup>/day) with decreasing silica fume contents (Fig. 3.28). This observation appears to contradict the laboratory findings by Whiting and Detwiler (1998). This difference, however, is only statistically significant at  $\alpha = 0.20$  (Table 3.4), and should be reevaluated when the 7% silica fume overlays are at least four years old.

## 3.4.3 Diffusion Coefficient Age-Correction

Bridge deck age at the time of sampling (for diffusion analysis) has a significant effect on the diffusion properties of concrete. Because of the salient trends observed for the effective diffusion coefficients over time, significant age-dependent differences can exist for bridges in the same age category with similar diffusion properties. To eliminate bridge age at the time of sampling as a variable and allow bridges to be compared on an equal-age basis, the technique of dummy variables (Draper and Smith 1981) is used to determine the mean rate of decrease in the effective diffusion coefficient for each of the three bridge deck types. This multiple linear regression method assumes that the actual decrease in diffusion coefficients over time is linear and independent of the initial diffusion coefficient of the bridge deck. Multiple surveys of the same bridge at different ages lends itself very well to the application of this technique.

The results of the dummy variable analysis for monolithic, conventional overlay, and silica fume overlay decks are presented in Table 3.5. The rate of decrease in  $D_{eff}$  obtained for monolithic decks is the least (-0.0003613 mm<sup>2</sup>/day/month), about that of the conventional overlay decks (-0.0005182 mm<sup>2</sup>/day/month), and about one-third the rate of decrease for silica fume overlay decks (-0.001035 mm<sup>2</sup>/day/month). The rate of decrease for monolithic decks is based on just four placements (eight surveys) with an average age of 94.3 months, the only placements that have been surveyed two times.

It is recognized that effective diffusion coefficients represent an average diffusivity for each placement at the time of sampling, and that the relationship between  $D_{eff}$  and bridge age is nonlinear. For these reasons, the effective diffusion coefficients are adjusted using the results in Table 3.5 only within each of the age categories, reducing differences for decks sampled at different ages. The diffusion coefficients are adjusted linearly to the average age of all bridge decks at the time of sampling within each age category. The average ages for all bridge decks sampled between 0 and 48 months, 48 and 96 months, and 96 and 144 months are 20.5 months, 72.9 months, and 120.8 months, respectively. Monolithic bridges encompass only one age category, those older than 120 months, with an average age of 176.3 months. For comparison, both the mean and the adjusted effective diffusion coefficients are presented in Figs. 3.30 and 3.31; although the changes in the average values are small, the age-adjusted effective diffusion coefficients  $D_{eff}^*$  will be referenced in the balance of this report.

## 3.4.4 Comparison of Deck Diffusion Coefficients

The data obtained in this study allows the diffusion coefficients for monolithic, conventional overlay, and silica fume overlay bridge placements to be compared over the first eight years (96 months) after construction. For purposes of comparison, the coefficients are divided into two 48-month age groups: (1) 0 to 48 months, and (2) 48 to 96 months. The mean and age-adjusted (as described in Section 3.3.3) effective diffusion coefficients are presented in Figs. 3.30 and 3.31.

Figure 3.30 shows the mean and adjusted effective diffusion coefficients for each bridge deck type sampled during the first 48 months after construction. The largest difference between the mean and adjusted effective diffusion coefficients is 0.01 mm<sup>2</sup>/day and occurs for conventional overlays. The adjustment changes the remaining coefficients by less than 0.01 mm<sup>2</sup>/day. Only one monolithic deck fell within this age range and is included for comparison purposes only. The only statistically significant ( $\alpha = 0.20$ ) difference is between the 5% silica fume overlays and the 7% silica fume overlays (Table 3.6). The mean adjusted effective diffusion coefficient is 0.17 mm<sup>2</sup>/day for the 7% silica fume overlays and 0.13 mm<sup>2</sup>/day for the 5% silica fume overlays. The mean adjusted effective diffusion coefficient is 0.16 mm<sup>2</sup>/day for the 3% silica fume overlays and 0.09 mm<sup>2</sup>/day for the single monolithic deck sampled between 0 and 48 months.

Using Fick's Second Law, the average time required for the chloride content to reach the corrosion threshold in uncracked concrete can be determined for any depth using these diffusion coefficients (Fig 3.30) and the mean surface concentration (for this age range),  $6.0 \text{ kg/m}^3$  (10.1  $\text{lb/yd}^3$ ). The times for the chloride content to reach the corrosion threshold at a depth of 76.2 mm

(3.0 in.), as a function of deck type, are presented in Table 3.7. The single monolithic deck is excluded from the analysis.

The time to reach a chloride content of  $0.60 \text{ kg/m}^3$  (1.0 lb/yd<sup>3</sup>) ranges from 17.6 years for the 7% silica fume overlays to 23.4 years for the 5% silica fume overlays. For the chloride content of 1.20 kg/m<sup>3</sup> (2.0 lb/yd<sup>3</sup>), the times increase to 28.3 years for the 7% silica fume overlays and 37.0 years for the 5% silica fume overlays. The times required for the chloride concentration to reach the corrosion threshold in conventional overlays are 18 years and 30.1 years for 0.60 kg/m<sup>3</sup> (1.0 lb/yd<sup>3</sup>) and 1.20 kg/m<sup>3</sup> (2.0 lb/yd<sup>3</sup>), respectively.

The mean effective diffusion coefficients for placements with ages between 48 and 96 months old are shown in Fig. 3.31. Although none of the 7% silica fume overlays fall within this range, a distinct trend for the remaining decks emerges. As observed for Fig. 3.30, the linear age-adjustment has only a small effect, with the largest change of just under 0.01 mm<sup>2</sup>/day for any deck type. While the 5% silica fume and conventional overlays within this age range are not statistically different at any  $\alpha$  level, monolithic decks have diffusion coefficients that are over two times higher than the other overlay deck types, a result that is statistically significant at  $\alpha$  = 0.02 (Table 3.6). Based on Fick's Second Law, using the diffusion coefficients from this age range and the mean surface concentration (for this age range) of 10.0 kg/m<sup>3</sup> (16.1 lb/yd<sup>3</sup>), the times calculated for the chloride ion concentration to reach the corrosion threshold at a depth of 76.2 mm (3.0 in.) are presented in Table 3.8.

For a chloride content at 76.2 mm (3.0 in.) of 0.60 kg/m<sup>3</sup> (1.0 lb/yd<sup>3</sup>), the times range from 13.6 years for the monolithic placements to 33.4 years for the 5% silica fume overlays. For a chloride content of 1.20 kg/m<sup>3</sup> (2.0 lb/yd<sup>3</sup>), the times increase to 19.2 years for the monolithic placements and 46.7 years for the 5% silica fume overlays. The times required for chloride

concentrations to reach the corrosion threshold in conventional overlays are 25.0 years and 36.3 years for values of  $0.60 \text{ kg/m}^3$  (1.0 lb/yd<sup>3</sup>) and 1.20 kg/m<sup>3</sup> (2.0 lb/yd<sup>3</sup>), respectively.

Overall, the diffusion coefficients calculated based on Fick's Second Law appear to be more reliable and consistent for samples taken from bridge decks when they are at least four years old (48 months). For bridges in this category in the current study, chloride ion concentrations reach the corrosion threshold in monolithic decks in less than half of the time required for either 5% silica fume or conventional overlays. Statistically, there is no difference between the diffusion performance for the 5% silica fume overlays and the conventional highdensity overlays.

As shown in Section 3.3.2, regardless of the bridge deck type, the time for the chloride concentration to reach the corrosion threshold in cracked concrete can be measured in months rather than years, as it is for uncracked concrete.

## 3.5 Diffusion Coefficients versus Silica Fume Overlay Specifications

Many of the requirements outlined in construction specifications affect the performance of the concrete used in bridge decks. These requirements include factors that must be monitored during construction. Some of these factors, however, have not been recorded in construction diaries or reports. Most notably, while the concrete temperature during placement is monitored for compliance with the specifications, it has typically not been recorded in Kansas. The average daily wind speed and relative humidity are additional site conditions not included in construction records. The inability to correlate weather conditions with measured bridge deck diffusivity represents a weakness in the evaluation of programs developed specifically to improve deck diffusivity.

Many changes related to the construction of silica fume overlay bridges have occurred since the first silica fume overlay placements. Since 1990, eleven revisions to the standard specifications have been made. Eight of those revisions [90P(M)-158-R1, R2, R3, R4, R5, R6, R8, R9] are represented by the silica fume overlays selected for this study. The eight revisions are divided into five groups based on the type, quantity, and scope of changes specified by the special provisions. As discussed previously, four silica fume overlay placements were cast prior to the first special provision, 90P-158. No significant changes were made in Revisions 1 or 2. Revision 3 increased the curing period from 72 hours to 7 days and required treatment with a precure material or fogging of the struck-off surface. Revision 3 included provisions to monitor and maintain evaporation rates below  $1.0 \text{ kg/m}^2/\text{hr}$  (0.2 lb/ft<sup>2</sup>/hr) or the application of a precure material immediately after overlay placement. Revision 4 required both fogging and the use of a precure material. Revisions 5 and 6 did not include significant changes and are grouped together with Revision 4. Finally, Revisions 7 through 9 are grouped together and represent a fourth category. Most notably, these special provisions increased the required silica fume content from 5 to 7% by mass of cement. A more detailed explanation of the differences between the special provisions is provided in Section 1.7.

The mean adjusted effective diffusion coefficients for the silica fume overlay placements are presented in Fig. 3.32 based on the special provision in effect during construction. The results are further separated by the age of the placement at the time of sampling. Contrary to the expected behavior, the diffusivity has increased with subsequent provision releases for bridges sampled between 0 and 48 months. The mean adjusted effective diffusion coefficients obtained for bridges sampled between 0 and 48 months increases from 0.08 mm<sup>2</sup>/day for bridges constructed under special provisions 90P-158-R1 and R2 to 0.11 mm<sup>2</sup>/day for bridges

constructed under 90P-158-R3. The mean effective diffusion coefficient continues to increase (to 0.15 mm<sup>2</sup>/day) for bridges constructed under special provisions 90P-158-R4 through R6. While statistically no different from Revisions 3–6 (Table 3.9), the mean effective diffusion coefficient slightly increases to 0.17 mm<sup>2</sup>/day for bridges constructed under the most recent special provisions (90M-158-R8 and R9). The remaining differences between categories are statistically significant at least at  $\alpha = 0.20$  (Table 3.9). The increase in  $D_{eff}^*$  with changes in the special provisions, while contrary to the expected behavior, is clearly identifiable and at the very least represents largely ineffectual attempts to improve diffusivity.

In contrast to the results for bridges sampled at ages below 48 months, the values of mean effective diffusion coefficients obtained for placements sampled between 48 and 96 months remain nearly constant.  $D_{eff}^*$  only increases from 0.06 mm<sup>2</sup>/day for bridges constructed without special provisions to 0.07 mm<sup>2</sup>/day for bridges constructed under the most recent special provisions. None of the differences between categories are statistically significant (Table 3.9). Figure 3.32 clearly indicates that the additional curing requirements and placement procedures introduced with the new revisions of the special provisions have not helped to improve the diffusivity characteristics of silica fume overlays.

## **3.6 Effects of Concrete Properties on Diffusivity**

The material properties analyzed include slump, air content, water-cementitious material ratio, percent volume of water and cementitious materials, water content, cement content, and compressive strength. Construction techniques and practices can also have a large effect on concrete permeability. Ineffective or incomplete consolidation, interruptions in the curing process, and placing concrete during periods of high evaporation increase concrete diffusivity. While these variables may dominate the performance for some of the bridges included in this

study, other than the basic guidelines required in the special provisions, this information is largely unavailable.

The bridges are divided into four groups for analysis: 5% silica fume overlays, 7% silica fume overlays, conventional overlays, and monolithic bridge decks. The 5% percent silica fume overlays are further divided into two age categories: decks sampled between 0 and 48 months and decks sampled between 48 and 96 months. All of the 7% silica fume overlays fall within the 0 to 48 month age group. Conventional overlays are divided into groups with ages of 48 to 96 months and 96 to 144 months, and monolithic decks are grouped together as placements older than 120 months. The four monolithic bridges significantly younger than 120 months (see Fig. 3.21), two silica fume overlay bridges cast before the first special provision, and one silica fume overlay bridge containing slag cement (ground granulated blast furnace slag) are excluded from the analysis.

In addition to dividing the data into groups based on the age of the bridge at the time of sampling, all of the data presented in this section has been adjusted to account for age differences within each age category (as described in Section 3.4.3 and presented in Table 3.5) are used to linearly adjust the effective diffusion coefficients to the average age of all bridge placements within a specified age group.

The analysis of the effects of material properties includes 38 silica fume overlay placements and 35 conventional overlay placements, all of which have been sampled as a part of this study and by Miller and Darwin (2000). The analysis also includes 16 monolithic placements of which 4 were also sampled by Miller and Darwin (2000). The number of placements used in the analysis of each material property varies due to limitations in the availability of data for some bridge placements. For the overlay bridges surveyed in this study,

there is virtually no variation in the quantity of cement used in the concrete mixes. This leads to relationships between the (1) water-cementitious material ratio, (2) percent volume of water and cementitious materials, and (3) water content and the mean adjusted effective diffusion coefficient that are nearly identical. As a result, the mean adjusted effective diffusion coefficient will not be compared to the percent volume of water and cementitious materials, water content, or cement content for overlays.

More detailed evaluations of the effect of material properties on diffusion coefficients are presented in the balance of this section. The key observations from these analyses can be summarized as follows:

For silica fume overlays sampled between 0 and 48 months and 48 and 96 months, there is no significant correlation between the mean adjusted effective diffusion coefficients and concrete slump. Diffusivity increases significantly with increasing air contents for 5% silica fume overlay decks sampled between 0 and 48 months, although no correlation is apparent for bridges sampled between 48 and 96 months. Diffusivity consistently decreases as the water-cementitious material ratio w/cm increases. This observation does not follow the expected trend and is in all likelihood due to the small range in the w/cm ratio (0.37 to 0.40). There is no apparent correlation between diffusivity and compressive strength within the range of 38 to 59 MPa (5500 to 8500 psi).

For **conventional overlays** sampled between 48 and 96 months and 96 and 144 months, there is no significant correlation between the mean adjusted effective diffusion coefficient and concrete slump. For both age ranges, diffusivity significantly increases with increasing air contents. For bridges sampled between 96 and 144 months, as the air content increases from 4.375 to 6.625%, the diffusivity increases by more than three times (0.04 mm<sup>2</sup>/day to 0.13 mm<sup>2</sup>/day). No trend with diffusion properties is apparent as the water-cement ratio increases from 0.36 to 0.40 and for compressive strengths between 38 and 52 MPa (5500 and 7500 psi).

For **monolithic placements** older than 120 months, there is no apparent correlation between the mean adjusted effective diffusion coefficient and concrete slump.

Diffusivity appears to increase with air content although two placements with the highest air contents have low diffusion coefficients. The mean adjusted effective diffusion coefficient increases as the (1) water-cement ratio, (2) water content, and (3) cement content increase. The mean adjusted effective diffusion coefficient appears to be insensitive to compressive strength within the range of 31 to 45 MPa (4500 to 6500 psi).

#### <u>3.6.1 Slump</u>

For the 5% silica fume overlays, the overlay slump varies from 19 to 127 mm (0.75 to 5.0 in.). For the 7% silica fume overlays, the slump varies from 57 to 102 mm (2.25 to 4.0 in.). Categories for both types range from a mean of 38 to greater than 100 mm (1.5 in. to greater than 4.0 in.). For conventional overlays, the overlay slump varies from 0 to 160 mm (0 to 6.25 in.), with categories ranging from 0 to 19 mm (0 to 0.75 in.). For monolithic bridge decks, the slump ranges from 44 to 76 mm (1.75 to 3.0 in.), with categories ranging from 44 to 70 mm (1.75 to 2.75 in.).

The mean adjusted effective diffusion coefficients are shown as a function of concrete slump for the silica fume overlays in Figs. 3.33 and 3.34. For bridges sampled between 0 and 48 months, the mean adjusted effective diffusion coefficients range from 0.11 to 0.15 mm<sup>2</sup>/day for 5% silica fume overlays and from 0.15 to 0.23 mm<sup>2</sup>/day for 7% silica fume overlays with no clear trend identifiable, as shown in Fig 3.34. None of these differences are statistically significant at any  $\alpha$  level (Table 3.10). For 5% silica fume overlays sampled between 48 and 96 months (Fig. 3.33), the mean adjusted effective diffusion coefficient increases slightly, from 0.06 mm<sup>2</sup>/day to 0.08 mm<sup>2</sup>/day, as the slump increases from 38 mm (1.5 in.) to greater than 100 mm (4.0 in.), although the increase is not statistically significant (Table 3.10).

The mean adjusted effective diffusion coefficients are shown as a function of concrete slump for conventional overlays in Fig. 3.35. The mean adjusted effective diffusion coefficient

for conventional overlays with a slump of 0 mm (0 in.) sampled between 48 and 96 months old is significantly lower than the remaining categories (Table 3.10). This is not observed for placements sampled between 96 and 144 months, where the mean adjusted effective diffusion coefficients decrease from 0.10 mm<sup>2</sup>/day to 0.06 mm<sup>2</sup>/day with an increase in slump from 0 mm (0 in.) to 19 mm (0.75 in.). Similar to the silica fume overlays, however, none of these differences is statistically significant at any  $\alpha$  level (Table 3.10).

The mean adjusted effective diffusion coefficients are shown as a function of concrete slump for monolithic placements in Fig. 3.36. The diffusion coefficients vary from between 0.13  $mm^2/day$  to 0.20  $mm^2/day$ , with no apparent trend or significant differences between categories (Table 3.10).

#### 3.6.2 Air Content

For silica fume overlay placements, the air content varies from 3.5 to 8.0%, with the categories ranging from 4.5 to 6.5%. For conventional overlay placements, the air content varies from 2.0 to 7.1%, and the categories ranging from 4.375 to 6.625%, and for monolithic bridge placements, the air content varies from 5.0 to 6.5%, with the categories ranging from 4.875 to 6.375%.

The mean adjusted effective diffusion coefficients for silica fume placements are shown as a function of air content in Figs. 3.37 and 3.38. For the 5% silica fume overlays sampled during the first 48 months after construction, the mean adjusted effective diffusion coefficient increases, as expected, from 0.11 mm<sup>2</sup>/day to 0.20 mm<sup>2</sup>/day as the air content increases from 4.5 to 6.5%, a difference that is statistically significant at  $\alpha = 0.10$  (Table 3.11). This trend becomes non-monotonic however, when the same samples are analyzed between 48 and 96 months. The mean adjusted effective diffusion coefficient for placements with an air content of 4.5% is 0.06

mm<sup>2</sup>/day. There is a slight increase, to 0.07 mm<sup>2</sup>/day, as the air content increases from 4.5 to 5.5%, but this difference is not statistically significant (Table 3.11). The mean adjusted effective diffusion coefficient decreases to 0.04 mm<sup>2</sup>/day as the air content is increased to 6.5%, although only three placements fall into this category. Samples taken between 48 and 96 months tend to indicate that, over time, diffusivity may be significantly less sensitive to changes in air content. The 5 and 7% silica fume overlays sampled during the first 48 months after construction are compared in Fig. 3.38. There is only one 7% silica fume deck in the 4.5% air content category. In the other two categories, the effective diffusion coefficients for the 7% silica fume placements are approximately the same as for the 5% silica fume placements. None of the differences is statistically significant (Table 3.11).

The mean adjusted effective diffusion coefficients for the conventional overlay placements are shown as a function of air content in Fig. 3.39. The diffusion coefficients for conventional overlays in both age ranges (48 to 96 months old and 96 to 144 months old) increase with increases in air content. Mean effective diffusion coefficients for conventional overlays between the ages of 48 and 96 months increase from 0.08 mm<sup>2</sup>/day to 0.15 mm<sup>2</sup>/day for an increase in air content from 4.375 to 6.625%, although in most cases, the differences between categories are not statistically significant (Table 3.11). The only two statistically significant differences ( $\alpha = 0.20$ ) occur when the highest air content category (6.625%) is considered. The trend is more pronounced for conventional overlays sampled between 96 and 144 months old. The mean adjusted effective diffusion coefficient increases from 0.04 mm<sup>2</sup>/day to 0.13 mm<sup>2</sup>/day with an increase in air content from 4.375 to 6.625%, a difference that is statistically significant at  $\alpha = 0.20$  (Table 3.11).

The mean adjusted effective diffusion coefficients for monolithic placements older than 120 months are shown as a function of air content in Fig. 3.40. The mean adjusted effective diffusion coefficients increase from 0.12 mm<sup>2</sup>/day to 0.20 mm<sup>2</sup>/day as the air content increases from 4.875 to 5.625%, a difference that is statistically significant at  $\alpha = 0.20$  (Table 3.11). The mean adjusted effective diffusion coefficient decreases to 0.10 mm<sup>2</sup>/day as the air content category continues to increase to 6.375%, a statistically significant difference at  $\alpha = 0.20$  (Table 3.11), even though only two placements are included in the last category. The small data set, however, limits the usefulness of this comparison.

#### 3.6.3 Water-Cementitious Material Ratio

The water-cementitious material ratio should have the single largest effect on concrete diffusivity properties. In a controlled laboratory setting, lower water-cement ratios will result in lower diffusion coefficients. For example, some of the best diffusion results for overlay mixes obtained by Whiting and Detwiler (1998) had a water-cementitious material ratio of 0.30 and a silica fume content of 6%. The small ranges and small samples in the current study, however, mean that the trends are not always as expected.

Two water-cementitious material ratios, 0.38 and 0.40, were used for the 5% silica fume overlay placements compared to a single value, 0.37, for the 7% silica fume overlay placements. Water-cement ratios of 0.36, 0.38, and 0.40 were used for the conventional overlay placements, while water-cement ratios of 0.40 and 0.42 were used for the monolithic bridge decks. Due to small variations in the cement contents for silica fume and conventional overlays, the water-cementitious material ratios are almost exclusively a function of water content.

Two water contents were used for the 5% silica fume overlays in this study, 141 kg/m<sup>3</sup> (238 lb/yd<sup>3</sup>) and 148 kg/m<sup>3</sup> (250 lb/yd<sup>3</sup>). The 7% silica fume overlays had a water content for all

bridge deck placements of 138 kg/m<sup>3</sup> (232 lb/yd<sup>3</sup>). For the conventional overlays, water contents were 133 kg/m<sup>3</sup> (225 lb/yd<sup>3</sup>), 141 kg/m<sup>3</sup> (238 lb/yd<sup>3</sup>), and 148 kg/m<sup>3</sup> (250 lb/yd<sup>3</sup>). The cementitious material content was 370 kg/m<sup>3</sup> (623 lb/yd<sup>3</sup>) or 371 kg/m<sup>3</sup> (625 lb/yd<sup>3</sup>) for the 5% silica fume overlays and 371 kg/m<sup>3</sup> (625 lb/yd<sup>3</sup>) or 372 kg/m<sup>3</sup> (627 lb/yd<sup>3</sup>) for the 7% silica fume overlays. The cement content used for all of the conventional overlay bridge placements included in this study was 371 kg/m<sup>3</sup> (625 lb/yd<sup>3</sup>). For the monolithic decks, cement contents included 357 kg/m<sup>3</sup> (602 lb/yd<sup>3</sup>), 359 kg/m<sup>3</sup> (605 lb/yd<sup>3</sup>), 379 kg/m<sup>3</sup> (639 lb/yd<sup>3</sup>), and 390 kg/m<sup>3</sup> (657 lb/yd<sup>3</sup>).

The mean adjusted effective diffusion coefficients for silica fume placements are shown as a function of water-cementitious material ratio in Fig. 3.41. For the 5% silica fume overlays sampled within the first 48 months after construction, as the water/cementitious material ratio increases from 0.38 to 0.40 [water content increases from 141 kg/m<sup>3</sup> (238 lb/yd<sup>3</sup>) to 148 kg/m<sup>3</sup> (250 lb/yd<sup>3</sup>)], the diffusion coefficient decreases from 0.14 mm<sup>2</sup>/day to 0.12 mm<sup>2</sup>/day. This decrease, however, is not statistically significant at any level of  $\alpha$  (Table 3.12). For 7% silica fume overlays with a water-cementitious material ratio of 0.37, the mean adjusted effective diffusion coefficient is 0.18 mm<sup>2</sup>/day. For the 5% silica fume overlays sampled 48 to 96 months after construction, the trend is very similar. The diffusion coefficient decreases from 0.11 to 0.07 mm<sup>2</sup>/day with an increase in the water-cementitious material ratio from 0.38 to 0.40. This difference is statistically significant at  $\alpha = 0.05$  (Table 3.12). This trend likely indicates problems during the finishing or curing processes at the lower water-cementitious material ratios. Under ideal conditions a decrease in the water-cementitious material ratio will result in a decrease in the diffusivity of the concrete. The mean adjusted effective diffusion coefficients for conventional overlay placements are shown as a function of water-cement ratio in Fig. 3.42. For conventional overlays sampled 48 to 96 months after construction, as the water-cement ratio increases from 0.36 to 0.38 [water content increases from 133 kg/m<sup>3</sup> (225 lb/yd<sup>3</sup>) to 141 kg/m<sup>3</sup> (238 lb/yd<sup>3</sup>)] the mean adjusted effective diffusion coefficient decreases from 0.09 to 0.05 mm<sup>2</sup>/day, a difference that is statistically significant at  $\alpha = 0.10$  (Table 3.12). For conventional overlays sampled 96 to 144 months after construction, as the water-cement ratio increases from 0.36 to 0.38 the mean effective diffusion coefficient decreases from 0.09 to 0.04 mm<sup>2</sup>/day. This difference is statistically significant at the highest level,  $\alpha = 0.02$  (Table 3.12). The trend for conventional overlays, however, reverses as the water-cement ratio increases to 0.40, with the diffusivity increasing significantly in both age categories. The mean adjusted effective diffusion coefficient for overlays with a water-cement ratio of 0.40 is 0.14 mm<sup>2</sup>/day for placements sampled between 48 and 96 months old and 0.12 mm<sup>2</sup>/day for placements sampled between 96 and 144 months old.

The mean adjusted effective diffusion coefficients for monolithic placements are shown as a function of water-cement ratio in Fig. 3.43. The mean adjusted effective diffusion coefficient increases from 0.13 mm<sup>2</sup>/day to 0.20 mm<sup>2</sup>/day as the water-cement ratio increases from 0.42 to 0.44, a difference that is statistically significant at  $\alpha = 0.20$  (Table 3.12).

# 3.6.4 Percent Volume of Water and Cementitious Material

The cement content of the overlay bridges included in this study is nearly identical for each overlay type. For this reason, any comparisons made between diffusion coefficients and water-cementitious material ratio, percent volume of water and cementitious material, and water content for these decks show similar trends. The mean adjusted effective diffusion coefficients

as a function of the percent volume of water and cement for monolithic decks older than 120 months are presented in Fig. 3.44. For monolithic bridge decks, the volume of water and cement, determined from the initial mix design, ranges from 26.5% to 28.8% with categories of 27, 28, and 29%. The mean adjusted effective diffusion coefficients increase from 0.15 mm<sup>2</sup>/day to 0.20 mm<sup>2</sup>/day as the cement paste content increases from 27 to 29%. Due to the small sample sizes, none of the results are statistically significant at  $\alpha = 0.20$  (Table 3.13), although the trend is clear.

# 3.6.5 Water and Cement Content

The mean adjusted effective diffusion coefficients as a function of water content for monolithic decks older than 120 months are shown in Fig. 3.45. The water contents for these placements range from 147 kg/m<sup>3</sup> (248 lb/yd<sup>3</sup>) to 165 kg/m<sup>3</sup> (278 kg/m<sup>3</sup>), corresponding to an increase in diffusivity from 0.07 mm<sup>2</sup>/day to 0.19 mm<sup>2</sup>/day, an increase that is statistically significant at  $\alpha = 0.20$  (Table 3.14).

The mean adjusted effective diffusion coefficients as a function of cement content for monolithic decks older than 120 months are shown in Fig. 3.46. The cement contents used in these placements include 357 kg/m<sup>3</sup> (602 lb/yd<sup>3</sup>), 359 kg/m<sup>3</sup> (605 lb/yd<sup>3</sup>), 379 kg/m<sup>3</sup> (639 lb/yd<sup>3</sup>), and 390 kg/m<sup>3</sup> (657 lb/yd<sup>3</sup>). Only one bridge deck (bridge 89-204), however, has a cement content of 390 kg/m<sup>3</sup> (657 lb/yd<sup>3</sup>) and is not included in Fig. 3.46. Because of the small difference, the monolithic decks with cement contents of 357 kg/m<sup>3</sup> (602 lb/yd<sup>3</sup>) and 359 kg/m<sup>3</sup> (605 lb/yd<sup>3</sup>) are included together as one category. The diffusivity increases from 0.15 mm<sup>2</sup>/day to 0.19 mm<sup>2</sup>/day as the cement content increases from 357 kg/m<sup>3</sup> (602 lb/yd3) to 379 kg/m<sup>3</sup> (639 lb/yd<sup>3</sup>), although this difference is not statistically significant (Table 3.15).

#### <u>3.6.6 Compressive Strength</u>

For the silica fume overlay placements, the concrete compressive strength varies from 36 to 62 MPa (5200 to 9000 psi) for the 5% silica fume overlays and from 43 to 63 MPa (6300 to 9100 psi) for the 7% silica fume overlays. For the conventional overlay placements, the compressive strength varies from 34 to 50 MPa (4900 to 7300 psi). For the monolithic overlay placements, the concrete compressive strength varies from 29 to 51 MPa (4200 to 7400 psi). The categories for all bridge deck types range from 31 to 59 MPa (4500 to 8500 psi). In all cases, concrete diffusivity would be expected to drop with increasing compressive strengths due to lower water-cement ratios and concrete maturation.

The mean adjusted effective diffusion coefficients for the silica fume overlays are shown as a function of concrete compressive strength in Figs. 3.47 and 3.48. For the 5% silica fume overlays sampled 0 to 48 months after construction, there is a slight, but nonmonotonic increase in the diffusivity as the compressive strength increases from 38 to 59 MPa (5500 to 8500 psi). The only difference statistically significant difference ( $\alpha = 0.10$ ) occurs as the compressive strength increases from 45 to 52 MPa (6500 to 7500 psi) (Table 3.16). When 5% silica fume overlays sampled 48 to 96 months after construction are considered, diffusivity drops off as the compressive strength increases above 38 MPa (5500 psi). Very few 7% silica fume overlays are available, and no clear correlation between the mean adjusted effective diffusion coefficient and concrete compressive strength is apparent for these decks.

The mean adjusted effective diffusion coefficients for the conventional overlays and monolithic placements are shown as a function of concrete compressive strength in Figs. 3.49 and 3.50. For the conventional overlays in both age ranges, the mean adjusted effective diffusion

coefficient only varies slightly with compressive strength. The same is true for the monolithic placements, and none of the differences is statistically significant (Table 3.16).

#### **CHAPTER 4**

# TIME AS A VARIABLE IN BRIDGE DECK CRACKING

#### 4.1 General

In this chapter, bridge deck cracking is evaluated based on age and the date of construction. The results show that deck cracking increases slowly as the deck ages, and for most decks, the majority of cracking is established early on in the life of the bridge. To aid in later comparisons, an age correction term is determined for each bridge deck type using crack density data obtained for bridges surveyed on more than one occasion as a part of multiple studies (Schmitt and Darwin 1995, Miller and Darwin 2000). A cracking rate is determined for each bridge deck type and applied to the raw crack density data to aid in isolating particular variables by eliminating the influence that age may have on the comparisons. These age-corrected crack densities are the basis for the performance evaluations in Chapter 5.

When crack density is plotted versus date of construction, two distinct trends emerge. First, more recently constructed monolithic and conventional overlay decks exhibit higher crack densities than older bridges of the same type. Second, the converse is true for silica fume overlay decks, with bridges built 15 years ago exhibiting higher crack densities than more recently built bridges, even when age is taken into account. Changes in construction techniques, concrete mix designs, and environmental site conditions appear to be responsible for both trends. To help determine which of these changes plays a role in bridge deck cracking, construction, design, and environmental variables are plotted versus the date of construction. Since the characteristics of the concrete used in subdecks and monolithic decks differ from those of the concrete used for overlays, these two materials are evaluated separately.

# 4.2 Inclusion of Data from Previous Studies in Kansas

Bridge deck survey data gathered by Schmitt and Darwin (1995) and Miller and Darwin (2000) are included with the data obtained in this study to increase the sample size and the range of ages and construction dates used in the analysis. A high percentage of the bridges surveyed as a part of this study (49 out of 59) have been surveyed previously (see Table 2.1). The only bridges included in this study that have not previously been surveyed are the newest silica fume overlay bridges, those containing 7% silica fume by weight of cementitious material.

Although effort is made to keep bridge survey methods consistent, the observations are inherently subjective, and the results must be scrutinized to determine if a reasonable correlation exists between studies. Figures 4.1, 4.2, and 4.3 present a bridge-by-bridge comparison of crack densities for bridges surveyed in more than one study for monolithic bridge decks, conventional high-density overlay decks, and silica fume overlay decks, respectively.

The results for the monolithic decks (MONO) are shown in Fig. 4.1. Crack densities for 12 of the 13 bridge decks from the current study are greater than the densities measured by Schmitt and Darwin (1995). The crack density of the one remaining deck differs by 0.06 m/m<sup>2</sup>, or about 12%. The crack densities for the monolithic decks surveyed by Miller and Darwin (2000) are greater than the crack densities obtained by Schmitt and Darwin (1995) for the three bridges included in both studies.

The results for the conventional overlay decks (CO) are presented in Fig. 4.2. Crack densities for 12 of the 16 bridge decks from the current study are higher than crack densities obtained by Miller and Darwin (2000). Of the four remaining bridges, the crack densities are the same for one, and lower by 0.05 m/m<sup>2</sup> (11%), 0.07 m/m<sup>2</sup> (8%), and 0.23 m/m<sup>2</sup> (26%) for the other three. The crack densities measured by Miller and Darwin (2000) are greater than those

measured by Schmitt and Darwin (1995) for only two out of the six bridges included in both studies. Three of the other four decks, however, differ by 0.04 m/m<sup>2</sup> or less (maximum of 6%), and the remaining deck differs by 0.15 m/m<sup>2</sup> (28%).

The results for silica fume overlay decks (SFO) are presented in Fig. 4.3. Crack densities for 16 out of the 20 bridge decks surveyed in the current study are greater than those obtained by Miller and Darwin (2000). Two of the remaining bridges, 89-184 and 89-187, are also part of the study by Schmitt and Darwin (1995). The crack density results for bridge 89-187 decreased with each successive survey. The crack density results from Miller and Darwin (2000) for bridge 89-184 increased by 0.32 m/m<sup>2</sup> (46%) compared to the results obtained by Schmitt and Darwin (1999) and then decreased by 0.13 m/m<sup>2</sup> (13%) for the current study. These bridges were constructed prior to the development of special provisions and have areas of significant plastic shrinkage cracking and excessive fine-width transverse cracks. For these reasons, these silica fume overlays are only included in the bridge age and construction date analysis and not included in the comparisons presented in Chapter 5.

For the majority of bridge decks, crack density increases with age (successive surveys). That is, with all else being equal, a bridge surveyed 10 years after construction will have a higher crack density than a bridge surveyed one year after construction. Figures 4.4, 4.5, and 4.6 present comparisons of the crack densities obtained for bridges surveyed in multiple studies. In the figures, results from the more recent study are plotted versus the results from an earlier study. In the three plots, the vast majority of the data points fall above the 45-degree line, indicating an increase in crack density with time. Data points that fall below the 45-degree line, indicating a decrease in cracking versus time, may occur as the result of increased relaxation (creep) in the bridge deck or may be due to differences inherent in processes that require human judgment,

even though the survey methods (described in Section 2.4, with a draft specification provided in Appendix B) are designed to provide consistent results. The balance of this chapter will focus on the rate at which cracking occurs for different bridge deck types, the amount of cracking observed for bridges constructed in different construction eras, and changes in bridge designs, construction techniques, concrete mix designs, or environmental conditions that may account for these observations.

# 4.3 Bridge Deck Cracking versus Time

Bridge deck age is equal to the difference between the survey date and the date of the last concrete placement. The monolithic decks evaluated as a part of this study range in age from 12 to 240 months (Fig. 4.7). The conventional overlay decks range in age from 20 to 145 months (Fig. 4.8), and the silica fume overlay decks range in age from 4 to 142 months (Fig. 4.9). Only two silica fume overlay decks, 89-184 and 89-187, are older than 97 months. The average age for all 59 bridge decks at the time of survey is 78 months.

Data points connected by lines in Figs. 4.7 through 4.9 represent bridges surveyed on more than one occasion as a part of separate studies. Although crack density appears to only increase gradually over time, it is clear that crack density is dependent on deck age.

There is substantial scatter between the initial crack density values for all bridge deck types, presumably due to the myriad of variables that contribute to deck cracking. The crack density for most bridges, however, appears to increase at a similar rate for each bridge deck type. To eliminate bridge age as a variable and allow bridges to be compared on an equal-age basis, the technique of dummy variables (Draper and Smith 1981) is used to determine the mean rate of increase in crack density for each of the three bridge deck types. This multiple linear regression method assumes that the actual increase in crack density over time is linear and independent of the initial crack density of the bridge deck. Multiple surveys of the same bridge at different ages lends itself very well to the application of this technique.

The results of the dummy variable analysis for monolithic, conventional overlay, and silica fume overlay decks are presented in Table 4.1. The cracking rate for conventional overlay decks is the least (0.0008 m/m<sup>2</sup>/month), while the cracking rate for silica fume overlay decks is over three times that level (0.0028 m/m<sup>2</sup>/month). The mean age at the time of the surveys for all 5% silica fume overlay decks is 53 months, 34 months younger than the conventional overlay decks.

According to Le, French, and Hajjar (1998), the initial shrinkage rate has a greater effect on cracking than the total shrinkage and so it comes as no surprise that silica fume decks, with the lowest average age, have the highest cracking rate. In addition, for all deck types, the greatest percentage of crack density is established early on in the life of the decks. Based on these observations, it appears that the key to minimizing total crack density is to limit initial cracking.

The cracking rates obtained from the dummy variable analyses are used to adjust the raw crack density data obtained from the surveys of each bridge. These adjustments represent an age correction that helps to isolate individual parameters by eliminating differences in deck performance due to age. All of the raw crack density data is adjusted to an age of 78 months, the average age at the time of the survey for all bridge deck types. For bridges that were surveyed in more than one study, the age-corrected crack density is calculated by averaging the individual age-corrected crack densities obtained for the bridge in each study. The results of the field surveys from all three studies in addition to the age-corrected crack densities for each bridge deck surveyed are tabulated in Table E.1 of Appendix E.

## 4.4 Crack Density versus Construction Era

Many changes related to bridge deck design, construction procedures, and material specifications have occurred since the first bridge in this study was built in 1983. Figures 4.10 through 4.12 show average crack density plotted versus construction date for each bridge deck type. Two distinct trends emerge. First, the crack densities (and age-corrected crack densities) for both monolithic and conventional overlay decks are higher for the newer bridge decks (Figs. 4.10 and 4.11). Conversely, the crack density of the silica fume overlay decks is generally lower for the newer decks (Fig. 4.12), although the most recently constructed 7% silica fume overlay decks have not shown continued improvement.

The age correction adjustment has the greatest effect on both the oldest and newest bridges included in the study. The greatest difference between the average measured crack densities and the age-corrected crack densities is 0.16 m/m<sup>2</sup> and occurs for the most recently constructed silica fume overlay decks (Fig. 4.12). Since none of the 7% silica fume overlay decks have been surveyed on more than one occasion, the cracking rate calculated for the 5% silica fume decks is applied to the 7% silica fume overlay decks. In no case, however, does the age correction adjustment change the trends observed in the raw data. The age-corrected crack density will be referenced in the balance of this report.

As a variable, the date of construction (and the associated aspects of construction procedures and materials) has had a measurable impact on cracking in bridge decks. In Fig. 4.10, monolithic bridge decks are placed in two groups based on casting date, 1984–1987 and 1990–1993. Monolithic decks constructed between 1990 and 1993 have an average age-corrected crack density, 0.50 m/m<sup>2</sup>, that is more than three times the age-corrected crack density, 0.16 m/m<sup>2</sup>, of monolithic decks constructed between 1984 and 1987 (Fig. 4.10). The difference

in age-corrected crack density for these two age groups is statistically significant at  $\alpha = 0.02$ (Table 4.2).

Similar results are shown for bridges with conventional overlays, which are placed in three groups: 1985–1987, 1990–1992, and 1993–1995. Conventional overlay decks constructed between 1993 and 1995 have an average age-corrected crack density of 0.81 m/m<sup>2</sup> (Fig. 4.11). Conventional overlay decks constructed between 1990 and 1992 have an average age-corrected crack density, 0.53 m/m<sup>2</sup>, more than two times the age-corrected crack density, 0.24 m/m<sup>2</sup>, of conventional overlay decks constructed between 1985 and 1987 (Fig. 4.11). All of the differences in the average age-corrected crack density for each of these age categories is statistically significant at  $\alpha = 0.02$  (Table 4.2).

The crack density results for monolithic and conventional overlay decks stand in sharp contrast to the results for silica fume overlay decks. For the periods 1990–1991, 1995–1996, and 1997–1998, the age-corrected crack density dropped from 0.87 to 0.42 m/m<sup>2</sup> between the first and third time period. The trend is not entirely monotonic, however, and for the most recent time period, 2000–2002, the mean age-corrected crack density increased to 0.48 m/m<sup>2</sup>. Although most of the differences in the age-corrected crack densities between these groups are not statistically significant (Table 4.2), it is clear that improvement has been made since the first silica fume decks were built in 1990.

A number of changes in concrete materials and construction procedures over the past 20 years may explain the observations found in Figs. 4.10 through 4.12. During this period, cement has become progressively finer, as producers have chosen to develop higher early strength cements. Finer cements lead to greater shrinkage (Chariton and Weiss 2002).

Concrete placement, which used to involve cranes and buckets, is now almost universally performed by pump. Concretes that are pumped generally require higher paste contents for the efficient use of the equipment than concretes that are not. In addition, any trend toward the use of higher slump concretes for use with pumping would be expected to increase settlement cracking and, thus, total crack density. Finishing machines have also changed during this period. In the early 1980s, bridge decks in Kansas were finished primarily with vibrating screeds. Over the intervening years, the screeds changed, first to single roller drum screeds and, more recently, to double drum roller screeds. Roller screeds move more paste to the surface than vibrating screeds, which tends to increase plastic shrinkage cracking.

The trend for silica fume overlay decks built between 1990 and 1998 shown in Fig. 4.12 reflects a major effort to limit the evaporation of water during concrete placement, finishing, and before the initiation of wet curing. As discussed previously, the most recently constructed silica fume overlay decks, those built between 2000 and 2002, have a silica fume content of 7 percent. The recent increase in cracking indicates that the additional silica fume, even with the careful attention to evaporation that had previously decreased cracking (Fig. 4.12), has directly translated into increased cracking.

#### 4.5 Crack Density versus Silica Fume Overlay Specification

Many of the changes that have likely resulted in decreased cracking for silica fume overlay decks since 1990 can be attributed to modifications made to the standard specifications. Since 1990, there have been 11 such revisions regarding the design and construction of silica fume overlays. For conventional overlays, five revisions have been made since 1990, although only Special Provisions 90P–95, 90P–95–R1, and 90P–95–R2 were used to construct the bridges in this study

built after 1990. No significant changes thought to affect bridge deck cracking were made during these revisions.

Eight of the 11 silica fume overlay revisions (90P-158-R1, R2, R3, R4, R5, R6, and 90M-158-R8 and R9) were used to construct the 30 silica fume overlay decks examined in this study. The mean age-corrected crack density is plotted versus the special provision number used during construction in Fig. 4.13. It is clear that progress has been made since the first silica fume overlay decks were constructed prior to the first special provision. With the implementation of provisions 1 and 2, fogging and/or the use of a precure material were required after finishing the surface. Upon implementation, the mean age-corrected crack density decreased from  $0.87 \text{ m/m}^2$ to 0.58 m/m<sup>2</sup>, of a difference statistically significant at  $\alpha = 0.20$  (Table 4.3). Special Provision 90P-158-R3 increased the curing period from 72 hours to 7 days, although it was not entirely clear whether the burlap used during the curing period had to be kept continuously moist for the duration of the curing period. Consequently, the mean age-corrected crack density increased slightly from 0.58 m/m<sup>2</sup> for bridges constructed using 90P-158-R1 and R2 to 0.61 m/m<sup>2</sup>, although this difference is statistically insignificant (Table 4.3). The mean age-corrected crack densities for bridges constructed using Special Provisions 90P-158-R1 through R3 are, however, statistically different than the mean age-corrected crack density obtained for decks built before the first special provision.

Special Provisions 90P-158-R4, R5, and R6 require the contractor to monitor and maintain an evaporation rate below 1.0 kg/m<sup>2</sup>/hr (0.2 lb/ft<sup>2</sup>/hr) in addition to fogging and the application of a precure material immediately after placement. Unlike Provision R3, Provisions R4, R5, and R6 also require the contractor to keep the burlap "wet 100 percent of the time during the [seven day] cure period." The mean age-corrected crack density for bridges built using these

provisions decreased from 0.61 m/m<sup>2</sup> to 0.39 m/m<sup>2</sup>, a statistically significant difference at  $\alpha$  = 0.05 (Table 4.3). For Special Provisions 90M-158-R7 through R10, the most notable change is the increase in silica fume content from 5% by mass of cement to 7% by mass of cementitious materials. In addition to increasing the required silica fume content, the use of drum roller screeds is allowed in lieu of oscillating screeds, required under the earlier special provisions. The mean age-corrected crack density for these bridges increased from 0.39 m/m<sup>2</sup> for bridges constructed under provisions 4, 5, and 6 to 0.48 m/m<sup>2</sup>, although this increase is not statistically significant at any level of  $\alpha$ .

The balance of the chapter identifies specific changes in bridge deck concrete mix designs, environmental conditions at the time of placement, and bridge deck designs.

## 4.6 Material Properties versus Construction Date

Based on the observations presented in Section 4.4, it is important to identify the changes that may have resulted in increased cracking for more recently constructed monolithic and conventional overlay decks (Fig. 4.10 and 4.11) and generally decreased cracking for more recently constructed silica fume overlay decks (Fig. 4.12). The balance of the chapter examines different material, environmental, and design-related changes since the first bridge in this study was constructed in 1983.

The analysis of these changes is broken into two main categories: (1) monolithic and subdeck placements and (2) overlay placements. Monolithic and overlay subdecks are plotted together, as are the different overlay types. This analysis includes all bridges in the current study (and by Miller and Darwin 2000) and all relevant bridges evaluated by Schmitt and Darwin (1995, 1999). In total, 42 5% silica fume overlay placements, 14 7% silica fume overlay placements, 58 conventional overlay placements, 36 monolithic bridge deck placements, and 60

subdeck placements are included in the comparisons. There are substantial differences between the different bridge deck types and high scatter with a low linear coefficient of determination  $R^2$  in all cases.

More detailed evaluations of the changes in material properties are presented in the balance of this section. The key observations from these analyses can be summarized as follows:

For **monolithic** deck and **overlay subdeck** placements, there is a clear trend towards increasing slump for more recently constructed bridges, particularly for monolithic deck placements. There is no correlation between air content, percent volume of water and cement, cement content, water content, or water/cement ratio with construction date. There is a tendency towards higher compressive strengths for the most recently constructed monolithic decks, but no correlation exists between compressive strength and construction date for overlay subdeck placements. In either case, the compressive strengths are well above the strengths required by design.

For **conventional** and **silica fume overlay** placements, there is no correlation between slump and concrete placement date. The slump for conventional overlay placements is below 25 mm (1.0 in.), while the slump for all silica fume overlay placements is at least 20 mm (0.8 in.). There is a slight tendency towards increasing air contents for more recently constructed overlays. There is no correlation between the percent volume of water and cementitious material, water content, cementitious material content, and water/cementitious material ratio and placement date. There is a tendency towards increasing compressive strength over the past 20 years, although this increase has also been accompanied by an increase in the range of compressive strengths of bridge decks.

# 4.6.1 Slump

Average concrete slump versus construction date for monolithic and overlay subdeck placements is presented in Fig. 4.14. The slumps range from 38 mm ( $1\frac{1}{2}$  in.) to 89 mm ( $3\frac{1}{2}$  in.). There is substantial scatter, although the slump of monolithic and overlay subdeck placements

exhibit a clear upward trend with time. The placement slump versus construction date for overlays is presented in Fig. 4.15. The slumps of the overlay placements range from 0 mm (0 in.) to 160 mm (6.3 in.), and represent two entirely different schools of thought. All but one of the conventional overlays are placed with a slump below 25 mm (1.0 in.), while the subsequent silica fume overlays are all placed with a minimum slump of 20 mm (0.8 in.) and an average slump of 60 mm (2.4 in.). This increase in slump for the silica fume overlays is based on a change in the special provisions that increases the target slump from the maximum specified for conventional overlays, 19 mm (<sup>3</sup>/<sub>4</sub> in.), to between 50 (2 in.) and 125 mm (5 in.) for silica fume overlays.

#### 4.6.2 Air Content

The air content of monolithic decks and overlay subdecks is presented in Fig. 4.16. For these decks, the average air content is nearly constant over time. Of the 114 monolithic and overlay subdeck placements, only three do not have an air content between 4 and 7%. The average air content for these placements is 5.5%. The average air content versus construction date for overlay placements is presented in Fig. 4.17. There is a slight increase in air content for the conventional overlays is 5.3% with a standard deviation of 0.8%. The average air content for 5% silica fume overlays is also 5.3%, but with a standard deviation of 1.0%. The average air content for the 7% silica fume overlay is 6.2% with a standard deviation of 1.1%.

# 4.6.3 Percent Volume of Water and Cementitious Materials

The volume of water and cement (cement paste) as a percentage of concrete volume for monolithic decks and overlay subdecks is plotted versus construction date in Fig. 4.18. With

only one exception (bridge 30-93), portland cement is the only cementitious material used in the monolithic and overlay subdeck placements. Silica fume is only used in overlays.

As shown in Fig. 4.18, there is substantial variation between the different bridge deck types, although the trend line is nearly horizontal. The percent volume of water and cement for the majority of the oldest monolithic decks (constructed before 1988) and the newest silica fume overlay subdecks (7%, constructed after 1998) is less than the values for the conventional and 5% silica fume overlay subdecks, constructed after the monolithic decks and before the 7% silica fume overlay subdecks. For silica fume and conventional overlay subdecks, these observations are largely attributable to changes in the water content. For monolithic decks, changes in the percent volume of cement paste are a result of changes in both the water and cement content of the placements.

The percent volume of water and cementitious materials for the overlays is plotted versus construction date in Fig. 4.19. The values for conventional overlays range between 25.1 and 26.6%. Thirty-five out of the 43 5% silica fume overlay placements contain very close to 26.8 percent cement paste, while the rest contain between 26.0 and 26.2% cement paste. All 16 of the 7% silica fume overlay placements contain between 25.8 and 26.0% paste.

#### 4.6.4 Water Content

The water contents of monolithic decks and overlay subdecks are plotted versus date of construction in Fig. 4.20. The water contents range from 143 kg/m<sup>3</sup> (241 lb/yd<sup>3</sup>) to 173 kg/m<sup>3</sup> (292 lb/yd<sup>3</sup>). The water contents for overlays range from 133 kg/m<sup>3</sup> (224 lb/yd<sup>3</sup>) to 148 kg/m<sup>3</sup> (250 lb/yd<sup>3</sup>), as shown in Fig. 4.21. No consistent correlation exists between water content and construction date. Because of the minimal variation in cementitious material contents for these

placements, the trends observed for water content are nearly identical to the trends observed for percent volume of water and cementitious material (Section 4.5.3).

#### 4.6.5 Cementitious Material Content

The cement content of monolithic decks and overlay subdecks versus date of construction is presented in Fig. 4.22. There are three primary cement contents used in the mix designs for monolithic and subdeck placements. Only six out of the 91 placements have cement contents other than 357 kg/m<sup>3</sup> (602 lb/yd<sup>3</sup>), 359 kg/m<sup>3</sup> (605 lb/yd<sup>3</sup>), or 379 kg/m<sup>3</sup> (639 lb/yd<sup>3</sup>). The majority of the monolithic and overlays subdeck data falls into the 357 kg/m<sup>3</sup> (602 lb/yd<sup>3</sup>) category, and 8 out of 40 silica fume overlay subdeck placements have cement contents other than 357 kg/m<sup>3</sup> (602 lb/yd<sup>3</sup>). The cementitious material content for overlays is constant and depends only on the overlay type. The cement content of all conventional overlays is 371 kg/m<sup>3</sup>, and the cementitious material content for all silica fume overlays have values between 370 kg/m<sup>3</sup> (623 lb/yd<sup>3</sup>) and 372 kg/m<sup>3</sup> (627 lb/yd<sup>3</sup>).

## 4.6.6 Water-Cementitious Material Ratio

Only the silica fume overlays and a single subdeck contain cementitious materials other than portland cement. The one subdeck (bridge 30-93) contains a 33% replacement of cement with ground granulated blast furnace slag, and the silica fume overlays contain either 5% or 7% silica fume. The water/cement ratio for the monolithic decks and subdeck placements is plotted versus construction date in Fig. 4.23. The water/cement ratios range from between 0.40 to 0.45. The water/cementitious material ratio for the overlay placements is plotted versus construction date in Fig. 4.24. The water/cementitious material ratios range from between 0.36 and 0.40. There are no distinct trends with construction date for water/cement or water/cementitious material ratio.

#### 4.6.7 Compressive Strength

Compressive strength is plotted versus construction date for monolithic and overlay subdecks in Fig. 4.25. There is a clear trend towards increasing compressive strengths when plotted versus placement date for the monolithic decks. This trend towards increasing compressive strengths does not exist for the overlay subdeck placements. The average compressive strength for all monolithic and overlay subdecks is 40 MPa (5800 psi). This is well above the typical strength requirements and indicates an effort to produce concretes with high early strengths. The trend for overlays is pronounced (Fig. 4.26), with the average strength of overlays increasing over time. The compressive strength for all overlays ranges from 34 MPa (4900 psi) to 63 MPa (9100 psi). Average compressive strengths increase from 44 MPa (6400 psi) for conventional overlays to 49 MPa (7100 psi) for 5% silica fume overlays to 51 MPa (7400 psi) for 7% silica fume overlays.

#### 4.7 Site Conditions versus Construction Date

Environmental conditions can be key indicators of the potential for bridge deck cracking to occur as a result of thermally induced loads (Babaei and Purvis 1996). Additionally, plastic shrinkage cracking is aggravated by high evaporation rates that can be a result of high air temperatures. It is important to determine, even if in part, whether bridge decks are being constructed during periods of increasingly demanding environmental conditions. The environmental conditions under consideration are high and low air temperature, average temperature, and daily air temperature range. These data are available directly from the bridge construction records. A substantial amount of scatter is expected due to the changes in temperature for different seasons, which in all cases, results in a very low coefficient of determination R<sup>2</sup>. As in the previous

section, the placements are divided into (1) monolithic and overlay subdeck placements and (2) overlay placements.

More detailed evaluations of the changes in material properties are presented in the balance of this section. The key observations from these analyses can be summarized as follows:

In general, the average, minimum, and maximum daily air temperatures for **monolithic** placements constructed between 1984 and 1995 are lower than for **overlay subdecks** constructed between 1990 and 2002. The average daily temperature for all monolithic placements, on average, is 7° C lower than for the more recently constructed overlay subdecks. The minimum and maximum daily air temperatures, on average, are, respectively, 7° and 5° C higher for overlay subdeck placements than for monolithic placements. There is no correlation between the daily air temperature range and placement date for monolithic or overlay subdeck placements.

Silica fume overlays placed between 1990 and 2002 were generally cast at lower air temperatures than the **conventional overlay** placements constructed between 1990 and 1995. The average daily temperature for all silica fume placements, on average, is 4° C lower than the conventional overlays. The minimum and maximum daily air temperatures, on average, are 5° and 10° C lower for silica fume overlay placement than for conventional overlay placements. There is no correlation between the daily air temperature range and placement date for the overlay decks.

# 4.7.1 Minimum Daily Air Temperature

The minimum daily air temperature for the day of placement is plotted versus construction date for monolithic and overlay subdeck placements in Fig. 4.27. The temperatures range from -7° to 24° C. There is a significant difference between the average daily minimum temperature for monolithic placements cast between 1984 and 1990 and subdeck placements cast between 1990 and 2002. The minimum daily air temperature for monolithic placements cast between 1984 and 1990 ranges from -3° to 12° C with an average of 6° C. In contrast, the minimum daily air temperature for subdeck placements cast after 1990 ranges from  $-7^{\circ}$  to 24° C, with an average of 13° C.

The minimum daily air temperature for the day of placement is plotted versus construction date for overlay bridges in Fig. 4.28. The values range from -4° to 24° C. There does not appear to be a correlation between minimum daily air temperature and placement date for either overlay types cast after 1992. Overlays cast between 1983 and 1992, however, are consistently placed with higher minimum daily air temperatures. The minimum daily temperature for overlay decks cast between 1983 and 1992 ranges from 3° to 24° C with an average of 14° C. In contrast, the minimum daily air temperature for overlays cast after 1992 range from -4° to 24° C, with an average of 9° C.

# 4.7.2 Maximum Daily Air Temperature

The maximum daily air temperature is plotted versus construction date for monolithic and overlay subdeck placements in Fig. 4.29. The values range from 6° to 39° C. Similar to the minimum daily air temperature, the maximum daily temperature for the monolithic decks cast between 1984 and 1990 is consistently lower than that of the more recently placed overlay subdecks. The maximum daily air temperature for monolithic placements cast between 1984 and 1990 ranges from 6° to 31° C with an average of 19° C. In contrast, the maximum daily air temperature for subdeck placements cast after 1990 ranges from 10° to 39° C with an average of 24° C.

The maximum daily air temperature for overlay placements is plotted versus construction date in Fig. 4.30. The values range from 7° to 37° C. There is a slight trend towards decreasing high daily air temperatures, although this trend is primarily a product of generally higher daily temperatures for conventional overlay decks cast before 1995. The average maximum daily air

temperature is 29° C for conventional overlay placements, while the average is only 19° C for silica fume overlays.

#### 4.7.3 Average Daily Air Temperature

Average air temperature, equal to the average of the high and low daily temperatures, is plotted versus construction date for monolithic and overlay subdeck placements in Fig. 4.31. Because the average daily air temperature is directly related to the high and low daily air temperatures, the trends are similar. Monolithic decks cast between 1984 and 1990 were frequently placed at lower air temperatures than the overlay subdecks cast since 1990. The average air temperature during placement is 13° C for monolithic decks and 20° C for overlay subdecks.

The average air temperature is plotted versus construction date for overlays in Fig. 4.32. The values range from 30° to 4° C. There is a slight trend towards decreasing average temperatures, although this trend is again, primarily a product of generally higher average temperatures for the conventional overlay decks. The average temperature has decreased from 21° C for the conventional overlays to 17° C for the silica fume overlays.

# 4.7.4 Daily Air Temperature Range

The daily air temperature range is defined as the difference between the high and low daily temperatures. The daily air temperature range is plotted versus construction date for monolithic and overlay subdeck placements in Fig. 4.33. The values vary between 22° and 2° C, and the average daily air temperature range is 13° C for both monolithic and overlay subdeck placements. For overlay placements, the daily air temperature range varies from 27° to 3° C (Fig. 4.34). In spite of the positive slope shown in Fig. 4.33 and 4.34, no real trend is apparent.

The average daily air temperature range increases slightly from 13° C for conventional overlays to 14° C for silica fume overlays.

# 4.8 Bridge Design versus Construction Date

To gain a better understanding of the bridge design factors that may contribute to bridge deck cracking, it is desirable to gain an historical perspective on what changes have occurred as a matter of preference for the bridges included in this study. Although variables such as span length and bridge length and their relation to bridge deck cracking will be examined in Chapter 5, they are dependent on the particular bridge site and do not represent a construction trend.

Five design-related variables will be considered for each bridge deck type: the type of steel superstructure, deck thickness, transverse bar spacing, top cover, and transverse bar size are plotted versus the last day of concrete placement for each bridge deck type. One data point is plotted for each bridge. The results indicate that no correlation exists between these variables and the date of concrete placement for any of the bridge deck types.

#### <u>4.8.1 Structure Type</u>

Three types of steel superstructures are examined: SMCC (steel beam, composite continuous), SWCC (steel welded plate girder, composite continuous), and SWCH (steel welded plate girder, composite continuous and haunched). The steel structure type is plotted versus construction date for all bridge deck types in Fig. 4.35. In total, 25 SMCC, 44 SWCC, and 13 SWCH bridges were included in the study. No bias is apparent towards any of the three bridge types.

#### 4.8.2 Deck Thickness

Deck thickness is plotted versus construction date for all bridge deck types in Fig. 4.36. The decks range in thickness from 203 mm (8.0 in.) to 229 mm (9.0 in.). The majority of bridge

decks are constructed with a deck thickness of 216 mm (8.5 in.) or 229 mm (9.0 in.); however, the newest silica fume decks are primarily 220 mm (8.7 in.) thick.

## 4.8.3 Transverse Bar Spacing

Transverse bar spacing is plotted versus construction date for all bridge decks in Fig. 4.37. The transverse bar spacing ranges from 100 mm (4.0 in.) to 300 mm (11.8 in.), although most of the bridge decks have bar spacings between 150 mm (6.0 in.) and 200 mm (8.0 in.). While some conventional overlay decks have bar spacings less than 150 mm (6.0 in.), only two out of thirty silica fume overlay bridges have bar spacing less than 150 mm (6.0 in.).

#### 4.8.4 Top Reinforcing Bar Cover

Top reinforcing bar cover is plotted versus construction date for all bridge deck types in Fig. 4.38. Forty-six of the overlay bridges collected in this study have a top bar cover of 75 mm (3.0 in.), while one silica fume overlay has a top reinforcing bar cover of 80 mm (3.1 in.). In addition, five monolithic decks have a top cover of 75 mm (3.0 in.), while the remaining bridges have a top bar cover of 64 mm (2.5 in.).

#### 4.8.5 Transverse Bar Size

The top transverse bar size is plotted versus construction date for all bridge deck types in Fig. 4.39. Four bar size combinations are used in the bridges included in this study: No. 13 and No. 16 (No. 4 and No. 5), No. 16 (No. 5), No. 16 and No. 19 (No. 5 and No. 6), and No. 19 (No. 6). Only one monolithic deck, bridge 105-046, has top bars greater than No. 16 (No. 5), while a significant portion of conventional overlays and 5% silica fume overlays have larger top transverse bars.

# CHAPTER 5

# **CRACK SURVEY EVALUATION AND RESULTS**

# 5.1 General

Bridge deck performance is evaluated based on crack densities corrected to an age of 78 months (6½ years), the average age of all bridge decks at the time of sampling. This age-related analysis is explained in Chapter 4. The influence of individual variables related to the deck type, material properties of the concrete, construction site conditions during placement, bridge design parameters, bridge contractor, and traffic are analyzed by directly comparing variables from these categories with measured crack densities. Data collected from these categories is compared with data obtained from the four bridge deck types evaluated in this study: 5% and 7% silica fume overlays, conventional overlays, and monolithic placements.

It is clear from the analysis that many factors contribute to bridge deck cracking, although material-related factors generally appear to have the greatest effect. In addition, trends observed for monolithic decks are clearer than trends observed for overlay decks, presumably due to the additional variables associated with the overlays. For this reason, the effect of material properties and site conditions on crack density is expanded to include overlay subdecks.

The properties of overlay bridge subdecks play a large role in the overall performance of bridge decks. Cracks originating in the subdeck presumably "reflect" into the overlay and adversely influence performance. Due to the presence of overlays, however, the subdecks are not directly observable. For this reason, crack densities obtained on the overlays above a subdeck are used to gauge performance. Typically the crack density for the full bridge deck is used to represent the crack density of the subdeck because the subdeck was cast on one or two

days and the location of each subdeck placement was not permanently recorded. In three cases(bridges 46-317, 81-50, and 89-245) however, the subdeck placement locations were available and the crack density obtained for the portion of the bridge deck corresponding to the subdeck placement is used in the analysis.

The results indicate that age-corrected crack densities for silica fume overlays containing 5% and 7% silica fume are nearly identical (see Section 5.2). In light of this observation, and because of the relatively small number of 7% silica fume overlay bridges (10), the results for 5% and 7% silica fume overlays are combined for the analyses presented in sections 5.3 through 5.7. In addition, three silica fume overlay bridges (30-93, 89-184, and 89-187) are not included in the analysis because they were constructed using significantly different construction and material specifications. Except for these three bridges, all of the results obtained from surveys performed by Miller and Darwin (2000) and Schmitt and Darwin (1995) are included in the analysis (as described in Section 4.2). In total, the analysis includes data from 86 bridges, representing 173 individual concrete placements. Of the bridges surveyed, 13 monolithic, 16 conventional overlay, and 20 silica fume overlay bridge decks have been surveyed two or more times. The cracking patterns, bridge crack density data, and bridge data used as the basis for the comparisons that follow are presented in Appendix E.

In addition to the crack survey, each onsite field survey of overlay decks included "sounding" to locate areas where the overlay had delaminated (debonded) from the subdeck. The total delaminated area for each deck, reported in square meters, is provided in Table E.1 of Appendix E. Only 12 bridges were found to have any delamination, and in each case, the area was a small percentage of the total deck area (maximum 0.5%).

Due to the myriad of variables contributing to bridge deck cracking, the results generally

show large amounts of scatter. To facilitate the analysis, histograms, beginning with Fig. 5.1, are used to show any trends. Each bar, or category, represents a range of values for the variable under consideration and is defined by the midpoint. In many cases, the sample sizes and the differences between the means of categories are small. The Student's t-test (described in Section 3.1) is used to determine whether the differences between two samples represent differences between populations.

# 5.2 Influence of Deck Type

Mean age-corrected crack densities for bridge decks are shown as a function of bridge deck type in Fig. 5.1. Four deck types are examined: 7% silica fume overlays (7% SFO), 5% silica fume overlays (5% SFO), conventional overlays (CO), and monolithic bridge decks (MONO). The 7% and 5% silica fume overlay decks have nearly the same mean crack density (0.51 m/m<sup>2</sup> for 7% SFO and 0.49 m/m<sup>2</sup> for 5% SFO). The age-corrected crack density results for the 5% silica fume overlays, excluding bridges 89-184 and 89-187, are statistically indistinguishable from the results obtained for the 7% silica fume overlays, excluding bridge 30-93 (Table 5.1). In light of this observation, the decision to consider all silica fume overlays as a single deck type for the remainder of the analysis is justified.

The mean age-corrected crack density for conventional overlays, 0.44 m/m<sup>2</sup>, is slightly lower than the crack densities obtained for silica fume overlays, although the difference is not statistically significant (Table 5.1). The mean age-corrected crack density for monolithic decks, 0.33 m/m<sup>2</sup>, is significantly lower than that for both silica fume overlay types ( $\alpha = 0.20$  for 7% SFO,  $\alpha = 0.10$  for 5% SFO) and conventional overlays ( $\alpha = 0.20$ ). In general, when the effect of cracking on corrosion initiation is considered, the use of overlays to improve bridge deck performance is not supported by this data obtained in this study.

# 5.3 Influence of Material Properties

In this section, the influence of seven material-related variables on bridge deck cracking is quantified. The variables include the water content, cementitious material content, percent volume of water and cementitious material, water-cementitious material ratio, slump, air content, and compressive strength. Separate analyses are performed for silica fume overlays, conventional overlays, overlay subdecks, and monolithic bridges. Material properties for bridges in each of these categories are compared with age-corrected crack densities and the results are tested for statistical significance.

The analyses of the effects of material properties that are presented in the balance of this section largely corroborate the findings by Schmitt and Darwin (1995) and Miller and Darwin (2000). In general, the influence of material properties on cracking is greater than that of the site conditions or design parameters and is more clearly identifiable for the overlay subdecks and monolithic decks than for overlays. The key observations from these analyses can be summarized as follows:

For bridges with **silica fume overlays**, there is no apparent correlation between age-corrected crack density and the water and air contents of the overlays. The cement content for each overlay type (5% and 7%) is constant and eliminates the possibility of evaluating the effects of cement content, paste volume, and water-cementitious material ratio. Cracking is the highest for overlays placed at the extremes of the slump range [26 mm (1.0 in.) and  $\geq$  90 mm ( $\geq$  3.5 in.)]. There is no apparent influence of compressive strength on cracking for silica fume overlays.

For bridges with **conventional overlays**, there is no apparent correlation between age-corrected crack density and the air content of the overlay. Mean age-corrected crack density is the highest for overlays placed with zero slump. Crack density decreases by more than half as the water content increases from 133 to 145 kg/m<sup>3</sup> (225 to 245 lb/yd<sup>3</sup>). This trend is contrary to the expected behavior, and for the most part, highlights the

importance of avoiding overlays with zero slump. Crack density is highest for overlays with a mean compressive strength of 52 MPa (7500 psi), 36% (on average) greater than crack densities obtained for overlays with mean compressive strengths between 38 and 45 MPa (5500 and 6500 psi).

Analyses of overlay bridges based on the properties of **subdecks**, show that crack density increases with increases in (1) water content, (2) cement content, and (3) percent cement paste. These trends indicate that concrete shrinkage is a major contributor to bridge deck cracking. The mean age-corrected crack density decreases as the water-cement ratio increases. The lowest levels of cracking were observed for subdecks cast with a water-cement ratio of 0.45, and the highest levels of cracking were observed for subdecks cast and 6.5% did not affect the level of cracking. Slight increases in crack density were observed for increasing slump and compressive strengths, although the differences were not statistically significant.

The results for **monolithic** bridge decks are very similar to the results for overlay subdecks. Crack density increases with increases in (1) water content, (2) cement content, (3) percent paste and (4) compressive strength. There was no statistical difference for bridges cast with water-cement ratios of 0.42 or 0.44. Crack density decreases by 66% (on average) as the air content drops from 6.5% to 4.5 or 5.5%. Increasing concrete slump has only a minor influence on increased crack density.

#### 5.3.1 Water Content

For silica fume overlays, the water content values are 138 kg/m<sup>3</sup> (232 lb/yd<sup>3</sup>) for overlays containing 7% silica fume and 141 kg/m<sup>3</sup> (238 lb/yd<sup>3</sup>) and 148 kg/m<sup>3</sup> (250 lb/yd<sup>3</sup>) for overlays containing 5% silica fume. For conventional overlays, the water content values are 133 kg/m<sup>3</sup> (224 lb/yd<sup>3</sup>), 139 kg/m<sup>3</sup> (235 lb/yd<sup>3</sup>), and 145 kg/yd<sup>3</sup> (245 lb/yd<sup>3</sup>). For overlay subdecks, water contents range from 143 to 173 kg/m<sup>3</sup> (241 to 292 lb/yd<sup>3</sup>), with categories ranging from 147 to

174 kg/m<sup>3</sup> (248 to 293 lb/yd<sup>3</sup>). For monolithic decks, water contents range from 143 to 167 kg/m<sup>3</sup> (241 to 281 lb/yd<sup>3</sup>), with categories ranging from 147 to 165 kg/m<sup>3</sup> (248 to 278 lb/yd<sup>3</sup>).

The mean age-corrected crack density for individual placements is shown as a function of water content for silica fume and conventional overlay placements in Figs. 5.2 and 5.3. The effect of water content on crack density for silica fume overlays is not entirely clear, with mean age-corrected crack densities ranging from 0.47 to 0.60 m/m<sup>2</sup>. For conventional overlay decks, however, there is a clear trend towards lower levels of cracking with increasing water contents (Fig. 5.3), as crack density decreases from 0.62 to 0.30 m/m<sup>2</sup> with an increase in mean water content from 133 to 145 kg/m<sup>3</sup> (225 to 245 lb/yd<sup>3</sup>). This increase in crack density can largely be attributed to difficulties in placing overlays with zero slump overlays (see Section 5.3.5).

The mean age-corrected crack density for individual placements is shown as a function of water content for overlay subdeck and monolithic placements in Figs. 5.4 and 5.5. Unlike the observations for overlays, the trend for subdecks and monolithic decks is clear: an increase in water content results in an increase in crack density. For overlay subdecks (Fig. 5.4), the crack density increases from 0.54 to 0.78 m/m<sup>2</sup> as the mean water content increases from 147 to 174 kg/m<sup>3</sup> (248 to 293 lb/yd<sup>3</sup>). The subdeck properties clearly play an integral role in the performance of bridge decks with overlays. The contrast is even clearer for monolithic placements, where the crack density increases from 0.14 to 0.73 m/m<sup>2</sup> as the water content increase at  $\alpha = 0.02$  (Table 5.2).

## 5.3.2 Cementitious Material Content

The cementitious material content for the overlays included in this study is nearly constant. For silica fume overlays, the cementitious material content consists of cement and

silica fume. Cement is the only cementitious material used in conventional overlays. The cement content of all conventional overlays is  $371 \text{ kg/m}^3$ , and the cementitious material content for all silica fume overlays is between 370 and 372 kg/m<sup>3</sup> (623 and 627 lb/yd<sup>3</sup>). For this reason, the influence of overlay cementitious material content on crack density is not evaluated for either overlay type.

For overlay subdecks, cement contents include  $357 \text{ kg/m}^3$  (602 lb/yd<sup>3</sup>),  $379 \text{ kg/m}^3$  (639 lb/yd<sup>3</sup>), and  $413 \text{ kg/m}^3$  (696 lb/yd<sup>3</sup>). For monolithic placements, cement contents include  $357 \text{ kg/m}^3$  (602 lb/yd<sup>3</sup>),  $359 \text{ kg/m}^3$  (605 lb/yd<sup>3</sup>),  $379 \text{ kg/m}^3$  (639 lb/yd<sup>3</sup>), and  $390 \text{ kg/m}^3$  (657 lb/yd<sup>3</sup>). Only one bridge is included in the last category and is subsequently excluded from the analysis, while decks with cement contents of  $357 \text{ and } 359 \text{ kg/m}^3$  (602 and 605 lb/yd<sup>3</sup>) are grouped together [ $357 \text{ kg/m}^3$  (603 lb/yd<sup>3</sup>)].

The mean age-corrected crack density for individual placements is shown as a function of cement content for overlay subdecks and monolithic placements in Figs. 5.6 and 5.7. In both cases, an increase in cement content results in an increase in crack density. For overlay decks, the age-corrected crack density increases from 0.53 to 0.78 m/m<sup>2</sup> as the cement content increases from 357 to 413 kg/m<sup>3</sup> (602 to 696 lb/yd<sup>3</sup>), which is statistically significant at  $\alpha = 0.05$  (Table 5.3). The increase is even more pronounced for monolithic decks, where crack density increases from 0.18 to 0.69 m/m<sup>2</sup> as the cement content increases from 358 to 379 kg/m<sup>3</sup> (603 to 639 lb/yd<sup>3</sup>), which is statistically significant at  $\alpha = 0.02$  (Table 5.3).

Numerous other researchers have found that increasing cement contents result in increased levels of cracking (Schmitt and Darwin 1995, 1999, Miller and Darwin 2000, Cheng and Johnston 1985, Babaei and Purvis 1996, Krauss and Rogalla 1996 Eppers, French, and Hajjar 1998, Whiting and Detwiler 1998). Eppers, French, and Hajjar (1998) recommend a

maximum cement content of 392 kg/m<sup>3</sup> (660 lb/yd<sup>3</sup>). In the laboratory study by Krauss and Rogalla (1996), concretes with a low water-cement ratio, low cement factor, and low slump performed the best.

## 5.3.3 Percent Volume of Water and Cement

The percentage volume of water and cementitious materials in the initial mix design provides a close approximation of the paste volume of the concrete. The volume of cement paste has a strong influence on crack density since cement paste largely controls concrete shrinkage. For the overlay bridges in this study, the cementitious material content is nearly identical for the overlays [approximately 371 kg/m<sup>3</sup> (625 lb/yd<sup>3</sup>)]. As a result, any differences in the paste volume of the overlays are attributable to changes only in the water content of the mix. For this reason, overlay properties are excluded from the analysis.

Mean age-corrected crack density is shown as a function of paste volume in Figs. 5.8 and 5.9 for overlay subdecks and monolithic bridge decks, respectively. For overlay bridge subdecks, the volume of water and cement ranges from 25.7 to 30.5%, with categories ranging from 26 to 30%. For monolithic bridge decks, the volume of water and cement ranges from 26.5 to 28.8% with categories of 27, 28, and 29%. For the overlay subdecks, crack density varies from between 0.51 m/m<sup>2</sup> to 0.56 m/m<sup>2</sup> for paste volumes between 26 and 28%; as the paste volume increases to 29 and 30%, the crack density increases to 0.63 and 0.78 m/m<sup>2</sup>, respectively. The trend is even clearer for monolithic decks, where the mean age-corrected crack density is 0.19 and 0.16 m/m<sup>2</sup> for paste volumes of 26 and 27%, increasing sharply to 0.68 and 0.73 m/m<sup>2</sup> for paste volumes of 28 and 29%, respectively. The results of the statistical analysis are presented in Table 5.4. Limiting the paste volume of concrete has long been recognized as a key to minimizing bridge deck cracking (Schmitt and Darwin 1995, 1999, Miller and Darwin 2000,

Krauss and Rogalla 1996). Based on the observations presented in Figs. 5.8 and 5.9, the level of cracking can be significantly reduced by using paste contents less of 27% or less for both overlay subdeck and monolithic bridge decks.

#### 5.3.4 Water-Cement Ratio

Due to the use of nearly identical cement contents for overlays, the influence of watercement ratio on cracking is identical to the trends observed in Section 5.3.1 for water content, and not repeated here.

Mean age-corrected crack densities are shown as a function of the water-cement ratio for overlay subdecks and monolithic placements in Figs. 5.10 and 5.11. The water-cement material ratio ranges from 0.40 to 0.45 for subdeck placements. For monolithic placements, water-cement ratios include 0.40, 0.42, and 0.44. Only one monolithic bridge was placed with a water-cement ratio of 0.40 and is, therefore, excluded from the analysis. In addition, due to nearly identical cement contents for all overlay placements, the influence of water-cement ratio on cracking is identical to the trends observed in Section 5.3.1.

For overlay subdeck placements (Fig. 5.10), the age-corrected crack density generally decreases with increasing water-cement ratios. The highest age-corrected crack density (0.73 m/m<sup>2</sup>) occurs for placements with a water-cement ratio of 0.41, and the lowest crack density (0.45 m/m<sup>2</sup>) occurs for placements with a water-cement ratio of 0.45. The difference between these categories is statistically significant at  $\alpha = 0.05$  (Table 5.5). This observation may be the result of a lower modulus of elasticity and higher levels of creep associated with concretes with higher water-cement ratios. For monolithic placements (Fig. 5.11), the age-corrected crack density increases slightly as the water-cement ratio increases from 0.42 to 0.44. This small increase in crack density is not statistically significant (Table 5.5).

#### 5.3.5 Slump

For the silica fume overlays, the concrete slump varies from 19 to 127 mm (0.75 to 5.0 in.), with categories ranging from 26 to greater than 90 mm (1.0 to  $\geq$  3.5 in.). Thirty-seven 5% silica fume overlays and 13 7 percent silica fume overlays are included in this analysis. The mean slump for the silica fume overlays is 67.7 mm (2.7 in.). For conventional overlays, the overlay slump varies from 0 to 160 mm (0 to 6.25 in.), with categories ranging from 0 to 19 mm (0 to 0.75 in.). The mean slump for the conventional overlays is 15.9 mm (0.63 in.). For overlay subdecks, the concrete slump varies from 6.4 to 160 mm (0.25 to 6.3 in.), with categories ranging from 38 to greater than 76 mm (1.5 to  $\geq$  3.0 in.). The mean concrete slump for overlay subdeck placements is 63.7 mm (2.5 in.). For monolithic bridge decks, the slump ranges from 44 to 76 mm (1.75 to 3.0 in.), with categories ranging from 44 to 70 mm (1.75 to 2.75 in.). The mean slump for the monolithic placements is 53.9 mm (2.1 in.).

The mean age-corrected crack density for silica fume overlays is shown as a function of concrete slump in Fig. 5.12. No distinct trend is apparent, although the highest levels of cracking occur at the extremes of the slump range investigated [26 and  $\geq$  90 mm (1.0 and  $\geq$  3.5 in.)]. These observations are based on small sample sizes and are, in most cases, statistically insignificant (Table 5.6). The mean age-corrected crack density for conventional overlays is shown as a function of concrete slump in Fig. 5.13. Similar to observations made by both Schmitt and Darwin (1995, 1999) and Miller and Darwin (2000), the highest levels of cracking occur for overlays placed with zero slump. Only two placements are available in the 3 mm (0.125 in.) category, and no apparent correlation exists between the remaining categories [encompassing slumps from 6 to 19 mm (0.25 to 0.75 in.)]. Problems encountered during consolidation, finishing, and curing operations likely account for the difficulties in placing

overlays with zero slump. None of the overlays in this study have reinforcement, thereby eliminating subsidence (settlement) cracking initiated in the overlay as a cause of increased cracking.

Concrete slump, in addition to bar size and top cover depth, has long been recognized as a key controller of subsidence cracking (Dakhil, Cady, and Carrier 1975). At the same time, it is also recognized that subsidence cracking is primarily a result of poor construction practices (Krauss and Rogalla 1996) that can exacerbate cracking on bridges cast with high slump concrete. The mean age-corrected crack density for overlay subdecks is shown in Fig. 5.14. There is a slight, nonmonotonic trend towards increased cracking in conjunction with increasing subdeck slump, although none of the categories are statistically different from each other (Table 5.6). The mean age-corrected crack density for monolithic placements is shown in Fig. 5.15. For these placements, the results are presented in two ways. Based on the raw data, the results appear to indicate that crack density increases sharply, from 0.18 to 0.87 m/m<sup>2</sup>, as concrete slump increases from 38 to 76 mm (1.5 to 3.0 in.). These results, however, include the influence of water content. For the monolithic decks in this study (almost exclusively cast without water reducers), there is a strong correlation between water content and concrete slump.

To separate the influence of slump from water content on concrete cracking, a dummy variable analysis (Draper and Smith 1981) was performed. For the analysis, the monolithic placements were divided into five categories based on water content. The water content categories ranged from 143 to 169 kg/m<sup>3</sup> (241 to 281 lb/yd<sup>3</sup>). The results of the dummy variable analysis are summarized in Table 5.7 and show that increasing slump results in an average increase in crack density at a rate of 0.0029 m/m<sup>2</sup>/mm. While slump still affects the total crack density of monolithic placements, the trend is much less salient. Once this effect is applied to

the raw data, the mean crack density is found to increase from 0.11 to  $0.22 \text{ m/m}^2$  as the slump increases from 38 to 76 mm (1.5 to 3.0 in.), as shown in Fig. 5.15. Thus, slump appears to have a measurable but relatively small influence on bridge deck cracking.

#### 5.3.6 Air Content

Mean age-corrected crack density for individual placements is shown as a function of air content for silica fume and conventional overlays in Fig. 5.16. Air contents range from 3.5 to 7.25%, with categories ranging from 4.5 to 6.5%. Mean age-corrected crack density is shown as a function of air content for overlay subdeck placements and monolithic placements in Figs. 5.17 and 5.18. Air contents range from 4.5 to 6.5% for monolithic bridge decks and from 2.25 to 7.5% for subdecks with categories for both deck types ranging from 4.5 to 6.5%.

For the silica fume and conventional overlays (Fig. 5.16), the level of cracking remains nearly constant with increasing air contents. For bridge subdecks (Fig. 5.17), there is a slight (at best) decrease in crack density from 0.54 to 0.50 m/m<sup>2</sup> as the air content category increases from 4.5 to 6.5%; this decrease, however, is not statistically significant (Table 5.8). For monolithic bridge placements (Fig. 5.18), crack density remains nearly constant (0.37 and 0.38 m/m<sup>2</sup> for 4.5 and 5.5%, respectively) for air contents less than 5.5%, but drops to 0.13 m/m<sup>2</sup> as the air content increases from 5.5 to 6.5%, a decrease in crack density that is statistically significant at  $\alpha = 0.10$  (Table 5.8).

Both Schmitt and Darwin (1995, 1999) and Miller and Darwin (2000) found similar results. Monolithic placements with air contents less than 6% were found to have increased levels of cracking. No correlation with cracking was found in overlays with air contents between 4 and 7%. Reports by Cheng and Johnston (1985) and Eppers, French, and Hajjar (1998) also found that air contents above 5.5% reduced transverse cracking. Observations on the positive effects of higher air contents on cracking, however, have not been universal. Poppe (1981) concluded that air content has a neutral effect on cracking, and in a laboratory investigation, Krauss and Rogalla (1996) found no correlation between cracking tendency and air entrainment for concretes with a constant paste content.

# 5.3.7 Compressive Strength

The mean age-corrected crack density for individual placements is shown as a function of compressive strength for silica fume overlays, conventional overlays, overlay subdecks, and monolithic bridge decks in Figs. 5.19 through 5.22. For silica fume overlays (Fig. 5.19), compressive strength varies from 36 to 62 MPa (5200 to 9000 psi), with categories ranging from 38 to 59 MPa (5500 to 8500 psi). For conventional overlays (Fig. 5.20), compressive strength varies from 34 to 57 MPa (4900 to 8200 psi), with categories ranging from 38 to 52 MPa (5500 to 7500 psi). For overlay bridge subdecks (Fig. 5.21), compressive strength varies from 30 to 52 MPa (4400 to 7500 psi), with categories ranging from 31 to 52 MPa (4500 to 7500 psi). For monolithic bridge decks (Fig. 5.22), compressive strength varies from 29 to 51 MPa (4200 to 7400 psi), with categories ranging from 31 to 45 MPa (4500 to 6500 psi).

The relationship between cracking and compressive strength for bridge deck overlays is not entirely clear. For silica fume overlay decks (Fig. 5.19), the mean age-corrected crack density for placements within the first category [38 MPa (5500 psi)] is the highest ( $0.75 \text{ m/m}^2$ ), but drops sharply to  $0.42 \text{ m/m}^2$  for bridges in the second category [45 MPa (6500)]. As the mean compressive strength increases from 45 to 59 MPa (6500 to 8500 psi), crack density increases from 0.42 to 0.62 m/m<sup>2</sup>. For conventional overlays (Fig. 5.20), the mean age-corrected crack density increases from 0.43 m/m<sup>2</sup> to 0.57 m/m<sup>2</sup> as compressive strengths increase from 38 to 52

MPa (5500 to 7500 psi). Neither of the increases observed for overlay decks is statistically significant at any confidence level  $\alpha$  (Table 5.9).

For overlay subdecks (Fig. 5.21), there is a slight increase in age-corrected crack density, from  $0.50 \text{ m/m}^2$  to  $0.56 \text{ m/m}^2$ , as the compressive strength increases from 31 to 52 MPa (4500 to 7500 psi). The impact of compressive strength is, however, very clear when the comparison is made for monolithic bridge decks, with crack densities increasing from  $0.16 \text{ m/m}^2$  to  $0.49 \text{ m/m}^2$  as compressive strength increases from 31 to 45 MPa (4500 to 6500 psi) (Fig. 5.22).

Schmitt and Darwin (1995, 1999) and Miller and Darwin (2000) identified the same trend for monolithic decks and largely attributed the increased cracking to higher cement contents. Krauss and Rogalla (1996) recommend concretes with low cement contents and a specification that includes a provision for a maximum compressive strength in addition to the traditionally specified minimum compressive strength.

# 5.4 Influence of Site Conditions

Maintaining adequate site conditions during concrete placement has long been recognized by transportation agencies as critical to limiting both thermal cracking and plastic shrinkage cracking. While not all environmental conditions affecting deck cracking are considered, the influences of four site conditions on the date of concrete placement are analyzed in this study. These conditions include average air temperature, low air temperature, high air temperature, and daily air temperature range.

Air temperature, wind speed, relative humidity, and concrete temperature contribute to the evaporation rate of water on the concrete surface. High daily air temperatures, low relative humidity, and wind increase the number and severity of cracks, especially for overlays with little or no bleed water. Unfortunately, the wind speed, relative humidity, and concrete temperature were not regularly recorded in the daily journals or project files, making evaporation rate calculations impossible. Schmitt and Darwin (1995) and Miller and Darwin (2000) estimated the wind speed and relative humidity for each placement during construction with data obtained from the closest available weather station. This information likely does not represent actual conditions on the bridge deck, and no identifiable trends were observed using the data.

Mean age-corrected crack density is compared with the available site conditions for silica fume overlays, conventional overlays, overlay subdecks, and monolithic decks in the balance of this section. The effects of site conditions on cracking varied significantly and few correlations are obtained. This is especially true for overlay subdecks, where no trends are identified. The key observations for silica fume overlays, conventional overlays, and monolithic decks can be summarized as follows:

For **silica fume overlays**, mean age-corrected crack density increases by 45%, on average, as the daily air temperature range increases from 4° C to 12° and 20° C.

For **conventional overlays**, mean age-corrected crack density increases as the daily low, high, and average temperatures increase. The level of cracking increases 49% as the low daily temperature increases from 0° to 20° C. Cracking increases 60%, on average, as the maximum air temperature increases from 15° C to 25° and 35° C, and 27% as the average daily air temperature increases from 5° to 25° C. An increase in the daily air temperature range from 4° to 20° C results in a small increase (13%) in crack density.

For **monolithic bridge** placements, mean age-corrected crack density increases 132% as the daily maximum air temperature increases from 5° to 25° C and 214% as the air temperature range increases from 4° to 20° C.

## 5.4.1 Average Daily Air Temperature

Mean age-corrected crack density is shown as a function of average daily temperature in Figs. 5.23, 5.24, and 5.25 for bridge deck overlays, overlay subdecks, and monolithic bridge decks, respectively. The average daily temperature ranges from 3° to 30° C for silica fume overlays, 5° to 30° C for conventional overlays, 3° to 31° C for overlay subdecks, and 2° to 30° for monolithic bridge placements. The average air temperature categories range from 5° to 25° C for all bridge deck types.

For silica fume and conventional overlays (Fig. 5.23), there is a slight tendency towards increased cracking with increasing average daily temperatures. This trend is clearest for conventional overlays for which the crack density increases from 0.41 m/m<sup>2</sup> to 0.52 m/m<sup>2</sup> as the mean average air temperature increases from 5° to 25° C. Contrary to the results obtained for the overlay placements, the mean age-corrected crack density decreases slightly with increasing average daily temperatures for both overlay subdeck (Fig. 5.24) and monolithic placements (Fig. 5.25). In no case, however, are any of the differences observed between crack density and average air temperature statistically significant (Table 5.10).

The effect of average air temperature on cracking appears inconsistent. In 1981, Poppe found that high air temperatures lead to increased cracking, while Cheng and Johnston (1985) reported that cracking tended to increase as average temperatures decreased (most significantly below 7° C). Both Schmitt and Darwin (1995) and Miller and Darwin (2000) observed increased levels of cracking with increasing average temperatures for conventional overlay placements, although no trend was observed for silica fume overlays or monolithic bridge decks.

# 5.4.2 Minimum Daily Air Temperature

Mean age-corrected crack density is shown as a function of minimum daily temperature in Figs. 5.26, 5.27, and 5.28 for bridge deck overlays, overlay subdecks, and monolithic bridge decks, respectively. The minimum daily temperature ranges from -3° to 24° C for silica fume overlays, -4° to 24° C for conventional overlays, -3° to 23° C for overlay subdecks, and -3° to 23° for monolithic bridge placements. The minimum daily air temperature categories range from 0° to 20° C. It should be noted that, although not consistently recorded, most of the bridge decks cast during cold weather were protected using insulating blankets and/or heated enclosures.

For silica fume overlays (Fig. 5.26), no trend is apparent between the level of cracking and the minimum air temperature. Conversely, the crack density for conventional overlays (Fig. 5.26) increases from 0.41 m/m<sup>2</sup> to 0.61 m/m<sup>2</sup> [statistically significant at  $\alpha = 0.20$  (Table 5.11)] as the average minimum temperature increases from 0° to 20° C. The influence of minimum air temperature on both overlay subdeck (Fig. 5.27) and monolithic (Fig. 5.28) placements appears insignificant. Crack densities for subdeck placements are between 0.53 and 0.57 m/m<sup>2</sup> for subdeck placements and between 0.29 and 0.38 m/m<sup>2</sup> for monolithic placements, differences that are both statistically insignificant (Table 5.11). Based on field surveys, Eppers, French, and Hajjar (1998) observed a reduced incidence of cracking when the minimum daily temperature was between 7° and 10° C.

### 5.4.3 Maximum Daily Air Temperature

Mean age-corrected crack density is shown as a function of maximum daily temperature in Figs. 5.29, 5.30, and 5.31 for bridge deck overlays, overlay subdecks, and monolithic bridge decks, respectively. The maximum daily temperature ranges from 7° to 34° C for silica fume overlays, 9° to 37° C for conventional overlays, 7° to 39° C for overlay subdecks, and 6° to 36°

C for monolithic bridge placements. The maximum daily air temperature categories range from 15° to 35° C for subdeck and overlay placements and from 5° to 35° C for monolithic placements.

For 5% and 7% silica fume overlays (Fig. 5.29) and overlay subdeck placements (Fig. 5.30), no trend between crack density and high daily air temperature is apparent. For conventional overlays, the mean crack density increases substantially from 0.33 m/m<sup>2</sup> to 0.57 m/m<sup>2</sup> as the maximum daily air temperature increases from 15° to 25° C, a statistically significant increase at  $\alpha = 0.02$  (Table 5.12). As the average maximum temperature increases to 35° C, the mean crack density decreases slightly to 0.49 m/m<sup>2</sup>, although statistically there is no difference between the results for placements cast with an average temperature of 25° and 35° C (Table 5.12). For monolithic decks (Fig. 5.31), crack density increases sharply from 0.19 m/m<sup>2</sup> to 0.44 m/m<sup>2</sup> as the average maximum daily temperature increases from 5° to 35° C, which is a statistically significant change at  $\alpha = 0.20$ . The results for monolithic decks, however, are in most cases statistically insignificant due primarily to small sample sizes at the extremes of the temperature ranges (Table 5.12).

## 5.4.4 Daily Air Temperature Range

Mean age-corrected crack density is shown as a function of daily air temperature range in Figs. 5.32, 5.33, and 5.34 for bridge deck overlays, overlay subdecks, and monolithic bridge decks, respectively. The daily air temperature range, calculated as the difference between maximum and minimum daily temperatures, varies from 4° to 24° C for silica fume overlays, 4° to 20° C for conventional overlays, 3° to 31° C for overlay subdecks, and 2° to 30° for monolithic bridge placements. The daily air temperature range categories range from 4° to 20° C for all bridge deck types. For both overlay types (Fig. 5.32), the mean age-corrected crack density increases slightly as the daily air temperature range increases. The trend is clearest for silica fume overlays with a daily air temperature range greater than 8° C, where the average crack density increases from 0.35 m/m<sup>2</sup> to an average of 0.52 m/m<sup>2</sup>. Crack density drops slightly with an increasing daily air temperature range for bridge subdecks (Fig. 5.33). The crack density for monolithic placements (Fig. 5.34), however, increases sharply from 0.14 m/m<sup>2</sup> to 0.44 m/m<sup>2</sup> as the average daily temperature range increases from 4° to 20° C. With the exception of the silica fume overlays, the differences observed between cracking and daily air temperature range are not statistically significant (Table 5.13). The trends observed, however, largely corroborate research by Eppers, French, and Hajjar (1998) that showed increased levels of cracking when the daily air temperature range exceeds 10° C.

# 5.5 Influence of Design Parameters

Evaluation of design parameters for silica fume overlay, conventional overlay, and monolithic bridges revealed correlations between cracking and several of the design parameters under consideration. In large part, however, design parameters were not found to significantly influence bridge deck cracking. The following ten variables are considered in the analysis: structure type, transverse reinforcing bar size, transverse reinforcing bar spacing, deck thickness, top bar cover, girder end condition, span type, skew, span length, and bridge length.

The analyses of the influence of design parameters are presented in the balance of this section. For monolithic decks, eight variables were considered and none of the variables analyzed were found to influence deck cracking. The effects of transverse reinforcing bar spacing and girder end condition on crack density were not included in the analysis of monolithic

decks. For bridges with overlays, the effect of top cover on crack density was not included in the analysis.

The key observations for **overlay bridges** can be summarized as follows:

The top transverse bar size significantly increases bridge deck cracking (57%) when No. 19 (No. 6) bars are used as the only top transverse reinforcement. In addition to bar size, crack density increases, on average, 57% for both overlay types, with a transverse reinforcing bar spacing greater than 153 mm (6.0 in.) compared to a bar spacing less than 153 mm (6.0 in.). Age-corrected crack density appears to increase slightly with increasing bridge length. Finally, crack density is significantly higher for the end sections of fix-ended girders than for pin-ended girders. This increase in crack density for fix-ended girders, while significant (nearly three times the value for pin-ended girders), is limited to the first and last 3 m (10 ft) of the bridge deck.

# 5.5.1 Structure Type

Mean age-corrected crack density for bridge decks is shown as a function of steel superstructure type for silica fume overlays, conventional overlays, and monolithic bridge decks in Fig. 5.35. Three types of steel superstructures are examined: SMCC (steel beam, composite continuous), SWCC (steel welded plate girder, composite continuous), and SWCH (steel welded plate girder, composite continuous and haunched). For silica fume overlays, SWCH structures exhibit the highest levels of cracking (0.63 m/m<sup>2</sup> compared to 0.54 m/m<sup>2</sup> for SMCC structures and 0.45 m/m<sup>2</sup> for SWCC structures); however, none of the differences between the structure types are statistically significant (Table 5.14). For conventional overlays, SWCC structures exhibit the highest levels of cracking (0.55 m/m<sup>2</sup> compared to 0.38 m/m<sup>2</sup> for SMCC structures and 0.26 m/m<sup>2</sup> for SWCH structures), a statistically significant difference from both SMCC ( $\alpha = 0.20$ ) and SWCH ( $\alpha = 0.02$ ) structures (Table 5.14). For monolithic decks, SWCH structures exhibit the highest levels of cracking (0.40 m/m<sup>2</sup> compared to 0.35 m/m<sup>2</sup> for SMCC structures

and  $0.40 \text{ m/m}^2$  for SWCC structures) although, similar to the results for silica fume overlays, none of these differences are statistically significant (Table 5.14).

Mean age-corrected crack density is shown as a function of structure type for all bridges in Fig. 5.36 without distinction of deck type. Differences in crack density between the different structure types are minimal and statistically insignificant (Table 5.14). Structure type does not appear to have a measurable effect on bridge deck cracking, an observation corroborated by both Schmitt and Darwin (1995) and Miller and Darwin (2000).

#### 5.5.2 Transverse Reinforcing Bar Size

Mean age-corrected crack density for bridge decks is shown as a function of transverse reinforcing bar size for silica fume overlays, conventional overlays, and monolithic decks in Figs. 5.37, 5.38, 5.39, respectively. The comparison for silica fume overlay decks includes No. 16 (No.5), No. 16 and No. 19 (No. 5 and No. 6) combined, and No. 19 (No. 6). The comparison for conventional overlay decks includes No. 13 and No. 16 (No. 4 and No. 5) combined, No. 16 (No. 5), and No. 19 (No. 6). The comparison for monolithic decks includes No. 13 and No. 16 (No. 5), and No. 19 (No. 6). The comparison for monolithic decks includes No. 13 and No. 16 (No. 4 and No. 5) combined, No. 16 (No. 5), and No. 19 (No. 6). The comparison for monolithic decks includes No. 13 and No. 16 (No. 5), and No. 15 (No. 6).

The crack density for both overlay types (silica fume and conventional) is the highest with the largest top transverse reinforcing bar size (Figs. 5.37 and 5.38), although the relationship for silica fume overlays is not entirely clear. For silica fume overlay decks, the mean age-corrected crack is greatest for decks with No. 19 (No. 6) bars ( $0.56 \text{ m/m}^2$ ) and the least for bridges with No. 16 and No. 19 (No. 5 and No. 6) bars combined ( $0.42 \text{ m/m}^2$ ). For conventional overlays, the mean age-corrected crack density increases from 0.35 m/m<sup>2</sup> to 0.60 m/m<sup>2</sup> for conventional overlays as the bar size increases from No. 16 (No. 5) to No. 19 (No. 6). While this difference is not statistically significant for silica fume overlays, it is significant at the

highest level ( $\alpha = 0.02$ ) for conventional overlays (Table 5.15). For monolithic bridge decks (Fig. 5.39), the crack density is lower for decks constructed with No. 16 (No. 5) bars as opposed to bridges constructed with both No. 13 and No. 16 (No. 4 and No. 5) bars combined (0.40 m/m<sup>2</sup> compared to 0.26 m/m<sup>2</sup>). As expected, this difference is not statistically significant and indicates parity between the bar size categories.

Mean age-corrected crack density is shown as a function of transverse reinforcing bar size in Fig. 5.40 without distinction of deck type. Two monolithic decks and one silica fume overlay deck that were previously excluded (individual decks are typically excluded from analyses if they contain only one bridge in a particular category) have been added to the data set. The two monolithic decks excluded (89-208 and 105-46) have crack densities of 0.10 and 0.67 m/m<sup>2</sup>, and the silica fume overlay deck (89-248) has a crack density of 0.40 m/m<sup>2</sup>. Bridge decks with transverse bar sizes smaller than No. 19 (No. 6) bars, including the combination of No. 16 and No. 19 (No. 5 and No. 6) bars have significantly ( $\alpha = 0.02$ ) less cracking than decks constructed with No. 19 (No. 6) bars (Table 5.15). With mean crack densities increasing from between only 0.36 and 0.39 m/m<sup>2</sup> to 0.59 m/m<sup>2</sup>. Increasing the top transverse bar size has long been known to increase deck cracking (Dakhil, Cady, and Carrier 1975, Schmitt and Darwin 1995, Eppers, French, and Hajjar 1998, Miller and Darwin 2000).

#### 5.5.3 Transverse Reinforcing Bar Spacing

Mean age-corrected crack density for bridge decks as a function of transverse reinforcing bar spacing for silica fume and conventional overlays is shown in Fig. 5.41. For silica fume overlays, the bar spacing varies from 102 to 229 mm (4 to 9 in.), and for conventional overlays, the bar spacing varies from 127 to 305 mm (5 to 12 in.). Bar spacing is divided into two categories: less than or equal to 153 mm (6 in.), and greater than 153 mm (6 in.). The monolithic decks included in this study, with the exception of one deck, have a bar spacing of 153 mm (6 in.) and are therefore not included in the analysis. The results for silica fume and conventional overlays are similar. The mean age-corrected crack density for spacings less than or equal to 153 mm (6 in.) is  $0.42 \text{ m/m}^2$  for silica fume overlays and  $0.34 \text{ m/m}^2$  for conventional overlays. For spacings greater than 153 mm (6 in.), the mean crack density increases to 0.60 m/m<sup>2</sup> for silica fume overlays and to 0.63 m/m<sup>2</sup> for conventional overlays, both of which are statistically significant changes ( $\alpha = 0.05$  for silica fume overlays and  $\alpha = 0.02$  for conventional overlays) (Table 5.16).

For the overlay bridges included in this study, it appears to be clear that bridge decks with a transverse bar spacing greater than 153 mm (6 in.) have a higher incidence of cracking. It is important to note that in many cases transverse bar spacing increases with increasing bar sizes. For the overlay bridges in this study, the relationship between transverse bar spacing and bar size is presented in Fig. 5.42. Transverse bar spacing appears to increase slightly with bar size although a large amount scatter exists.

To separate the influence of bar spacing from bar size on deck cracking, a dummy variable analysis (Draper and Smith 1981) was performed for both silica fume and conventional overlays. For the analysis, the overlays were divided into four categories based on the top transverse bar size: No. 13 and No. 16 (No. 4 and No. 5) combined, No. 16 (No.5), No. 16 and No. 19 (No. 5 and No. 6) combined, and No. 19 (No. 6). The results of the dummy variable analyses are summarized in Table 5.17. The results indicate that for a given bar size, an increase in bar spacing results in an average increase in crack density of 0.0045 m/m<sup>2</sup>/mm for silica fume overlays and 0.0025 m/m<sup>2</sup>/mm for conventional overlays. Based on these cracking rates, an increase in bar spacing of 25.4 mm (1.0 in.) increases the crack density by 0.11 m/m<sup>2</sup> for silica

fume overlays and by  $0.06 \text{ m/m}^2$  for conventional overlays. The R<sup>2</sup> value is low in both cases, indicating large amounts of scatter within bar-size categories.

# 5.5.4 Deck Thickness

Mean age-corrected crack density for bridge decks as a function of deck thickness for silica fume overlays, conventional overlays, and monolithic decks is shown in Figs. 5.43, 5.44, and 5.45. Deck thickness varies from 216 to 229 mm (8.5 to 9.0 in.) for overlay decks and from 203 to 229 mm (8.0 to 9.0 in.) for monolithic decks. No identifiable trend is evident for these small changes in thickness and none of the differences between categories is statistically significant (Table 5.18). Krauss and Rogalla (1996) recommend a deck thickness no less than 203 mm (8 in.), equal to the thinnest decks included in this study.

Several studies have found that thin decks tend to have increased levels of cracking due to increased deck stresses. Eppers, French, and Hajjar (1998) and Poppe (1981) completed two such studies. These studies included deck thicknesses of 159 mm (6.25 in.), which are thinner than any of the decks in the current study. A change in deck thickness from 203 to 229 mm (8.0 to 9.0 in.) does not appear to influence deck cracking.

#### 5.5.5 Top Cover

Mean age-corrected crack density for bridge decks is shown as a function of top reinforcing bar cover for monolithic bridge decks in Fig. 5.46. All of the silica fume and conventional overlay bridge decks have a cover of 76 mm (3 in.), and consequently, no evaluation of the effect of top cover is possible for those decks. Monolithic decks included in this study have a top cover of either 64 mm (2.5 in.) or 76 mm (3.0 in.). Contrary to the expected behavior, bridge decks with a top cover of 64 mm (2.5 in.) have a lower crack density (0.24 m/m<sup>2</sup>) than bridges with a top cover of 76 mm (3.0 in.) (0.46 m/m<sup>2</sup>). A difference that is

statistically significant at  $\alpha = 0.20$  (Table 5.19). Two bridges built with a 76 mm (3 in.) cover, however, were also cast with the highest percentages of cement paste (28.8%) and have the two highest values of crack density. When these two decks are removed, the mean crack density for decks with a 76 mm top cover depth decreases to 0.24 m/m<sup>2</sup> (Fig. 5.46). Based on this observation, a change in top cover from 64 to 76 mm (2.5 to 3.0 in.) does not appear to influence bridge deck cracking for monolithic decks.

In terms of corrosion protection, the overlay bridges included in this study have a top cover depth of 76 mm (3.0 in.). Before the overlay is placed, however, the top cover depth ranges from as little as 19 mm (0.75 in.) for conventional overlays to 38 mm (1.5 in.) for the silica fume overlays. Based on Eq. (1.3), developed by Dakhil, Cady, and Carrier (1975), the probability of subsidence cracking can be determined as a function of concrete cover, bar size, and concrete slump.

$$p = \frac{1.5e^{y} - 0.5}{1 + e^{y}} \tag{1.3}$$

Where

$$y = 1.37 - 0.58x_1 - 0.56x_2 + 0.27x_3$$
(1.4)  

$$p = \text{probability of a crack to occur}$$

$$x_1 = \text{concrete cover, in.}$$

$$x_2 = \text{concrete cover divided by nominal bar size}$$

$$x_3 = \text{concrete slump, in.}$$

Based on the cover depths used in the bridges in this study [19 mm (0.75 in.) for conventional overlays and 38 mm (1.5 in.) for silica fume overlays] the probability of subsidence cracking to occur is presented in Table 5.20 for slumps ranging between 51 and 102 mm (2.0 to

4.0 in.) and three bar sizes: No. 13, No. 16, and No. 19 (No. 4, No. 5, and No. 6). In addition, the probability of subsidence cracking with a 51 mm (2.0 in.) cover depth (the largest cover depth used in the Dakhil et al. report) is also presented in Table 5.20 for purposes of comparison. As expected, the probability of cracking increases with decreasing cover, increasing slump, and increasing bar size. In particular, with a slump of 102 mm (4.0 in.) and a cover of 19 mm (0.75 in.), the probability of cracking is 100% and is independent of bar size. When Eq. (1.3) is extrapolated to include a cover depth of 76 mm (3.0 in.), the probability of subsidence cracking drops to zero for all combinations of slump and bar sizes. The probability of cracking is clearly influenced the most by increasing the cover to 51 mm (2.0 in.) or more.

# 5.5.6 Girder End Condition

As a general rule, highway agencies prefer bridge decks that are integral with the abutments because of difficulties in maintaining pinned connections. In addition, bridges with pinned ends, as compared to those with fixed ends, often require deeper sections or have larger deflections. To evaluate the effect of the girder end condition on deck performance, the crack densities for the first and last 3 m (10 ft) of each bridge deck are calculated and compared as a function of the end condition. The girder end conditions are either fixed or pinned.

It is recognized that the age-correction used to adjust the crack density for full bridge decks (presented and detailed in Section 4.3) does not represent the rate of cracking in the highly restrained (in the case of fixed-ended girders) or relatively unrestrained (in the case of pin-ended girders) end sections of the deck. For this reason, the cracking rate is recalculated using the technique of dummy variables (Draper and Smith 1981) for the end sections of the decks. Separate dummy variable analyses are performed for bridges with fixed and pinned ends in addition to the two overlay deck types.

The results of the dummy variable analysis are presented in Table 5.21. Because only two monolithic bridge decks in this study have pinned girders, monolithic bridges are not included in this analysis. In addition, the newest 7% silica fume overlay bridges are not included because they have only been surveyed one time each. The end-section cracking rate for fix-ended decks is 0.0054 m/m<sup>2</sup>/month for silica fume overlays and 0.0018 m/m<sup>2</sup>/month for conventional overlays. The end-section cracking rate for pin-ended decks is substantially less for silica fume overlays (0.0032 m/m<sup>2</sup>/month) and remains nearly constant for conventional overlays (0.0019 m/m<sup>2</sup>/month). These cracking rates are used to linearly adjust the raw end section crack density data for each end section to an age of 78 months (6<sup>1</sup>/<sub>2</sub> years), the average age of all bridges. The raw age-corrected end-section crack densities are tabulated in Table E.3 of Appendix E.

The mean age-corrected crack density for end sections is shown as a function of girder end condition for silica fume and conventional overlay bridges in Fig. 5.47. The mean agecorrected crack density in the end regions of bridge decks with fixed supports for both silica fume and conventional overlay decks is nearly three times the value observed for pin-ended decks, as shown in Fig. 5.47. These differences are statistically significant at the highest level,  $\alpha$ = 0.02 (Table 5.22). In an effort to isolate cracking as a result of the girder end condition as opposed to other factors, Fig. 5.48 presents the ratio of the crack density in the end section to the crack density in the entire bridge deck. Because of the additional restraint provided by fixedended girders, this ratio is greater than 1.0. Conversely, the lack of restraint provided by pinned girders results in a crack density ratio less than 1.0. The mean crack density ratios for silica fume overlay and conventional overlay decks with fix-ended girders are 1.76 and 3.08, respectively. For silica fume overlay and conventional overlay decks with pin-ended girders, the

mean crack density ratios are 0.72 and 0.68, respectively. For either bridge deck type, it is clear that the benefits of bridges with fixed ends must be weighed against potential problems that may arise due to increased cracking in the end sections of the deck.

#### 5.5.7 Span Type

The mean age-corrected crack density for individual spans is shown as a function of span type for silica fume and conventional overlays in Fig. 5.49 and for monolithic bridge decks in Fig. 5.50. Three types of spans are included in the analysis: fixed connection end spans [End (F)], pinned connection end spans [End (P)], and continuous interior spans [Interior (F)]. The raw crack density data for individual spans are tabulated in Table E.4 of Appendix E.

For silica fume overlays, the crack density is the lowest for pinned connection end spans (Fig. 5.49). There is a slight increase in crack density for both continuous interior spans and fixed end spans. For conventional overlays, the crack density is the highest for pinned connection end spans and is slightly lower for the fixed end spans and interior spans (Fig. 5.49). None of the differences observed for either overlay type is statistically significant (Table 5.23). Only two monolithic bridges (56-142 and 99-76) have pin-ended girders, and for this reason have been excluded from the analysis. No difference in crack density is observed between continuous interior spans and fix-ended exterior spans for monolithic bridges (Fig. 5.50).

The type of span does not appear to influence the level of cracking observed on the bridge deck. The effect of the end condition on crack density, described in Section 5.5.6, appears to be limited to approximately the first and last 3 m (10 ft) of the bridge deck and has no significant effect on the average crack density of the full bridge deck.

#### 5.5.8 Bridge Skew

The mean age-corrected crack density of entire bridge decks is shown as a function of deck skew for silica fume overlays and conventional overlays in Fig. 5.51 and monolithic decks in Fig. 5.52. Skew is defined as the acute angle between the abutment and a line normal to the centerline of the roadway and ranges from 0 to 55 degrees, with categories ranging from 0 to 50 degrees for the bridges included in this study.

The effect of bridge skew on crack density is not well defined (Figs. 5.51 and 5.52). Some statistical significance is observed between categories for the overlay bridge decks (Table 5.24), although none of the differences follows a defined trend and is likely a result of other factors. In this study, silica fume overlay bridges falling into the 30-degree category were found to have statistically less (at least at  $\alpha = 0.20$ ) cracking than decks falling into the other categories (Table 5.24). Similarly, conventional overlay decks in the 30-degree category had the least amount of cracking, but only had statistically less ( $\alpha = 0.20$ ) cracking than bridges falling into the highest category, 50 degrees (Table 5.24). In an analytical study, Krauss and Rogalla (1996) found that skew does not significantly affect transverse cracking, although bridge skew can create slightly higher stresses near the corners of the deck that causes cracks. Cracks at the corners of decks were noted during the field surveys, but they were not significant enough to measurably increase crack density in the end sections or, much less, the entire bridge deck.

#### 5.5.9 Span Length

The mean age-corrected crack density for individual spans is shown as a function of span length for silica fume overlays, conventional overlays, and monolithic bridge decks in Figs. 5.53, 5.54, and 5.55. For silica fume overlays, span lengths range from 6.1 to 61.6 m (20 to 202 ft), with span length categories ranging from 5 to 55 m (16 to 180 ft). For conventional overlays,

span lengths range from 12.2 to 48.8 m (40 to 160 ft), with span length categories ranging from 15 to 45 m (49 to 148 ft). For monolithic bridge decks, span lengths range from 11.3 to 36.6 m (37 to 120 ft), with span length categories ranging from 15 to 35 m (49 to 115 ft).

For silica fume overlay bridges (Fig. 5.53), the level of cracking ranges from 0.38 to 0.45 m/m<sup>2</sup> for spans with a mean length between 5 and 35 m (16 and 115 ft), but increases to 0.51 and 0.62 m/m<sup>2</sup> for spans with a mean length of 45 and 55 m (148 and 180 ft), respectively. Differences between spans with the highest and the lowest levels of cracking are statistically significant (Table 5.25). Crack density decreases slightly with increasing span lengths for conventional overlays (Fig. 5.54), although none of the differences are statistically significant (Table 5.25). No trend between span length and crack density for monolithic bridges is apparent (Fig. 5.55). In general, span length does not appear to significantly affect the level of cracking on bridge decks. Some tendency towards increased cracking may exist for spans over 50 m (164 ft) long, although it is recognized that this observation is based on a small sample size.

# 5.5.10 Bridge Length

The mean age-corrected crack density for bridge decks is shown as a function of bridge length in Fig. 5.56. For silica fume overlays, bridge length ranges from 37.8 to 432.2 m (123.9 to 1388.5 ft). For conventional overlays, bridge length ranges from 40.4 to 134.1 m (132.5 to 439.8 ft). For monolithic bridge decks, bridge length ranges from 37.2 to 303.5 m (122.0 to 995.7 ft). Bridge length categories for all deck types range from 50 to 130 m (164 to 427 ft).

For silica fume overlays, the relationship between bridge length and cracking is unclear. There is a slight tendency towards increased cracking for bridge lengths over 90 m (295 ft) in overlay decks, although this trend is not observed for monolithic decks. For silica fume overlays, the crack density is greatest for bridges in the 90 m (295 ft) category (0.58 m/m<sup>2</sup>) and

the least for bridges in the 50 m (164 ft) category ( $0.33 \text{ m/m}^2$ ). For conventional overlays, crack density increases from  $0.36 \text{ m/m}^2$  to  $0.53 \text{ m/m}^2$  as the bridge length category increases from 50 m (164 ft) to 130 m (427 ft), although this difference is not statistically significant (Table 5.26). For monolithic decks, the crack density is nearly constant for all bridge length categories, with no statistically significant differences (Table 5.26).

In general, bridge length appears, at most, to have a small effect on crack density.

# 5.6 Influence of Bridge Contractor

In addition to the multiple design, material, and environmental related variables affecting bridge deck cracking, the bridge contractor responsible for construction ultimately determines the quality of the bridge deck. Cheng and Johnston (1985) report that under identical circumstances, "different contractors produce decks of widely different qualities." It is important to note that, while age is taken into account, the circumstances for the bridges included as a part of this study are by no means identical. Mean age-corrected crack density for individual placements is shown as a function of the bridge contractor for silica fume overlays, conventional overlays, and monolithic bridges in Figs. 5.57, 5.58, and 5.59, respectively. Five contractors responsible for casting only one or two placements (usually representing one bridge) are excluded from the analysis. A single letter (A through I) represents each of the remaining nine contractors included in the analysis.

For silica fume overlays (Fig. 5.57), crack density varies from 0.27 m/m<sup>2</sup> for contractor H to 0.57 m/m<sup>2</sup> for contractors A and D. The statistical analysis provided in Table 5.27 indicates a large degree of indifference, with one exception, between contractor performances. Of the five contractors having more than two placements, contractor H is statistically lower [at  $\alpha = 0.05$  or better (Table 5.27)] than the other contractors. For conventional overlays (Fig. 5.58), a much

wider range of contractor performance is observed. The mean age-corrected crack density varies from 0.23 m/m<sup>2</sup> for contractor B to 0.80 m/m<sup>2</sup> for contractor E. The mean crack density for conventional overlay placements cast by contractor B is a significant improvement over the results obtained for silica fume overlays (0.23 m/m<sup>2</sup> for conventional overlays compared to 0.46 m/m<sup>2</sup> for silica fume overlays), and may indicate difficulties with the placement of silica fume overlays. For both conventional overlays and silica fume overlays, bridges built by contractors H and B have a consistently lower crack density. For monolithic decks (Fig. 5.59), only three contractors have cast more than two placements. The mean age-corrected crack density for placements cast by contractors A and C are low (0.13 and 0.19 m/m<sup>2</sup>) and stand in sharp contrast to the mean crack density (0.81 m/m<sup>2</sup>) for contractor I. The six placements cast by contractor I are from the same bridge, however, and may not represent performance on other projects.

In general, the contactor responsible for constructing the bridge deck can play a significant role in the overall performance of a bridge deck. A comprehensive solution to bridge deck cracking may ultimately require strict provisions regarding the selection of a contractor.

# 5.7 Influence of Traffic

In this section, the influence of traffic-related variables on bridge deck cracking is quantified. The variables include average annual daily traffic (AADT) and the total number of load cycles. The total number of load cycles each bridge has been subjected to is taken as the average AADT at the time of the surveys multiplied by the bridge age. Separate analyses are performed for silica fume overlays, conventional overlays, overlay subdecks, and monolithic bridges and the results are tested for statistical significance. In addition, dummy variable analyses are performed for each bridge deck type to determine the effect of load cycles on cracking. The raw crack density and traffic data are presented in Table E.5 of Appendix E.

Generally, there is a tendency for increased cracking with increases in AADT, although these trends are largely statistically insignificant and should be treated as such. Based on the dummy variable analysis, however, bridges subjected to a greater number of load cycles appear to show greater levels of cracking.

# 5.7.1 Average Annual Daily Traffic (AADT)

Mean age-corrected crack density for entire bridge decks is shown as a function of the average annual daily traffic (AADT) for silica fume overlays and conventional overlays in Fig. 5.60, and monolithic bridge decks in Fig. 5.61. For bridges that were surveyed one time, the reported AADT at the time of the bridge survey is used in the analysis. For bridges that have been surveyed on more than one occasion, the average AADT for all surveys is used. This adjustment, however, is of little consequence and does not change the AADT category for any of the bridge decks. The AADT ranges from 150 to 14705 for silica fume overlays, from 245 to 17690 for conventional overlays, and from 0\* to 11990 for monolithic decks.

For silica fume overlays, no clear trend is identifiable (Fig. 5.60). With the exception of the first category (AADT = 2500), crack density appears to increase slightly with increasing traffic volume. The mean crack density for bridges in the first category, however, is statistically different from that of bridges in the second category (AADT = 7500) at  $\alpha$  = 0.02 (Table 5.28). For conventional overlays (Fig. 5.60), the mean age-corrected crack density increases slightly from 0.35 to 0.51 m/m<sup>2</sup> as the AADT category increases from 2500 to 12500, although this increase in crack density is not statistically significant (Table 5.28). For monolithic bridge decks (Fig. 5.61), the bridges in the first category (AADT = 1000) have the lowest level of cracking (0.13 m/m<sup>2</sup>). The crack density increases sharply to 0.48 m/m<sup>2</sup> for the second category (AADT

#### \*Reported as such in the Kansas Department of Transportation Bridge Log

= 3000), but decreases to 0.36 m/m<sup>2</sup> for the last category (AADT = 5000). The difference in mean crack density for bridges in the last category (AADT = 5000) is statistically significant from the two other categories ( $\alpha$  = 0.02 for AADT = 3000 and  $\alpha$  = 0.20 for AADT = 5000) (Table 5.28).

# 5.7.2 Load Cycles

The AADT only quantifies the average amount of traffic on a bridge deck each day. For this reason, the total number of load cycles a bridge has experienced likely gives a more accurate representation of the effect of traffic on crack density. The uncorrected crack density is shown as a function of the total number of load cycles in Figs. 5.62, 5.63, and 5.64 for silica fume overlays, conventional overlays, and monolithic bridge decks, respectively. The total number of load cycles range from  $0.2 \times 10^6$  to  $31.4 \times 10^6$  for silica fume overlays,  $0.4 \times 10^6$  to  $48.2 \times 10^6$  for conventional overlays, and 0 to  $44.0 \times 10^6$  for monolithic decks. Initially, the crack density age-correction is not applied because this adjustment at least partially accounts for the effect of traffic on cracking over time. For this reason, the technique of dummy variables (Draper and Smith 1981) is used to determine the rate of increase in crack density as a function of load cycles for each of the three bridge deck types. These cracking rates (shown in each of the figures) include the combined effect of traffic and bridge deck age.

The results of the dummy variable analysis for monolithic, conventional overlay, and silica fume overlay decks are presented in Table 5.29. The linear regression lines shown in Figs. 5.62, 5.63, and 5.64 are plotted using the weighted average intercept and cracking rates obtained in the dummy variable analysis (Table 5.29). Similar to the results of the age-correction dummy variable analyses presented in Table 4.1, the cracking rate for conventional overlays is the lowest  $(0.0019 \text{ m/m}^2/1 \times 10^6 \text{ cycles})$ , and the cracking rate for silica fume overlays is the highest (0.0164).

 $m/m^2/1 \times 10^6$  cycles). The cracking rate for monolithic decks is 0.0078  $m/m^2/1 \times 10^6$  cycles. In each case, the coefficient of determination is slightly less than for the age-correction analysis presented in Table 4.1. Based on this analysis, it appears that bridges subjected to a greater number of load cycles show greater levels of cracking, but it cannot be discerned whether this difference is due to loading or time.

In an effort to determine whether cracking increases with the number of load cycles, a separate dummy variable analysis is performed using the age-corrected crack density for each bridge deck, thereby eliminating bridge age as a variable. The results of the dummy variable analysis for each bridge deck type are presented in Table 5.30. The age-corrected crack densities, in addition to the results of the dummy variable analyses, are shown as a function of the total number of load cycles in Figs. 5.65, 5.66, and 5.67 for silica fume overlays, conventional overlays, and monolithic bridge decks, respectively.

For all deck types, the cracking rate for the age-corrected crack densities (Table 5.30) is substantially less than the cracking rate for the uncorrected crack densities (Table 5.29). This is expected because the influence of age (and some influence of load cycles) is removed. The cracking rate for conventional overlays is the least (0.0003 m/m<sup>2</sup>/1×10<sup>6</sup> cycles), and the cracking rate for silica fume overlays is the highest (0.0045 m/m<sup>2</sup>/1×10<sup>6</sup> cycles). The cracking rate for monolithic decks is 0.0025 m/m<sup>2</sup>/1×10<sup>6</sup> cycles. Generally, load cycles appear to have a measurable but relatively small influence on deck cracking compared to other variables.

#### **CHAPTER 6:**

# SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

## 6.1 Summary

The purpose of this study is to identify the causes of cracking, to determine the diffusion properties and chloride contents of concrete bridge decks, and to gage the performance of silica fume overlay decks relative to conventional overlay and monolithic decks. The silica fume overlay decks were constructed under a number of specifications that require concrete in which 5 and 7% of the cement is replaced by silica fume. Field surveys are performed on 59 bridge decks, primarily in northeast Kansas, to determine the crack density, chloride ingress, concrete diffusivity, and delaminated area. Crack density is measured in terms of length per unit area  $(m/m^2)$  and concrete diffusivity is estimated in terms of effective diffusion coefficients  $D_{eff}$  $(mm^2/day)$ . Both the crack densities and diffusion coefficients are adjusted to account for differences in age. The study includes four deck types: 5% silica fume overlays (19 bridges), 7% silica fume overlays (11 bridges), conventional overlays (16 bridges), and monolithic bridge decks (13 bridges). Of the 59 bridges selected for this study, 49 had been investigated by Schmitt and Darwin (1995, 1999), Miller and Darwin (2000), or both.

Bridge deck performance is evaluated as a function of material properties, design specifications, construction practices, and environmental site conditions using the data obtained in this study, along with that obtained by Schmitt and Darwin (1995) and Miller and Darwin (2000). The monolithic decks evaluated as a part of this study range in age from 12 to 240 months. The conventional overlay decks range in age from 20 to 145 months, and the silica fume overlay decks range in age from 4 to 142 months, although only two of the bridges are

older than 97 months. The average age for all 59 bridge decks at the time of survey is 78 months.

# 6.2 Conclusions

The following conclusions are based on the data and analyses presented in this report. Conclusions regarding bridge subdecks are based on the material properties or construction conditions of the subdecks. Conclusions regarding overlays are based on the material or construction conditions of the overlays only. In all cases, the conclusions are based on ageadjusted effective diffusion coefficients (as described in Chapter 3) and age-corrected crack densities (as described in Chapter 4).

# 6.2.1 Chloride Data and Diffusion Properties

- Chloride content increases with the age of the bridge deck, regardless of bridge deck type.
- Silica fume (both 5% and 7%) overlay, conventional overlay, and monolithic bridge decks in the same age range [< 156 months (13 years)] exhibit similar chloride contents for samples taken both at and away from cracks.
- 3. Typically, chloride contents for silica fume (5% and 7%) overlay, conventional overlay, and monolithic bridge decks in the same age range [< 156 months (13 years)] taken away from cracks at a depth of 76.2 mm (3.0 in.) are below even the most conservative estimate of the corrosion threshold for conventional reinforcement [0.6 kg/m<sup>3</sup> (1.0 lb/yd<sup>3</sup>)]. In contrast, for the oldest decks included in this study [limited to monolithic decks older than 168 months (14 years)], 42% of the samples exceed the corrosion threshold; based on trends in the data for bridges just below 156 months, however, this does not represent the expected behavior of the more recently constructed decks.
- 4. At cracks, the average chloride concentration at a depth of 76.2 mm (3.0 in.) can exceed the corrosion threshold of conventional reinforcement in as little as nine months, regardless of deck type. By 24 months, the chloride content at cracks exceeds 0.6 kg/m<sup>3</sup> (1.0 lb/yd<sup>3</sup>) in the majority of the decks surveyed.

- 5. In general, the effective diffusion coefficient in uncracked regions  $D_{eff}^{*}$  appears to decrease with age (successive surveys). This observation is likely due to continued hydration and deposition of salt in the concrete pores, as well as shortcomings in the modeling process. Modeling chloride diffusion in bridge decks as if the chloride surface concentrations are constant (as done here), rather than increasing over time, tends to underestimate the diffusion coefficient at later ages.
- 6. Within the age ranges of 0 to 48 months and 48 to 96 months, all overlay bridge deck types exhibit similar diffusion properties.
- 7. For bridge decks sampled between 0 and 48 months,  $D_{eff}^{*}$  is lower for the single monolithic deck in this age range than for the overlay decks.
- 8. For bridge decks sampled between 48 and 96 months,  $D_{eff}^{*}$  is higher for monolithic decks than for overlay bridge decks.
- 9. Attempts to improve silica fume overlay decks through the use of special provisions have not decreased diffusivity.
- 10. For all bridge deck types, there is no correlation between  $D_{eff}^{*}$  and concrete slump.
- 11. For conventional overlays,  $D_{eff}^{*}$  increases as air content increases.
- 12. For monolithic bridge decks,  $D_{eff}^{*}$  increases as the (1) water-cement ratio, (2) water content, and (3) cement content increase.
- 13. For all bridge deck types, there is no apparent correlation between  $D_{eff}^{*}$  and compressive strength.

# 6.2.2 Time as a Variable in Bridge Deck Cracking

- 1. Bridge deck crack density increases with age.
- 2. For the 49 bridges included in this study and one or both of the earlier studies (Schmitt and Darwin 1995, Miller and Darwin 2000), the crack densities obtained in the different studies show close agreement. Generally, the crack densities measured in this study are similar or greater than those obtained in the previous studies.

- 3. For all bridge deck types, a large percentage of the crack density is established early in the life of the deck.
- 4. The age-corrected crack densities for monolithic bridge decks constructed between 1984 and 1987 are lower than those of bridges constructed between 1990 and 1993.
- The age-corrected crack densities for conventional overlay bridges are the lowest for bridges constructed between 1985 and 1987 and continue to increase for bridges constructed between the periods 1990–1992 and 1993–1995.
- 6. For silica fume overlay bridges constructed during the periods 1990–1991, 1995–1996, and 1997–1998 (containing 5% silica fume), the age-corrected crack densities decrease between the first and third time period. The newest silica fume overlays (containing 7% silica fume), constructed between 2000 and 2002, have slightly higher crack densities than silica fume overlays constructed between 1997 and 1998. The decrease in crack density appears to be the result of increased efforts to limit evaporation prior to the initiation of wet curing.
- 7. For silica fume and conventional overlays, both the average compressive strength and the range of compressive strengths have increased over the past 20 years.

# 6.2.3 Crack Survey Evaluation and Results

- 1. The crack densities of overlay bridges are generally higher than the crack densities of monolithic bridges. In addition, the crack densities of silica fume overlay decks appear to be independent of silica fume content and are slightly higher than the crack densities for conventional overlay decks.
- 2. The crack densities of monolithic bridge decks and overlay decks increase with increases in the water content, cement content, and percent volume of water and cement of the deck and subdeck, respectively. In general, increased paste contents in bridge subdecks result in increased cracking in decks with overlays, regardless of the overlay type or quality.
- 3. For silica fume overlays, the use of both fogging and precure material during and after finishing decreases the crack density.

- 4. For conventional overlay bridges, the highest crack densities are obtained for overlays placed with zero slump concrete.
- 5. For monolithic bridge decks, crack density increases slightly as concrete slump increases.
- 6. For monolithic bridge decks and overlay subdecks, the least amount of cracking is observed in decks with air contents greater than 6%. This trend is especially clear for monolithic bridge decks.
- 7. There is no correlation between the crack density and the air content of overlays.
- 8. For conventional overlay and monolithic bridge decks, crack density increases with increasing concrete compressive strength.
- 9. For conventional overlays, crack density increases as the average and minimum air temperatures on the date of placement increases.
- 10. For conventional overlay and monolithic bridge decks, crack density increases as the maximum air temperature on the date of placement increases.
- 11. For overlay bridges and monolithic bridge decks, crack density increases as the daily air temperature range on the date of concrete placement increases.
- 12. Monolithic placements (constructed between 1984 and 1995) were generally cast at lower air temperatures than overlay subdecks (constructed between 1990 and 2002).
- 13. The steel structure type appears to have no effect on bridge deck cracking.
- 14. For overlay bridges, cracking is more severe for those decks containing No. 19 (No. 6) top transverse reinforcing bars than for those containing a combination of No. 13 and No. 16 (No. 4 and No. 5) bars or No. 16 (No. 5) bars. The monolithic decks included in this study have either a combination of No. 13 and No. 16 (No. 4 and No. 5) bars or No. 16 (No. 5) bars and no tendency towards increased cracking is observed.
- 15. For overlay bridges, cracking is more severe for decks with top reinforcing bar spacings greater than 152 mm (6.0 in.). No analysis is possible for monolithic decks because all of the decks in this study have a top reinforcing bar spacing of 152 mm (6.0 in.).

- 16. In general, increased fixity, such as obtained with bridge decks that are integral with abutments, results in increased crack density near the supports. Although an analysis of the effect of end restraint on monolithic decks is not possible based on the current data set, the results for overlay bridges indicate a strong correlation between increased fixity and increased end-section cracking.
- 17. In general, the span type (interior and exterior), bridge skew, and bridge length do not appear to affect crack density.
- 18. Some contractors consistently cast bridge decks with low crack densities, while others consistently cast bridge decks with high crack densities.
- 19. For all bridge deck types, bridges subjected to a greater number of load cycles show greater levels of cracking.
- 20. For the overlay bridges, delamination of the overlay from the subdeck is not significant.

# 6.3 Recommendations

Based on the results of this study, the following recommendations are made to improve bridge deck performance:

- Conventional high-density overlays should be used in lieu of silica fume overlays containing either 5% or 7% silica fume. Conventional overlays, on average, have lower crack densities than silica fume overlays, and both types have similar diffusion properties and chloride contents, both at and away from cracks. These observations indicate that silica fume overlays provide no advantage over conventional overlays.
- 2. The use of high-density concrete overlays should be limited to resurfacing applications. This recommendation is based on two observations: (1) cracking is more severe in overlay decks than monolithic decks, and (2) adequate reinforcing steel protection from chloride ingress can be provided by uncracked concrete. The average chloride concentration at crack locations exceeds the corrosion threshold by the end of the first winter season after construction. The higher level

of cracking in overlay decks represents a liability that can be addressed through the exclusive use of monolithic decks for full-depth construction.

- 3. When developing mix designs for overlay subdecks and monolithic decks, the total cement-paste volume should be less than 27% of the total volume of concrete.
- 4. Concrete for monolithic and overlay subdecks should be placed at the lowest slump that will allow for proper placement and consolidation.
- 5. When appropriate, the use of pin-ended girders should be considered, as an alternative to fix-ended girders, to significantly reduce cracking near the bridge abutments [3 m (10 ft)].
- A contractor selection process should be implemented based on the quality of previous work. It is clear that some contractors consistently produce bridge decks with severe cracking, while others consistently produce bridges with low cracking.

As noted in Chapter 2, although the amount and availability of data for bridges has improved markedly compared to that available for the first two studies, there are still areas that need improvement. Evaporation rates, for instance, are required to be checked for silica fume overlays to ensure they are below 1.0 kg/m<sup>2</sup>/hr; this information, however, is rarely found in construction diaries or notes. Similarly, the concrete temperature, relative humidity, and wind speed during placement are required to estimate the evaporation rate but are typically not recorded. Additionally, start and finish times for the individual bridge placements and curing regimes are rarely mentioned. Recording this information was recommended by both Schmitt and Darwin (1995) and Miller and Darwin (2000). The availability of this information would have been invaluable to this study and will be invaluable in future investigations of the factors that control bridge deck quality.

## REFERENCES

- AASHTO T 259-80. (1980). "Resistance of Concrete to Chloride Ion Penetration," 1995 Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part II Tests, American Association of State Highway and Transportation Officials, Washington, D.C., pp. 648-649.
- ACI Committee 222. (1996). "Corrosion of Metals in Concrete (ACI 222R-96)," *Manual of Concrete Practice*, Part 1, American Concrete Institute, Farmington Hills, MI, 30 pp.
- ACI Committee 234. (1996). "Guide for the Use of Silica Fume in Concrete (ACI 234R-96)," Manual of Concrete Practice, Part 1, American Concrete Institute, Farmington Hills, MI, 51 pp.
- ASTM C 1202-97. (1997). "Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration," *1999 Annual Book of ASTM Standards*, Vol. 4.02, American Society for Testing and Materials, West Conshohocken, PA, 1999, pp. 618-623.
- Babaei, K. and Fouladgar, A. M. (1997). "Solutions to Concrete Bridge Deck Cracking," *Concrete International*, Vol.15, No.7, July, pp. 34-37.
- Babaei, K. and Purvis, R. L. (1996). "Prevention of Cracks in Concrete Bridge Decks Summary Report," *Report* No. 233, Wilbur Smith Associates, Falls Church, VA, 30 pp.
- Chariton, T. and Weiss, W. J. (2002). "Using Acoustic Emission to Monitor Damage Development in Mortars Restrained from Volumetric Changes," *Concrete: Material Science to Application*, A Tribute to Surendra P. Shah, SP-206, American Concrete Institute, Farmington Hills, MI, pp. 205-219.
- Cheng, T. T.-H. and Johnston, D. W. (1985). "Incidence Assessment of Transverse Cracking in Concrete Bridge Decks: Construction and Material Considerations," *Report* No.

FHWA/NC/85-002 Vol. 1, North Carolina State University, Raleigh, Department of Civil Engineering, 232 pp.

- Dakhil, F. H., Cady, P. D., and Carrier, R. E. (1975). "Cracking of Fresh Concrete as Related to Reinforcement," ACI Journal, *Proc.* Vol. 72, No. 8, Aug., pp. 421-428.
- Detwiler, R. J., Whiting, D. A., and Lagergren, E. S. (1999). "Statistical Approach to Ingress of Chloride Ions in Silica Fume Concrete for Bridge Decks," ACI Materials Journal, Vol. 96, No. 6, Jan.-Feb., pp. 670-695.
- Durability of Concrete Bridge Decks-A Cooperative Study, Final Report, (1970). The state highway departments of California, Illinois, Kansas, Michigan, Minnesota, Missouri, New Jersey, Ohio, Texas, and Virginia; the Bureau of Public Roads; and Portland Cement Association, 35 pp.
- Eppers, L., French, C., and Hajjar, J. F. (1998). "Transverse Cracking in Bridge Decks: Field Study," Minnesota Department of Transportation, Saint Paul, MN, 195 pp.
- Federal Highway Administration (FHWA) (2002). "FHWA Bridge Programs NBI Data," FHWA website: www.fhwa.dot.gov/bridge/britab.htm
- Kansas Department of Transportation. (1990). *Standard Specifications for State Road and Bridge Construction*, Topeka, KS, 1154 pp.
- Kansas Department of Transportation. (1993). Special Provision to the Standard Specifications Edition of 1990, 90P-158-R1, Topeka, KS, 9 pp.
- Kansas Department of Transportation. (1994). Special Provision to the Standard Specifications Edition of 1990, 90P-158-R2, Topeka, KS, 10 pp.

- Kansas Department of Transportation. (1994). Special Provision to the Standard Specifications Edition of 1990, 90P-158-R3, Topeka, KS, 10 pp.
- Kansas Department of Transportation. (1995). Special Provision to the Standard Specifications Edition of 1990, 90P-158-R4, Topeka, KS, 12 pp.
- Kansas Department of Transportation. (1995). Special Provision to the Standard Specifications Edition of 1990, 90M-158-R5, Topeka, KS, 12 pp.
- Kansas Department of Transportation. (1996). Special Provision to the Standard Specifications Edition of 1990, 90P-158-R6, Topeka, KS, 12 pp.
- Kansas Department of Transportation. (1996). Special Provision to the Standard Specifications Edition of 1990, 90M-158-R6, Topeka, KS, 12 pp.
- Kansas Department of Transportation. (1997). Special Provision to the Standard Specifications Edition of 1990, 90M-158-R7, Topeka, KS, 11 pp.
- Kansas Department of Transportation. (1997). Special Provision to the Standard Specifications Edition of 1990, 90M-158-R8, Topeka, KS, 11 pp.
- Kansas Department of Transportation. (1997). Special Provision to the Standard Specifications Edition of 1990, 90M-158-R9, Topeka, KS, 11 pp.
- Kansas Department of Transportation. (1997). Special Provision to the Standard Specifications Edition of 1990, 90M-158-R10, Topeka, KS, 11 pp.
- Kansas Department of Transportation. (1998). Special Provision to the Standard Specifications Edition of 1990, 90M-95-R4, Topeka, KS, 9 pp.

- Krauss, P. D., and Rogalla, E. A. (1996). "Transverse Cracking in Newly Constructed Bridge Decks," *National Cooperative Highway Research Program Report* 380, Transportation Research Board, Washington, D.C., 126 pp.
- Le, Q. T. C., French, C., and Hajjar, J. F. (1998). "Transverse Cracking in Bridge Decks: Parametric Study," Minnesota Department of Transportation, Saint Paul, MN, 195 pp.
- McDonald, D.B., Pfeifer, D.W., and Sherman, M.R. (1998). "Corrosion Evaluation of Epoxy-Coated Metallic-Clad and Solid Metallic Reinforcing Bars in Concrete," *Report* No. FHWA-RD-98-153, *Federal Highway Administration*, McLean, VA, 127 pp.
- Mindess, S., Young, F., and Darwin, D. (2003). *Concrete*, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 417-420.
- Perfetti, G. R.; Johnston, D. W.; and Bingham, W. L. (1985). "Incidence Assessment of Transverse Cracking in Concrete Bridge Decks: Structural Considerations," *Report* No. FHWA/NC/88002 Vol. 2, North Carolina State University, Raleigh, Dept. of Civil Engineering, 201 pp.
- Poppe, J. B. (1981). "Factors Affecting the Durability of Concrete Bridge Decks: Summary Final Report," *Report* No. FHWA/CA/SD-81/2, California Department of Transportation, Division of Transportation Facilities Design, Sacramento, CA, 61 pp.
- Schmitt, T. R., and Darwin, D. (1995). "Cracking in Concrete Bridge Decks," *SM Report* No. 39, The University of Kansas Center for Research, Inc., Lawrence, Kansas, 151 pp.
- Schmitt, T. R., and Darwin, D. (1999). "Effect of Material Properties on Cracking in Bridge Decks," *Journal of Bridge Engineering*, ASCE, Feb., Vol. 4, No. 1, pp. 8-13.

- Suryavanshi, A. K., Swamy, R. N., and Cordew, G. E. (2002). "Estimation of Diffusion Coefficients for Chloride Ion Penetration into Structural Concrete," ACI Materials Journal, Vol. 99, No. 5, Sept.-Oct., pp. 441-449.
- Virmani, Y. P., and Clemeña, G. G. (1998). "Corrosion Protection-Concrete Bridges," *Report* No. FHWA-RD-98-088, Federal Highway Administration, Washington, D.C.
- Whiting, D. A., and Detwiler, R. (1998). "Silica Fume Concrete for Bridge Decks," National Cooperative Highway Research Program Report 410, Transportation Research Board, Washington, D.C., 180 pp.
- Whiting, D. A., Detwiler, R. J., and Lagergen, E. S. (2000). "Cracking Tendency and Drying Shrinkage of Silica Fume Concrete For Bridge Decks," ACI Materials Journal, Vol. 97, No. 1, Nov.-Dec., pp. 71-77.
- Whiting, David, and Michell, Terry M. (1992). "History of the Rapid Chloride Permeability Test," Transportation Research Record, Transportation Research Board. Washington, D.C., No. 1335, pp. 55-62.
- Yunovich, M., Thompson, N. G., Balvanyos, T., and Lave, L. (2002). "Highway Bridges," Appendix D, Corrosion Cost and Preventive Strategies in the United States, by G. H. Koch, M. PO, H. Broongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer, *Report* No. FHWA-RD-01-156, Federal Highway Administration, McLean, VA, 773 pp.

# **TABLES**

| Author(s) / Title                                                             | Date | Primary Sponsor                              |
|-------------------------------------------------------------------------------|------|----------------------------------------------|
| Schmitt and Darwin                                                            | 1995 | Kansas Department of<br>Transportation       |
| Miller and Darwin                                                             | 2000 | Kansas Department of<br>Transportation       |
| Portland Cement Association                                                   | 1970 | Multi-State Cooperative                      |
| Dakhil, Cady, and Carrier                                                     | 1975 | Pennsylvania State<br>University             |
| Рорре                                                                         | 1981 | California Department of<br>Transportation   |
| Volume I: Cheng and Johnston<br>Volume II: Perfetti, Johnston,<br>and Bingham | 1985 | North Carolina Department of Transportation  |
| Babaei and Purvis                                                             | 1996 | Pennsylvania Department of<br>Transportation |
| Krauss and Rogalla                                                            | 1996 | NCHRP 380                                    |
| Part I: Eppers, French, and<br>Hajjar<br>Part II: Le, French, and Hajjar      | 1998 | Minnesota Department of Transportation       |
| Whiting and Detwiler                                                          | 1998 | NCHRP 410                                    |

### Table 1.1 – Bridge deck cracking studies included in the review of literature

| Factors                                 |         | Effect   |          |          |
|-----------------------------------------|---------|----------|----------|----------|
|                                         | MAJOR   | Moderate | Minor    | NONE     |
| Design                                  |         |          |          |          |
| Restraint                               | ✓       |          |          |          |
| Continuous/simple span                  |         | ✓        |          |          |
| Deck thickness                          |         | ✓        |          |          |
| Girder type                             |         | ✓        |          |          |
| Alignment of reinforcement bars         |         | ✓        |          |          |
| Form type                               |         | ✓        |          |          |
| Concrete cover                          |         |          | <b>~</b> |          |
| Girder spacing                          |         |          | <b>~</b> |          |
| Quantity of reinforcemet                |         |          | •        |          |
| Reinforcement bar sizes                 |         |          | ~        |          |
| Dead-load deflections during casting    |         |          | <b>~</b> |          |
| Stud spacing                            |         |          | <b>~</b> |          |
| Bar type – epoxy coated                 |         |          | ✓        |          |
| Skew                                    |         |          | ✓        |          |
| Traffic volume                          |         |          |          | ✓        |
| Frequency of traffic-induced vibrations |         |          |          | ✓        |
| MATERIALS                               |         |          |          |          |
| Modulus of elasticity                   | ✓       |          |          |          |
| Creep                                   | ✓       |          |          |          |
| Heat of hydration                       | ✓       |          |          |          |
| Aggregate type                          | ✓       |          |          |          |
| Cement content and type                 | ✓       |          |          |          |
| Coefficient of thermal expansion        |         | ✓        |          |          |
| Paste volume – free shrinkage           |         | ~        |          |          |
| Water-cement ratio                      |         | ~        |          |          |
| Shrinkage-compensating cement           |         | ✓        |          |          |
| Silica fume admixture                   |         | ✓        |          |          |
| Early compressive strength              |         |          | •        |          |
| HRWRAs                                  |         |          | •        |          |
| Accelerating admixtures                 |         |          | •        |          |
| Retarding admixtures                    |         |          | ¥.       |          |
| Aggregate size                          |         |          | ¥.       |          |
| Diffusivity                             |         |          | •        |          |
| Poisson's Ratio                         |         |          | ~        |          |
| Fly ash                                 |         |          |          | <b>V</b> |
| Air content                             |         |          |          | ¥        |
| Slump                                   |         |          |          | <b>V</b> |
| Water content                           |         |          |          | ~        |
| Construction<br>Weather                 |         |          |          |          |
| Weather<br>Time of casting              | ✓<br>.4 |          |          |          |
| Curing period and method                | ✓       |          |          |          |
| Finishing procedures                    |         | <b>↓</b> |          |          |
| Vibration of fresh concrete             |         | <b>▼</b> | ب        |          |
| Pour length and sequence                |         |          | +<br>•   |          |
| Reinforcement ties                      |         |          | *        | <b>_</b> |
| Construction loads                      |         |          |          |          |
| Traffic-induced vibrations              |         |          |          |          |
| Revolutions in concrete truck           |         |          |          |          |
|                                         | L       |          |          | <b>•</b> |

Table 1.2 – Factors affecting bridge deck cracking (Krauss and Rogalla 1996)

| Material<br>Considerations      | Primary<br>Factor                    | Design and<br>Construction<br>Factors | Primary<br>Factor                          |
|---------------------------------|--------------------------------------|---------------------------------------|--------------------------------------------|
| Cement<br>Content               | K1, K2,<br>M2, N380, N410, P,<br>NC1 | Fixed Girders                         | K1, K2,<br>M1, M2                          |
| Cement Type                     | N380, P                              | Reinforcing<br>Bar Size               | K1, K2,<br>M2, PSU                         |
| Water Content                   | K1, K2, P                            | Ambient Air<br>Temperature            | K1, K2,<br>NC1, M2, N410, C                |
| Paste Volume                    | K1, K2,<br>N380                      | Time of Casting                       | N380                                       |
| Aggregate Type                  | N380, P                              | Finishing<br>Procedures               | N410, M2                                   |
| Air Content                     | NC1, K1,<br>K2                       | Girder Type                           | N410,<br>NC1, NC2, PCA,<br>N380, M1, M2, C |
| Compressive<br>Strength         | NC1, K1,<br>K2                       | Curing<br>Practices                   | N380,<br>N410, M2, K2, C                   |
| Сгеер                           | N380                                 |                                       | , , , ,                                    |
| Heat of<br>Hydration            | N380                                 |                                       |                                            |
| Modulus of<br>Elasticity        | N380                                 |                                       |                                            |
| Mineral<br>Admixtures           | N410                                 |                                       |                                            |
| Initial<br>Shrinkage Rate       | M2                                   |                                       |                                            |
| K1 – Kansas DO<br>(1995, 1999)  | Γ, Schmitt and Darwin                | NC1 – North Ca<br>and Johnston (1985) | urolina DOT, Cheng                         |
| K2 – Kansas DO<br>(2000)        | T, Miller and Darwin                 | NC2 – North Carc<br>al. (1985)        | olina DOT, Perfetti et                     |
| PCA – Durability                | (1970)                               | Purvis (1996)                         | a DOT, Babaei and                          |
| PSU – Penn. State<br>al. (1975) | e University, Dakhil et              | N380 – NCHRI<br>Rogalla (1996)        | P 380, Krauss and                          |
| C – California DO               | T, Poppe (1981)                      | N410 – NCHRP<br>Detwiler (1998)       | 410, Whiting and                           |
| M1 – Minnesota D                | OOT, Le et al. (1998)                |                                       | DOT, Eppers et al.                         |

Table 1.3 – Primary factors found to increase cracking based on previous research

|                             | Monolthic                 | Conventional<br>Overlay   | Silica Fume<br>Overlay           | Total          |
|-----------------------------|---------------------------|---------------------------|----------------------------------|----------------|
| Schmitt and<br>Darwin (S&D) | 15                        | 20                        | 2                                | $37^{\dagger}$ |
| Miller and<br>Darwin (M&D)  | 4<br>(3 S&D)              | <b>16</b><br>(6 S&D)      | <b>20</b><br>(2 S&D)             | 40             |
| Current Study               | 13<br>(12 S&D)<br>(4 M&D) | 16<br>(6 S&D)<br>(16 M&D) | <b>30</b><br>(2 S&D)<br>(20 M&D) | 59             |

Table 2.1 – Bridge deck types included in the current study and the studies by Schmitt and Darwin (1995, 1999) and Miller and Darwin (2000)

<sup>†</sup>Study also included 3 non-composite bridge decks that are not included in the data evaluated in this study.

| FISCAL<br>YEAR | Rock Sa     | lt Totals | Average Appl | ication Rate          |
|----------------|-------------|-----------|--------------|-----------------------|
|                | (kg × 1000) | (Tons)    | $(kg/m^2)$   | (lb/yd <sup>2</sup> ) |
| 1998           | 34,443      | 37,967    | 1.29         | 2.38                  |
| 1999           | 30,956      | 34,123    | 1.16         | 2.14                  |
| 2000           | 28,519      | 31,437    | 1.07         | 1.97                  |
| 2001           | 43,906      | 48,398    | 1.65         | 3.04                  |
| 2002           | 29,544      | 32,567    | 1.10         | 2.04                  |
| 2003           | 23,903      | 26,348    | 0.89         | 1.65                  |
| 2004           | 39,639      | 43,348    | 1.48         | 2.73                  |
| Average        | 32,987      | 36,362    | 1.24         | 2.28                  |

## Table 3.1 – KDOT District One Salt Usage History

<sup>†</sup>The average application rate is calculated using the total lane miles reported annually by KDOT which has increased slightly from 7,281 km (4,524 mi.) in 1998 to 7,313 km (4,544 mi.) in 2004.

|                      | (                 | Time (mont<br>reach<br>).6 kg/m <sup>3</sup> (1.0 | ,                 | <b>T</b> i<br>1   | ime (months)<br>1.2 kg/m <sup>3</sup> (2.0 | to reach<br>lb/yd <sup>3</sup> ) |
|----------------------|-------------------|---------------------------------------------------|-------------------|-------------------|--------------------------------------------|----------------------------------|
| Depth                | 2                 | Tre                                               | 2                 | 2                 | Tre                                        | 2                                |
|                      | 0% U <sup>†</sup> | nd Line                                           | 0% L <sup>‡</sup> | 0% U <sup>†</sup> | nd Line                                    | 0% L <sup>‡</sup>                |
| 25.4 mm<br>(1.0 in.) | 0                 | 23                                                | 6<br>5            | 3                 | 44                                         | 8<br>6                           |
| 50.8 mm<br>(2.0 in.) | 2<br>0            | 91                                                | 1<br>63           | 8                 | 152                                        | 2<br>22                          |
| 63.5 mm              | 6                 | 14                                                | 2                 | 1                 | 261                                        | 3                                |
| (2.5 in.)            | 9                 | 3                                                 | 18                | 86                |                                            | 35                               |
| 76.2 mm              | 1                 | 25                                                | 3                 | 4                 | 504                                        | 5                                |
| (3.0 in.)            | 60                | 4                                                 | 49                | 10                |                                            | 99                               |

Table 3.2 – Time to corrosion threshold for uncracked concrete based on data fromFigs. 3.1 through 3.4

<sup>†</sup>The upper 20% prediction interval category (20% U) indicates the time at which only 20% of the decks are expected to reach the corrosion threshold more quickly.

<sup>\*</sup>The lower 20% prediction interval category (20% L) indicates the time at which 80% of the decks are expected to reach the corrosion threshold more quickly.

Table 3.3a – Average apparent surface concentration build-up rates[kg/m³/month (kg/m³/year)] and standard deviations for all bridge types

|                                  | All              | Monolithic       | Conventional<br>Overlay | Silica<br>Fume<br>Overlay |
|----------------------------------|------------------|------------------|-------------------------|---------------------------|
| Average                          | 0.038<br>(0.456) | 0.042<br>(0.504) | 0.017 (0.204)           | 0.055<br>(0.660)          |
| Standard<br>Deviation            | 0.032<br>(0.384) | 0.011<br>(0.132) | 0.034 (0.408)           | 0.050<br>(0.600)          |
| Age<br>Range [months<br>(years)] | 4 –<br>145       | 36 - 133         | 36 - 145                | 4 –<br>142                |

|                                  | All              | Monolithic       | Conventional<br>Overlay | Silica<br>Fume<br>Overlay |
|----------------------------------|------------------|------------------|-------------------------|---------------------------|
| Average                          | 0.064<br>(0.769) | 0.071<br>(0.849) | 0.029 (0.344)           | 0.093<br>(1.112)          |
| Standard<br>Deviation            | 0.054<br>(0.647) | 0.019<br>(0.222) | 0.057 (0.688)           | 0.084<br>(1.011)          |
| Age<br>Range [months<br>(years)] | 4 –<br>145       | 36 - 133         | 36 - 145                | 4 –<br>142                |

Table 3.3b – Average apparent surface concentration build-up rates[lb/yd³/month (lb/yd³/year)] and standard deviations for all bridge types

|                                     |               |        |        | 80%   |   | 90%   |   | 95%   |   | 98%   |   |
|-------------------------------------|---------------|--------|--------|-------|---|-------|---|-------|---|-------|---|
| Monolithic Decks Confidence Level a |               |        |        |       |   |       |   |       |   |       |   |
| (mo                                 | nths)         | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 48 to 96                            | over 96       | 17     | 0.291  | 1.333 | N | 1.740 | N | 2.110 | N | 2.567 | N |
| Convention                          | al Overlays   |        |        |       |   |       |   |       |   |       |   |
| (mo                                 | nths)         | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 0 to 48                             | 48 to 96      | 39     | 3.061  | 1.304 | Y | 1.685 | Y | 2.023 | Y | 2.426 | Y |
| 0 to 48                             | over 96       | 34     | 3.459  | 1.307 | Y | 1.691 | Y | 2.032 | Y | 2.441 | Y |
| 48 to 96                            | over 96       | 59     | 0.653  | 1.296 | N | 1.671 | N | 2.001 | N | 2.391 | N |
| Silica Fum                          | e Overlays    |        |        |       |   |       |   |       |   |       |   |
| (mo                                 | nths)         | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 0 to 48 (7%)                        | 0 to 48 (5%)  | 49     | 1.587  | 1.299 | Y | 1.677 | N | 2.010 | N | 2.405 | Ν |
| 0 to 48 (7%)                        | 48 to 96 (5%) | 51     | 4.550  | 1.298 | Y | 1.675 | Y | 2.008 | Y | 2.402 | Y |
| 0 to 48 (7%)                        | 96+ (5%)      | 15     | 0.891  | 1.341 | Ν | 1.753 | Ν | 2.132 | Ν | 2.603 | Ν |
| 0 to 48 (5%)                        | 48 to 96 (5%) | 76     | 4.254  | 1.293 | Y | 1.665 | Y | 1.992 | Y | 2.376 | Y |
| 48 to 96 (5%)                       | 96+ (5%)      | 42     | 1.606  | 1.302 | Y | 1.682 | Ν | 2.018 | Ν | 2.419 | Ν |

# Table 3.4 – Student's t-test for mean effective diffusion coefficients $D_{eff}$ versus placement age (Figs. 3.22, 3.25, 3.28)

### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

Table 3.5 – Average rate of change for effective diffusion coefficients  $D_{eff}$  obtained from dummy variable regression analysis.

|                                 | Number of<br>Placements | Number of<br>Surveys | Mean Age<br>(months) | Average Rate of<br>Change<br>(mm²/day/month) | R <sup>2</sup> |
|---------------------------------|-------------------------|----------------------|----------------------|----------------------------------------------|----------------|
| Monolithic Decks                | 4                       | 8                    | 94                   | -3.613 × 10 <sup>-4</sup>                    | 0.64           |
| Conventional<br>Overlay Decks   | 36                      | 71                   | 87                   | $-5.182 \times 10^{-4}$                      | 0.94           |
| 5% Silica Fume<br>Overlay Decks | 42                      | 83                   | 51                   | $-1.035 \times 10^{-3}$                      | 0.84           |

Table 3.6 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}^*$  versus placement age (Figs. 3.30, 3.31)

|            |                                     |        |        | 80%   |   | 90%   |   | 95%   |   | 98%   |   |
|------------|-------------------------------------|--------|--------|-------|---|-------|---|-------|---|-------|---|
| Bridge D   | Bridge Deck Type Confidence Level α |        |        |       |   |       |   |       |   |       |   |
| 0 to 48 m  | onths old                           | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 7% SFO     | 5% SFO                              | 49     | 1.587  | 1.299 | Y | 1.677 | N | 2.010 | N | 2.405 | Ν |
| 7% SFO     | СО                                  | 19     | 0.396  | 1.328 | Ν | 1.729 | Ν | 2.093 | Ν | 2.540 | Ν |
| 5% SFO     | СО                                  | 44     | 0.919  | 1.301 | N | 1.680 | N | 2.015 | N | 2.414 | N |
| Bridge D   | eck Type                            |        |        |       |   |       |   |       |   |       |   |
| 48 to 96 m | nonths old                          | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 5% SFO     | СО                                  | 71     | 1.270  | 1.294 | Ν | 1.667 | Ν | 1.994 | Ν | 2.380 | Ν |
| 5% SFO     | MONO                                | 42     | 4.466  | 1.302 | Y | 1.682 | Y | 2.018 | Y | 2.419 | Y |
| СО         | MONO                                | 35     | 3.154  | 1.306 | Y | 1.690 | Y | 2.030 | Y | 2.438 | Y |

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

Table 3.7 – The time (years) to reach corrosion threshold levels at a depth of 76 mm (3 in.) based on adjusted effective diffusion coefficients  $D_{eff}$  calculated from data obtained within the first 48 months of deck construction using Fick's Second Law of Diffusion [Eq. (1.2)]

| Deck<br>Type | C <sub>o</sub><br>(kg/m <sup>3</sup> ) | <i>Adj. D<sub>eff</sub></i><br>(mm <sup>2</sup> /day) | Time<br>(years) to<br>reach<br>0.60<br>kg/m <sup>3</sup> | Time<br>(years) to<br>reach<br>1.20<br>kg/m <sup>3</sup> |
|--------------|----------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 7%<br>SFO    | 6.0                                    | 0.17                                                  | 17.6                                                     | 23.0                                                     |
| 5%<br>SFO    | 6.0                                    | 0.13                                                  | 23.4                                                     | 30.5                                                     |
| CO           | 6.0                                    | 0.16                                                  | 18.0                                                     | 23.5                                                     |

Table 3.8 – The time (years) to reach corrosion threshold levels at a depth of 76 mm (3 in.) based on adjusted effective diffusion coefficients  $D_{eff}^*$  calculated from data obtained between 48 and 96 months of deck construction using Fick's Second Law of Diffusion [Eq. (1.2)]

| Deck<br>Type | Co<br>(kg/m³) | <i>Adj. D<sub>eff</sub></i><br>(mm <sup>2</sup> /day) | Time<br>(years) to<br>reach<br>0.60<br>kg/m <sup>3</sup> | Time<br>(years) to<br>reach<br>1.20<br>kg/m <sup>3</sup> |
|--------------|---------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 5%<br>SFO    | 10.0          | 0.07                                                  | 33.4                                                     | 41.0                                                     |
| СО           | 10.0          | 0.09                                                  | 25.0                                                     | 30.8                                                     |
| MONO         | 10.0          | 0.17                                                  | 13.6                                                     | 16.7                                                     |

|              |              |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|--------------|--------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fum   | e Overlays   |        |        |       |   |       |      |         |   |       |   |
| 0 to 48      | months       |        |        |       |   | Confi | denc | e Level | α |       |   |
| Special Prov | ision Number | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| R1, R2       | R3           | 15     | 1.346  | 1.341 | Y | 1.753 | Ν    | 2.131   | Ν | 2.602 | Ν |
| R1, R2       | R4, R5, R6   | 27     | 2.978  | 1.314 | Y | 1.703 | Y    | 2.052   | Y | 2.473 | Y |
| R1, R2       | R8, R9       | 19     | 2.178  | 1.328 | Y | 1.729 | Y    | 2.093   | Y | 2.539 | Ν |
| R3           | R4, R5, R6   | 28     | 1.333  | 1.313 | Y | 1.701 | Ν    | 2.048   | Ν | 2.467 | Ν |
| R3           | R8, R9       | 20     | 1.261  | 1.325 | Ν | 1.725 | Ν    | 2.086   | Ν | 2.528 | Ν |
| R4, R5, R6   | R8, R9       | 32     | 0.606  | 1.309 | N | 1.694 | N    | 2.037   | N | 2.449 | N |
| Silica Fum   | e Overlays   |        |        |       |   |       |      |         |   |       |   |
| 48 to 96     | months       |        |        |       |   |       |      |         |   |       |   |
| Special Prov | ision Number | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| none         | R1, R2       | 10     | 0.408  | 1.372 | Ν | 1.812 | Ν    | 2.228   | N | 2.764 | Ν |
| none         | R3           | 15     | 0.381  | 1.341 | Ν | 1.753 | Ν    | 2.131   | Ν | 2.602 | Ν |
| none         | R4, R5, R6   | 25     | 0.401  | 1.316 | Ν | 1.708 | Ν    | 2.060   | Ν | 2.485 | Ν |
| R1, R2       | R3           | 19     | 0.952  | 1.328 | Ν | 1.729 | Ν    | 2.093   | Ν | 2.539 | Ν |
| R1, R2       | R4, R5, R6   | 31     | 0.848  | 1.309 | Ν | 1.696 | Ν    | 2.040   | Ν | 2.453 | Ν |
| R3           | R4, R5, R6   | 30     | 0.255  | 1.310 | Ν | 1.697 | Ν    | 2.042   | Ν | 2.457 | N |

Table 3.9 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}^*$  versus special provision number (Figs. 3.32)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|             |               |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|-------------|---------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fun  | ne Overlays   |        |        |       |   |       |      |         |   |       |   |
| 0 to 48     | months        |        |        |       |   | Confi | denc | e Level | α |       |   |
| slum        | p (mm)        | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 38 (5% SFO) | 64 (5% SFO)   | 22     | 1.125  | 1.321 | Ν | 1.717 | Ν    | 2.074   | Ν | 2.508 | Ν |
| 38 (5% SFO) | 89 (5% SFO)   | 11     | 0.180  | 1.363 | Ν | 1.796 | Ν    | 2.201   | Ν | 2.718 | Ν |
| 38 (5% SFO) | >100 (5% SFO) | 6      | 0.930  | 1.440 | Ν | 1.943 | Ν    | 2.447   | Ν | 3.143 | Ν |
| 64 (5% SFO) | 89 (5% SFO)   | 25     | 0.991  | 1.316 | Ν | 1.708 | Ν    | 2.060   | Ν | 2.485 | Ν |
| 64 (5% SFO) | >100 (5% SFO) | 21     | 0.079  | 1.323 | Ν | 1.721 | Ν    | 2.080   | Ν | 2.518 | Ν |
| 89 (5% SFO) | >100 (5% SFO) | 9      | 0.537  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | Ν |
| 64 (7% SFO) | 89 (7% SFO)   | 8      | 0.510  | 1.397 | Ν | 1.860 | Ν    | 2.306   | Ν | 2.896 | Ν |
| 64 (7% SFO) | >100 (7% SFO) | 3      | 0.259  | 1.638 | Ν | 2.353 | Ν    | 3.182   | Ν | 4.541 | Ν |
| 89 (7% SFO) | >100 (7% SFO) | 7      | 0.735  | 1.415 | Ν | 1.895 | Ν    | 2.365   | Ν | 2.998 | Ν |
|             |               |        |        |       |   |       |      |         |   |       |   |
| Silica Fun  | ne Overlays   |        |        |       |   |       |      |         |   |       |   |
| 48 to 9     | 6 months      |        |        |       |   |       |      |         |   |       |   |
| slum        | p (mm)        | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 38          | 64            | 22     | 0.893  | 1.321 | Ν | 1.717 | Ν    | 2.074   | Ν | 2.508 | Ν |
| 38          | 89            | 11     | 1.170  | 1.363 | Ν | 1.796 | Ν    | 2.201   | Ν | 2.718 | Ν |
| 38          | >100          | 6      | 1.369  | 1.440 | Ν | 1.943 | Ν    | 2.447   | Ν | 3.143 | Ν |
| 64          | 89            | 25     | 0.213  | 1.316 | Ν | 1.708 | Ν    | 2.060   | Ν | 2.485 | Ν |
| 64          | >100          | 21     | 0.064  | 1.323 | Ν | 1.721 | Ν    | 2.080   | Ν | 2.518 | Ν |
| 89          | >100          | 9      | 0.115  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | N |

Table 3.10 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}$ \* versus concrete slump (Figs. 3.33, 3.34, 3.35, 3.36)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|              |          |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|--------------|----------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Conventional | Overlays |        |        |       |   |       |      |         |   |       |   |
| 48 to 96 n   | nonths   |        | _      |       |   | Confi | denc | e Level | α |       |   |
| slump (      | mm)      | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0            | 6        | 9      | 2.994  | 1.383 | Y | 1.833 | Y    | 2.262   | Y | 2.821 | Y |
| 0            | 13       | 12     | 1.179  | 1.356 | Ν | 1.782 | Ν    | 2.179   | Ν | 2.681 | Ν |
| 0            | 19       | 9      | 1.633  | 1.383 | Y | 1.833 | Ν    | 2.262   | Ν | 2.821 | Ν |
| 6            | 13       | 13     | 0.068  | 1.350 | Ν | 1.771 | Ν    | 2.160   | Ν | 2.650 | Ν |
| 6            | >19      | 10     | 0.559  | 1.372 | Ν | 1.812 | Ν    | 2.228   | Ν | 2.764 | N |
| 13           | >19      | 13     | 0.278  | 1.350 | N | 1.771 | Ν    | 2.160   | N | 2.650 | N |
| Conventional | Overlays |        |        |       |   |       |      |         |   |       |   |
| 96 to 144 i  | nonths   |        |        |       |   |       |      |         |   |       |   |
| slump (      | mm)      | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0            | 6        | 9      | 0.584  | 1.383 | N | 1.833 | N    | 2.262   | N | 2.821 | Ν |
| 0            | 13       | 15     | 0.415  | 1.341 | Ν | 1.753 | Ν    | 2.131   | Ν | 2.602 | Ν |
| 0            | 19       | 11     | 0.913  | 1.363 | Ν | 1.796 | Ν    | 2.201   | Ν | 2.718 | Ν |
| 6            | 13       | 12     | 0.287  | 1.356 | Ν | 1.782 | Ν    | 2.179   | Ν | 2.681 | N |
| 6            | 19       | 8      | 0.361  | 1.397 | Ν | 1.860 | Ν    | 2.306   | Ν | 2.896 | N |
| 13           | 19       | 14     | 0.604  | 1.345 | N | 1.761 | Ν    | 2.145   | N | 2.624 | N |
| Monoli       | thic     |        |        |       |   |       |      |         |   |       |   |
| over 120 r   | nonths   |        |        |       |   |       |      |         |   |       |   |
| slump (      | mm)      | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 44           | 57       | 9      | 1.170  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | N |
| 44           | 89       | 6      | 0.306  | 1.440 | Ν | 1.943 | Ν    | 2.447   | Ν | 3.143 | N |
| 57           | 89       | 7      | 0.663  | 1.415 | Ν | 1.895 | Ν    | 2.365   | Ν | 2.998 | Ν |

# Table 3.10 (con't)- Student's t-test for mean adjusted effective diffusioncoefficients $D_{eff}$ \* versus concrete slump (Figs. 3.33, 3.34, 3.35, 3.36)

### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|              |              |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|--------------|--------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fum   | e Overlays   |        |        |       |   |       |      |         |   |       |   |
| 0 to 48      | Months       |        |        |       |   | Confi | denc | e Level | α |       |   |
| (%           | <b>(0)</b>   | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.5 (5% SFO) | 5.5 (5% SFO) | 29     | 1.426  | 1.311 | Y | 1.699 | Ν    | 2.045   | Ν | 2.462 | Ν |
| 4.5 (5% SFO) | 6.5 (5% SFO) | 15     | 2.107  | 1.341 | Y | 1.753 | Y    | 2.131   | Ν | 2.602 | Ν |
| 5.5 (5% SFO) | 6.5 (5% SFO) | 18     | 1.366  | 1.330 | Y | 1.734 | Ν    | 2.101   | Ν | 2.552 | Ν |
| 5.5 (7% SFO) | 5.5 (5% SFO) | 18     | 0.045  | 1.330 | Ν | 1.734 | Ν    | 2.101   | Ν | 2.552 | Ν |
| 6.5 (7% SFO) | 6.5 (5% SFO) | 4      | 0.161  | 1.533 | Ν | 2.132 | Ν    | 2.776   | Ν | 3.747 | Ν |
| 5.5 (7% SFO) | 6.5 (7% SFO) | 4      | 0.698  | 1.533 | N | 2.132 | N    | 2.776   | N | 3.747 | N |
| Silica Fum   | e Overlays   |        |        |       |   |       |      |         |   |       |   |
| 48 to 96     | Months       |        |        |       |   |       |      |         |   |       |   |
| (%           | 6)           | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.5          | 5.5          | 29     | 0.950  | 1.311 | Ν | 1.699 | Ν    | 2.045   | Ν | 2.462 | Ν |
| 4.5          | 6.5          | 15     | 1.539  | 1.341 | Y | 1.753 | Ν    | 2.131   | Ν | 2.602 | Ν |
| 5.5          | 6.5          | 18     | 1.117  | 1.330 | N | 1.734 | N    | 2.101   | N | 2.552 | N |
| Convention   | al Overlays  |        |        |       |   |       |      |         |   |       |   |
| 48 to 96     | Months       |        |        |       |   |       |      |         |   |       |   |
| (%           | <b>(0)</b>   | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.375        | 5.125        | 9      | 0.282  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | Ν |
| 4.375        | 5.875        | 10     | 0.322  | 1.372 | Ν | 1.812 | Ν    | 2.228   | Ν | 2.764 | Ν |
| 4.375        | 6.625        | 6      | 1.414  | 1.440 | Ν | 1.943 | Ν    | 2.447   | Ν | 3.143 | Ν |
| 5.125        | 5.875        | 13     | 0.049  | 1.350 | Ν | 1.771 | Ν    | 2.160   | Ν | 2.650 | Ν |
| 5.125        | 6.625        | 9      | 1.486  | 1.383 | Y | 1.833 | Ν    | 2.262   | Ν | 2.821 | Ν |
| 5.875        | 6.625        | 10     | 1.478  | 1.372 | Y | 1.812 | Ν    | 2.228   | Ν | 2.764 | Ν |

Table 3.11 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}$ \* versus air content (Figs. 3.37, 3.38, 3.39, 3.40)

### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|              |           |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|--------------|-----------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Conventional | Overlays  |        |        |       |   |       |      |         |   |       |   |
| 96 to 144 N  | Months    |        |        |       |   | Confi | denc | e Level | α |       |   |
| (%)          | )         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.375        | 5.125     | 7      | 1.415  | 1.415 | N | 1.895 | N    | 2.365   | N | 2.998 | N |
| 4.375        | 5.875     | 12     | 1.356  | 1.356 | Ν | 1.782 | Ν    | 2.179   | Ν | 2.681 | Ν |
| 4.375        | 6.625     | 5      | 1.476  | 1.476 | Y | 2.015 | Ν    | 2.571   | Ν | 3.365 | Ν |
| 5.125        | 5.875     | 15     | 1.341  | 1.341 | Ν | 1.753 | Ν    | 2.131   | Ν | 2.602 | Ν |
| 5.125        | 6.625     | 8      | 1.397  | 1.397 | Ν | 1.860 | Ν    | 2.306   | Ν | 2.896 | Ν |
| 5.875        | 6.625     | 13     | 1.350  | 1.350 | Y | 1.771 | N    | 2.160   | N | 2.650 | N |
| Monolithic   | : Decks   |        |        |       |   |       |      |         |   |       |   |
| Over 120 Mo  | onths Old |        |        |       |   |       |      |         |   |       |   |
| (%)          | 1         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.875        | 5.625     | 10     | 1.804  | 1.372 | Y | 1.812 | Ν    | 2.228   | Ν | 2.764 | N |
| 4.875        | 6.375     | 4      | 0.806  | 1.533 | Ν | 2.132 | Ν    | 2.776   | Ν | 3.747 | N |
| 5.625        | 6.375     | 8      | 1.602  | 1.397 | Y | 1.860 | Ν    | 2.306   | Ν | 2.896 | Ν |

Table 3.11 (con't) – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}$ \* versus air content (Figs. 3.37, 3.38, 3.39, 3.40)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|                   |                   |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|-------------------|-------------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fum        | e Overlays        |        |        |       |   | Confi | denc | e Level | α |       |   |
| 0 to 48           | Months            | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0.37 (7%)         | 0.38 (5%)         | 16     | 0.626  | 1.337 | Ν | 1.746 | Ν    | 2.120   | Ν | 2.583 | Ν |
| 0.37 (7%)         | 0.40 (5%)         | 42     | 1.574  | 1.302 | Y | 1.682 | Ν    | 2.018   | Ν | 2.418 | N |
| 0.38 (5%)         | 0.40 (5%)         | 36     | 0.400  | 1.306 | N | 1.688 | N    | 2.028   | Ν | 2.434 | N |
| Silica Fum        | e Overlays        |        |        |       |   |       |      |         |   |       |   |
| 48 to 96          | Months            | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0.38 (5%)         | 0.40 (5%)         | 36     | 2.357  | 1.306 | Y | 1.688 | Y    | 2.028   | Y | 2.434 | N |
| Convention        | al Overlays       |        |        |       |   |       |      |         |   |       |   |
| 48 to 96          | Months            | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0.36              | 0.38              | 27     | 1.833  | 1.314 | Y | 1.703 | Y    | 2.052   | N | 2.473 | Ν |
| 0.36              | 0.40              | 24     | 1.328  | 1.318 | Y | 1.711 | Ν    | 2.064   | Ν | 2.492 | Ν |
| 0.38              | 0.40              | 9      | 2.283  | 1.383 | Y | 1.833 | Y    | 2.262   | Y | 2.821 | N |
| Convention        | al Overlays       |        |        |       |   |       |      |         |   |       |   |
| 96 to 144         | Months            | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0.36              | 0.38              | 27     | 2.875  | 1.314 | Y | 1.703 | Y    | 2.052   | Y | 2.473 | Y |
| 0.36              | 0.40              | 24     | 0.864  | 1.318 | Ν | 1.711 | Ν    | 2.064   | Ν | 2.492 | N |
| 0.38              | 0.40              | 9      | 2.851  | 1.383 | Y | 1.833 | Y    | 2.262   | Y | 2.821 | Y |
| Monolith          | nic Decks         |        |        |       |   |       |      |         |   |       |   |
| <b>Over 120 M</b> | <b>Jonths</b> Old | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0.42              | 0.44              | 12     | 1.627  | 1.356 | Y | 1.782 | N    | 2.179   | Ν | 2.681 | N |

Table 3.12 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}^*$  versus water-cementitious material ratio (Figs. 3.41, 3.42, 3.43)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|          |                   |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|----------|-------------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Mono     | olithic           |        |        |       |   |       |      |         |   |       |   |
| Over 120 | ) Months          |        |        |       |   | Confi | denc | e Level | α |       |   |
| (kg/     | /m <sup>3</sup> ) | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 27       | 28                | 10     | 0.521  | 1.372 | N | 1.812 | N    | 2.228   | N | 2.764 | Ν |
| 27       | 29                | 8      | 0.703  | 1.397 | Ν | 1.860 | Ν    | 2.306   | Ν | 2.896 | Ν |
| 28       | 29                | 4      | 0.328  | 1.533 | Ν | 2.132 | Ν    | 2.776   | Ν | 3.747 | Ν |

Table 3.13 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}$ \* versus percent volume of water and cement (Figs. 3.44)

Table 3.14 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}$ \* versus water content (Figs. 3.45)

|                  |                   |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|------------------|-------------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Mono             | olithic           |        |        |       |   |       |      |         |   |       |   |
| <b>Over 12</b> ( | ) Months          |        |        |       |   | Confi | denc | e Level | α |       |   |
| (kg/             | /m <sup>3</sup> ) | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 147              | 156               | 2      | 2.564  | 1.886 | Y | 2.920 | N    | 4.303   | N | 6.965 | N |
| 147              | 165               | 11     | 1.649  | 1.363 | Y | 1.796 | Ν    | 2.201   | Ν | 2.718 | Ν |
| 156              | 165               | 2      | 0.360  | 1.886 | Ν | 2.920 | Ν    | 4.303   | Ν | 6.965 | Ν |

Table 3.15 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}^*$  versus cement content (Figs. 3.46)

|                   |                  |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|-------------------|------------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Monoli            | thic             |        |        |       |   |       |      |         |   |       |   |
| <b>Over 120</b> I | Months           |        |        |       |   | Confi | denc | e Level | α |       |   |
| (kg/m             | 1 <sup>3</sup> ) | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 357 & 359         | 379              | 11     | 0.749  | 1.363 | Ν | 1.796 | Ν    | 2.201   | Ν | 2.718 | Ν |

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|             |             |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|-------------|-------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fum  | e Overlays  |        |        |       |   |       |      |         |   |       |   |
| 0 to 48     | Months      |        |        |       |   | Confi | denc | e Level | α |       |   |
| (M          | Pa)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 38 (5% SFO) | 45 (5% SFO) | 8      | 0.513  | 1.397 | Ν | 1.860 | Ν    | 2.306   | Ν | 2.896 | Ν |
| 38 (5% SFO) | 52 (5% SFO) | 9      | 0.710  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | Ν |
| 38 (5% SFO) | 59 (5% SFO) | 6      | 0.429  | 1.440 | Ν | 1.943 | Ν    | 2.447   | Ν | 3.143 | Ν |
| 45 (5% SFO) | 52 (5% SFO) | 11     | 2.009  | 1.363 | Y | 1.796 | Y    | 2.201   | Ν | 2.718 | Ν |
| 45 (5% SFO) | 59 (5% SFO) | 8      | 1.023  | 1.397 | Ν | 1.860 | Ν    | 2.306   | Ν | 2.896 | Ν |
| 52 (5% SFO) | 59 (5% SFO) | 9      | 0.071  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | Ν |
| 45 (7% SFO) | 52 (7% SFO) | 4      | 0.239  | 1.533 | Ν | 2.132 | N    | 2.776   | N | 3.747 | N |
| Silica Fum  | e Overlays  |        |        |       |   |       |      |         |   |       |   |
| 48 to 96    | Months      |        |        |       |   |       |      |         |   |       |   |
| (M          | Pa)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 38          | 45          | 8      | 1.804  | 1.397 | Y | 1.860 | N    | 2.306   | N | 2.896 | Ν |
| 38          | 52          | 9      | 1.042  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | Ν |
| 38          | 59          | 6      | 1.351  | 1.440 | Ν | 1.943 | Ν    | 2.447   | Ν | 3.143 | Ν |
| 45          | 52          | 11     | 2.436  | 1.363 | Y | 1.796 | Y    | 2.201   | Y | 2.718 | Ν |
| 45          | 59          | 8      | 0.418  | 1.397 | Ν | 1.860 | Ν    | 2.306   | Ν | 2.896 | Ν |
| 52          | 59          | 9      | 1.838  | 1.383 | Y | 1.833 | Y    | 2.262   | Ν | 2.821 | Ν |

Table 3.16 – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}$ \* versus concrete compressive strength (Figs. 3.47, 3.48, 3.49, 3.50)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|            |              |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|------------|--------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Convention | nal Overlays |        |        |       |   |       |      |         |   |       |   |
| 48 to 96   | 5 Months     |        |        |       |   | Confi | denc | e Level | α |       |   |
| (M         | IPa)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 38         | 45           | 10     | 1.238  | 1.372 | N | 1.812 | Ν    | 2.228   | N | 2.764 | N |
| 38         | 52           | 9      | 0.317  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | N |
| 45         | 52           | 9      | 0.998  | 1.383 | N | 1.833 | N    | 2.262   | N | 2.821 | N |
| Convention | nal Overlays |        |        |       |   |       |      |         |   |       |   |
| 96 to 14   | 4 Months     |        |        |       |   |       |      |         |   |       |   |
| (M         | IPa)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 38         | 45           | 11     | 0.449  | 1.363 | N | 1.796 | Ν    | 2.201   | Ν | 2.718 | N |
| 38         | 52.00        | 9      | 0.063  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | N |
| 45         | 52.00        | 10     | 0.381  | 1.372 | N | 1.812 | N    | 2.228   | N | 2.764 | N |
| Monolit    | hic Decks    |        |        |       |   |       |      |         |   |       |   |
| Over 120   | Months Old   |        |        |       |   |       |      |         |   |       |   |
| (M         | IPa)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 31         | 38           | 3      | 0.579  | 1.638 | Ν | 2.353 | Ν    | 3.182   | Ν | 4.541 | N |
| 31         | 45           | 4      | 0.716  | 1.533 | Ν | 2.132 | Ν    | 2.776   | Ν | 3.747 | N |
| 38         | 45           | 6      | 0.010  | 1.440 | Ν | 1.943 | Ν    | 2.447   | Ν | 3.143 | Ν |

Table 3.16 (con't) – Student's t-test for mean adjusted effective diffusion coefficients  $D_{eff}$  \* versus concrete compressive strength (Figs. 3.47, 3.48, 3.49, 3.50)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|                                 | Number of<br>Bridges | Number of<br>Surveys | Mean Age<br>(months) | Cracking Rate<br>(m/m <sup>2</sup> /month) | R <sup>2</sup> |
|---------------------------------|----------------------|----------------------|----------------------|--------------------------------------------|----------------|
| Monolithic Decks                | 13                   | 29                   | 115                  | 0.0013                                     | 0.94           |
| Conventional<br>Overlay Decks   | 16                   | 36                   | 87                   | 0.0008                                     | 0.85           |
| 5% Silica Fume<br>Overlay Decks | 20                   | 42                   | 53                   | 0.0028                                     | 0.86           |

Table 4.1 – Cracking rates obtained from dummy variable regression analysis

Table 4.2 – Student's t-test for mean crack density versus date of construction for individual bridge decks [both age-corrected and non age-corrected (Figs. 4.10, 4.11, 4.12)]

|                      |        |        | 80%   |   | 90%   |       | 95%       |   | 98%   |   |
|----------------------|--------|--------|-------|---|-------|-------|-----------|---|-------|---|
| Monolithic Decks     |        |        |       |   | Confi | idenc | e Level ( | x |       |   |
| (construction years) | d.o.f. | t calc | 0.20  |   | 0.10  |       | 0.05      |   | 0.02  |   |
| 1984-1987 1990-199   | 3 11   | 1.990  | 1.363 | Y | 1.796 | Y     | 2.201     | Ν | 2.718 | Ν |
| 1984-1987* 1990-1993 | 3* 11  | 2.803  | 1.363 | Y | 1.796 | Y     | 2.201     | Y | 2.718 | Y |

Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|            |             |        |        | 80%   |   | 90%   |   | 95%   |   | 98%   |   |
|------------|-------------|--------|--------|-------|---|-------|---|-------|---|-------|---|
| Convention | al Overlays |        |        |       |   |       |   |       |   |       |   |
| (construct | ion years)  | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 1985-1987  | 1990-1992   | 21     | 2.965  | 1.323 | Y | 1.721 | Y | 2.080 | Y | 2.518 | Y |
| 1985-1987  | 1993-1995   | 7      | 4.257  | 1.415 | Y | 1.895 | Y | 2.365 | Y | 2.998 | Y |
| 1990-1992  | 1993-1995   | 18     | 2.694  | 1.330 | Y | 1.734 | Y | 2.101 | Y | 2.552 | Y |
| 1985-1987* | 1990-1992*  | 21     | 2.965  | 1.323 | Y | 1.721 | Y | 2.080 | Y | 2.518 | Y |
| 1985-1987* | 1993-1995*  | 7      | 4.437  | 1.415 | Y | 1.895 | Y | 2.365 | Y | 2.998 | Y |
| 1990-1992* | 1993-1995*  | 18     | 3.056  | 1.330 | Y | 1.734 | Y | 2.101 | Y | 2.552 | Y |
|            |             |        |        |       |   |       |   |       |   |       |   |
| Silica Fum | e Overlays  |        |        |       |   |       |   |       |   |       |   |
| (construct | ion years)  | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 1990-1991  | 1995-1996   | 10     | 2.616  | 1.372 | Y | 1.812 | Y | 2.228 | Y | 2.764 | Ν |
| 1990-1991  | 1997-1998   | 8      | 5.598  | 1.397 | Y | 1.860 | Y | 2.306 | Y | 2.896 | Y |
| 1990-1991  | 2000-2002   | 10     | 2.091  | 1.372 | Y | 1.812 | Y | 2.228 | Ν | 2.764 | Ν |
| 1995-1996  | 1997-1998   | 16     | 2.048  | 1.337 | Y | 1.746 | Y | 2.120 | Ν | 2.583 | Ν |
| 1995-1996  | 2000-2002   | 18     | 1.008  | 1.330 | Ν | 1.734 | Ν | 2.101 | Ν | 2.552 | Ν |
| 1997-1998  | 2000-2002   | 16     | 0.363  | 1.337 | Ν | 1.746 | Ν | 2.120 | Ν | 2.583 | Ν |
| 1990-1991* | 1995-1996*  | 10     | 1.981  | 1.372 | Y | 1.812 | Y | 2.228 | N | 2.764 | N |
| 1990-1991* | 1997-1998*  | 8      | 4.329  | 1.397 | Y | 1.860 | Y | 2.306 | Y | 2.896 | Y |
| 1990-1991* | 2000-2002*  | 10     | 1.317  | 1.372 | Ν | 1.812 | Ν | 2.228 | Ν | 2.764 | Ν |
| 1995-1996* | 1997-1998*  | 16     | 1.553  | 1.337 | Y | 1.746 | Ν | 2.120 | Ν | 2.583 | N |
| 1995-1996* | 2000-2002*  | 18     | 0.273  | 1.330 | Ν | 1.734 | Ν | 2.101 | Ν | 2.552 | N |
| 1997-1998* | 2000-2002*  | 16     | 0.738  | 1.337 | Ν | 1.746 | N | 2.120 | Ν | 2.583 | N |

Table 4.2 (con't) – Student's t-test for mean crack density versus date of construction for individual bridge decks [both age-corrected and non age-corrected (Figs. 4.10, 4.11, 4.12)]

\*Indicates the age groups that are comprised of age-corrected crack density data.

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|             |             |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|-------------|-------------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Silica Fum  | e Overlays  |        |        |       |   | Confi | denc | e Level ( | X |       |   |
| (special pi | rovision #) | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| NONE        | R1, R2      | 4      | 1.618  | 1.533 | Y | 2.132 | N    | 2.776     | N | 3.747 | N |
| NONE        | R3          | 5      | 1.583  | 1.476 | Y | 2.015 | Ν    | 2.571     | Ν | 3.365 | Ν |
| NONE        | R4, R5, R6  | 9      | 5.860  | 1.383 | Y | 1.833 | Y    | 2.262     | Y | 2.821 | Y |
| NONE        | R8, R9      | 10     | 1.751  | 1.372 | Y | 1.812 | Ν    | 2.228     | Ν | 2.764 | Ν |
| R1, R2      | R3          | 7      | 0.207  | 1.415 | Ν | 1.895 | Ν    | 2.365     | Ν | 2.998 | N |
| R1, R2      | R4, R5, R6  | 11     | 1.950  | 1.363 | Y | 1.796 | Y    | 2.201     | Ν | 2.718 | N |
| R1, R2      | R8, R9      | 12     | 0.556  | 1.356 | Ν | 1.782 | Ν    | 2.179     | Ν | 2.681 | N |
| R3          | R4, R5, R6  | 12     | 2.484  | 1.356 | Y | 1.782 | Y    | 2.179     | Y | 2.681 | Ν |
| R3          | R8, R9      | 13     | 0.827  | 1.350 | Ν | 1.771 | Ν    | 2.160     | Ν | 2.650 | N |
| R4, R5, R6  | R8, R9      | 17     | 0.818  | 1.333 | Ν | 1.740 | Ν    | 2.110     | Ν | 2.567 | N |

Table 4.3 – Student's t-test for mean crack density corrected to an age of 78 months versus silica fume special provision number for individual bridge decks (Fig. 4.13)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|        |        |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|--------|--------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
|        |        |        |        |       |   | Confi | denc | e Level ( | X |       |   |
| Deck   | Туре   | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 5% SFO | 7% SFO | 25     | 0.176  | 1.316 | Ν | 1.708 | N    | 2.060     | N | 2.485 | N |
| 5% SFO | CO     | 46     | 0.722  | 1.300 | Ν | 1.679 | Ν    | 2.013     | Ν | 2.410 | Ν |
| 5% SFO | MONO   | 32     | 2.042  | 1.309 | Y | 1.694 | Y    | 2.037     | Y | 2.449 | Ν |
| 7% SFO | CO     | 37     | 0.665  | 1.305 | Ν | 1.687 | Ν    | 2.026     | Ν | 2.431 | Ν |
| 7% SFO | MONO   | 23     | 1.529  | 1.319 | Y | 1.714 | Ν    | 2.069     | Ν | 2.500 | Ν |
| СО     | MONO   | 44     | 1.418  | 1.301 | Y | 1.680 | Ν    | 2.015     | N | 2.414 | Ν |

 Table 5.1 – Student's t-test for mean crack density versus bridge deck type

 (Fig. 5.1)

Table 5.2 – Student's t-test for mean crack density versus water content (Figs. 5.2, 5.3, 5.4, 5.5)

|            |                               |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|------------|-------------------------------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Silica Fum | e Overlays                    |        |        |       |   | Confi | denc | e Level ( | x |       |   |
| (kg/       | <sup>(</sup> m <sup>3</sup> ) | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 138        | 141                           | 17     | 0.929  | 1.333 | Ν | 1.740 | Ν    | 2.110     | Ν | 2.567 | Ν |
| 138        | 148                           | 43     | 0.024  | 1.302 | Ν | 1.681 | Ν    | 2.017     | Ν | 2.416 | Ν |
| 141        | 148                           | 36     | 1.435  | 1.306 | Y | 1.688 | Ν    | 2.028     | N | 2.434 | N |
| Convention | al Overlays                   |        |        |       |   |       |      |           |   |       |   |
| (m         | m)                            | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 133        | 139                           | 39     | 1.482  | 1.304 | Y | 1.685 | Ν    | 2.023     | N | 2.426 | Ν |
| 133        | 145                           | 37     | 4.973  | 1.305 | Y | 1.687 | Y    | 2.026     | Y | 2.431 | Y |
| 139        | 145                           | 22     | 1.963  | 1.321 | Y | 1.717 | Y    | 2.074     | Ν | 2.508 | Ν |

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|         |                               |        |        | 80%   |   | 90%   |   | 95%   |   | 98%   |   |
|---------|-------------------------------|--------|--------|-------|---|-------|---|-------|---|-------|---|
| Overlay | Subdecks                      |        |        |       |   |       |   |       |   |       |   |
| (kg/    | <sup>/</sup> m <sup>3</sup> ) | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 147     | 156                           | 44     | 0.272  | 1.301 | Ν | 1.680 | Ν | 2.015 | Ν | 2.414 | Ν |
| 147     | 165                           | 11     | 1.093  | 1.363 | Ν | 1.796 | Ν | 2.201 | Ν | 2.718 | Ν |
| 147     | 174                           | 8      | 1.141  | 1.397 | Ν | 1.860 | Ν | 2.306 | Ν | 2.896 | Ν |
| 156     | 165                           | 41     | 2.031  | 1.303 | Y | 1.683 | Y | 2.020 | Y | 2.421 | Ν |
| 156     | 174                           | 38     | 1.991  | 1.304 | Y | 1.686 | Y | 2.024 | Ν | 2.429 | Ν |
| 165     | 174                           | 5      | 0.712  | 1.476 | Ν | 2.015 | Ν | 2.571 | Ν | 3.365 | N |
| Mono    | olithic                       |        |        |       |   |       |   |       |   |       |   |
| (kg/    | /m <sup>3</sup> )             | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 147     | 156                           | 26     | 2.974  | 1.315 | Y | 1.706 | Y | 2.056 | Y | 2.479 | Y |
| 147     | 165                           | 18     | ∞      | 1.330 | Y | 1.734 | Y | 2.101 | Y | 2.552 | Y |
| 156     | 165                           | 16     | 1.697  | 1.337 | Y | 1.746 | Ν | 2.120 | Ν | 2.583 | Ν |

Table 5.2 (con't) – Student's t-test for mean crack density versus water content (Figs. 5.2, 5.3, 5.4, 5.5)

Table 5.3 – Student's t-test for mean crack density versus cement content (Figs. 5.6 and 5.7)

|           |                                                     |        |        | 80%   |   | 90%   |      | 95%       |      | 98%   |   |
|-----------|-----------------------------------------------------|--------|--------|-------|---|-------|------|-----------|------|-------|---|
| Overlay S | Overlay Subdecks<br>(kg/m <sup>3</sup> ) d.o.f. t c |        |        |       |   | Confi | denc | e Level ( | χ    |       |   |
| (kg/      | m <sup>3</sup> )                                    | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |      | 0.02  |   |
| 357       | 379                                                 | 49     | 0.478  | 1.299 | Ν | 1.677 | Ν    | 2.010     | Ν    | 2.405 | Ν |
| 357       | 413                                                 | 44     | 2.314  | 1.301 | Y | 1.680 | Y    | 2.015     | Y    | 2.414 | Ν |
| 379       | 413                                                 | 11     | 2.286  | 1.363 | Y | 1.796 | Y    | 2.201     | Y    | 2.718 | N |
| Mono      |                                                     | J . f  | 4 aala |       |   |       |      |           | 0.03 |       |   |
| (kg/      |                                                     | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |      | 0.02  |   |
| 358       | 379                                                 | 28     | 5.625  | 1.313 | Y | 1.701 | Y    | 2.048     | Y    | 2.467 | Y |

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|         |             |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|---------|-------------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Overlay | Subdecks    |        |        |       |   | Confi | denc | e Level ( | χ |       |   |
| ()      | <b>/o</b> ) | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 26      | 27          | 42     | 0.606  | 1.302 | N | 1.682 | N    | 2.018     | N | 2.418 | N |
| 26      | 28          | 9      | 0.022  | 1.383 | Ν | 1.833 | Ν    | 2.262     | Ν | 2.821 | Ν |
| 26      | 29          | 8      | 0.383  | 1.397 | Ν | 1.860 | Ν    | 2.306     | Ν | 2.896 | Ν |
| 26      | 30          | 9      | 1.434  | 1.383 | Y | 1.833 | Ν    | 2.262     | Ν | 2.821 | Ν |
| 27      | 28          | 39     | 0.566  | 1.304 | Ν | 1.685 | Ν    | 2.023     | Ν | 2.426 | Ν |
| 27      | 29          | 38     | 1.138  | 1.304 | Ν | 1.686 | Ν    | 2.024     | Ν | 2.429 | Ν |
| 27      | 30          | 39     | 2.963  | 1.304 | Y | 1.685 | Y    | 2.023     | Y | 2.426 | Y |
| 28      | 29          | 5      | 0.445  | 1.476 | Ν | 2.015 | Ν    | 2.571     | Ν | 3.365 | Ν |
| 28      | 30          | 6      | 2.063  | 1.440 | Y | 1.943 | Y    | 2.447     | Ν | 3.143 | Ν |
| 29      | 30          | 5      | 1.541  | 1.476 | Y | 2.015 | Ν    | 2.571     | Ν | 3.365 | N |
| Mon     | olithic     |        |        |       |   |       |      |           |   |       |   |
|         | 6)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 26      | 27          | 20     | 0.020  | 1.325 | Ν | 1.725 | Ν    | 2.086     | Ν | 2.528 | Ν |
| 26      | 28          | 10     | 3.148  | 1.372 | Y | 1.812 | Y    | 2.228     | Y | 2.764 | Y |
| 26      | 29          | 11     | 7.134  | 1.363 | Y | 1.796 | Y    | 2.201     | Y | 2.718 | Y |
| 27      | 28          | 16     | 3.279  | 1.337 | Y | 1.746 | Y    | 2.120     | Y | 2.583 | Y |
| 27      | 29          | 17     | 5.239  | 1.333 | Y | 1.740 | Y    | 2.110     | Y | 2.567 | Y |
| 28      | 29          | 7      | 0.225  | 1.415 | Ν | 1.895 | Ν    | 2.365     | Ν | 2.998 | Ν |

Table 5.4 – Student's t-test for mean crack density versus percent volume of water and cementitious materials (Figs. 5.8 and 5.9)

Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|         |          |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|---------|----------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Overlay | Subdecks |        |        |       |   | Confi | denc | e Level ( | X |       |   |
| w/cm    | ratio    | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 0.40    | 0.41     | 10     | 0.619  | 1.372 | Ν | 1.812 | Ν    | 2.228     | Ν | 2.764 | Ν |
| 0.40    | 0.42     | 13     | 0.440  | 1.350 | Ν | 1.771 | Ν    | 2.160     | Ν | 2.650 | Ν |
| 0.40    | 0.44     | 38     | 1.161  | 1.304 | Ν | 1.686 | Ν    | 2.024     | Ν | 2.429 | Ν |
| 0.40    | 0.45     | 11     | 1.226  | 1.363 | Ν | 1.796 | Ν    | 2.201     | Ν | 2.718 | Ν |
| 0.41    | 0.42     | 5      | 1.082  | 1.476 | Ν | 2.015 | Ν    | 2.571     | Ν | 3.365 | Ν |
| 0.41    | 0.44     | 30     | 1.514  | 1.310 | Y | 1.697 | Ν    | 2.042     | Ν | 2.457 | Ν |
| 0.41    | 0.45     | 3      | 3.730  | 1.638 | Y | 2.353 | Y    | 3.182     | Y | 4.541 | Ν |
| 0.42    | 0.44     | 33     | 0.317  | 1.308 | Ν | 1.692 | Ν    | 2.035     | Ν | 2.445 | Ν |
| 0.42    | 0.45     | 6      | 1.045  | 1.440 | Ν | 1.943 | Ν    | 2.447     | Ν | 3.143 | Ν |
| 0.44    | 0.45     | 31     | 0.911  | 1.309 | Ν | 1.696 | Ν    | 2.040     | Ν | 2.453 | N |
| Mono    | olithic  |        |        |       |   |       |      |           |   |       |   |
| w/cm    | ratio    | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 0.42    | 0.44     | 28     | 0.712  | 1.313 | Ν | 1.701 | Ν    | 2.048     | Ν | 2.467 | Ν |

Table 5.5 – Student's t-test for mean crack density versus water-cement ratio (Figs. 5.10 and 5.11)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|            |             |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|------------|-------------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
|            |             |        |        |       |   |       |      |           |   |       |   |
| Silica Fur | e Overlays  |        |        |       |   |       | denc | e Level o | X |       |   |
|            | ım)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 26         | 38          | 5      | 0.451  | 1.476 | Ν | 2.015 | Ν    | 2.571     | Ν | 3.365 | Ν |
| 26         | 51          | 14     | 0.521  | 1.345 | Ν | 1.761 | Ν    | 2.145     | Ν | 2.624 | Ν |
| 26         | 64          | 10     | 1.069  | 1.372 | Ν | 1.812 | Ν    | 2.228     | Ν | 2.764 | Ν |
| 26         | 76          | 11     | 0.479  | 1.363 | Ν | 1.796 | Ν    | 2.201     | Ν | 2.718 | Ν |
| 26         | $\geq 90$   | 12     | 0.034  | 1.356 | Ν | 1.782 | Ν    | 2.179     | Ν | 2.681 | Ν |
| 38         | 51          | 15     | 0.170  | 1.341 | Ν | 1.753 | Ν    | 2.131     | Ν | 2.602 | Ν |
| 38         | 64          | 11     | 0.859  | 1.363 | Ν | 1.796 | Ν    | 2.201     | Ν | 2.718 | Ν |
| 38         | 76          | 12     | 0.060  | 1.356 | Ν | 1.782 | Ν    | 2.179     | Ν | 2.681 | Ν |
| 38         | $\geq 90$   | 13     | 0.612  | 1.350 | Ν | 1.771 | Ν    | 2.160     | Ν | 2.650 | Ν |
| 64         | 76          | 17     | 0.832  | 1.333 | Ν | 1.740 | Ν    | 2.110     | Ν | 2.567 | Ν |
| 64         | $\geq 90$   | 18     | 1.525  | 1.330 | Y | 1.734 | Ν    | 2.101     | Ν | 2.552 | Ν |
| 76         | $\geq 90$   | 19     | 0.718  | 1.328 | Ν | 1.729 | Ν    | 2.093     | Ν | 2.539 | Ν |
|            |             |        |        |       |   |       |      |           |   |       |   |
| Convention | al Overlays |        |        |       |   |       |      |           |   |       |   |
| (m         | ım)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 0          | 3           | 8      | 5.588  | 1.397 | Y | 1.860 | Y    | 2.306     | Y | 2.896 | Y |
| 0          | 6           | 18     | 2.196  | 1.330 | Y | 1.734 | Y    | 2.101     | Y | 2.552 | Ν |
| 0          | 13          | 17     | 1.053  | 1.333 | Ν | 1.740 | Ν    | 2.110     | Ν | 2.567 | Ν |
| 0          | 19          | 12     | 1.151  | 1.356 | Ν | 1.782 | Ν    | 2.179     | Ν | 2.681 | Ν |
| 3          | 6           | 12     | 1.512  | 1.356 | Y | 1.782 | Ν    | 2.179     | Ν | 2.681 | Ν |
| 3          | 13          | 11     | 2.139  | 1.363 | Y | 1.796 | Y    | 2.201     | Ν | 2.718 | N |
| 3          | 19          | 6      | 1.175  | 1.440 | Ν | 1.943 | Ν    | 2.447     | Ν | 3.143 | Ν |
| 6          | 13          | 16     | 1.067  | 1.337 | Ν | 1.746 | Ν    | 2.120     | Ν | 2.583 | Ν |
| 6          | 19          | 21     | 0.337  | 1.323 | Ν | 1.721 | Ν    | 2.080     | Ν | 2.518 | Ν |
| 13         | 19          | 15     | 1.070  | 1.341 | Ν | 1.753 | Ν    | 2.131     | Ν | 2.602 | N |

Table 5.6 – Student's t-test for mean crack density versus concrete slump(Figs. 5.12, 5.13, 5.14, 5.15)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|           |          |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|-----------|----------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Overlay S | Subdecks |        |        |       |   | Confi | denc | e Level o | a |       |   |
| (m        | m)       | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 38        | 51       | 19     | 0.462  | 1.328 | N | 1.729 | N    | 2.093     | Ν | 2.539 | N |
| 38        | 64       | 23     | 0.838  | 1.319 | Ν | 1.714 | Ν    | 2.069     | Ν | 2.500 | Ν |
| 38        | ≥76      | 10     | 0.625  | 1.372 | Ν | 1.812 | Ν    | 2.228     | Ν | 2.764 | Ν |
| 51        | 64       | 36     | 0.702  | 1.306 | Ν | 1.688 | Ν    | 2.028     | Ν | 2.434 | Ν |
| 51        | ≥76      | 23     | 0.550  | 1.319 | Ν | 1.714 | Ν    | 2.069     | Ν | 2.500 | Ν |
| 64        | ≥76      | 27     | 0.073  | 1.314 | N | 1.703 | N    | 2.052     | N | 2.473 | N |
| Mono      | olithic  |        |        |       |   |       |      |           |   |       |   |
| (m        | m)       | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 38        | 51       | 23     | 0.780  | 1.319 | Ν | 1.714 | Ν    | 2.069     | Ν | 2.500 | Ν |
| 38        | 64       | 8      | 2.053  | 1.397 | Y | 1.860 | Y    | 2.306     | Ν | 2.896 | Ν |
| 51        | 64       | 23     | 1.320  | 1.319 | Y | 1.714 | Ν    | 2.069     | Ν | 2.500 | Ν |

Table 5.6 (con't) – Student's t-test for mean crack density versus concrete slump (Figs. 5.12, 5.13, 5.14, 5.15)

### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

N = not a statistically significant difference between groups

# TABLE 5.7 – INFLUENCE OF SLUMP ON CRACK DENSITYCORRECTED FOR WATER CONTENT FOR MONOLITHICPLACEMENTS OBTAINED USING A DUMMY VARIABLE ANALYSIS

|                          | Number of<br>Bridges | Number of<br>Surveys | Cracking Rate<br>(m/m <sup>2</sup> /mm) | R <sup>2</sup> |
|--------------------------|----------------------|----------------------|-----------------------------------------|----------------|
| Monolithic<br>Placements | 29                   | 63                   | 0.0029                                  | 0.51           |

|             |             |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|-------------|-------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fume | e Overlays  |        |        |       |   | Confi | denc | e Level | α |       |   |
| (%          | <b>b</b> )  | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.5         | 5.5         | 33     | 0.416  | 1.308 | Ν | 1.692 | N    | 2.035   | N | 2.445 | Ν |
| 4.5         | 6.5         | 23     | 0.234  | 1.319 | Ν | 1.714 | Ν    | 2.069   | Ν | 2.500 | Ν |
| 5.5         | 6.5         | 28     | 0.103  | 1.313 | Ν | 1.701 | N    | 2.048   | Ν | 2.467 | N |
| Convention  | al Overlays |        |        |       |   |       |      |         |   |       |   |
| (%          | <b>b</b> )  | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.5         | 5.5         | 34     | 0.159  | 1.307 | Ν | 1.691 | Ν    | 2.032   | Ν | 2.441 | Ν |
| 4.5         | 6.5         | 21     | 0.021  | 1.323 | Ν | 1.721 | Ν    | 2.080   | Ν | 2.518 | Ν |
| 5.5         | 6.5         | 25     | 0.150  | 1.316 | Ν | 1.708 | Ν    | 2.060   | Ν | 2.485 | N |
| Overlay S   | bubdecks    |        |        |       |   |       |      |         |   |       |   |
| (%          | <b>b</b> )  | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.5         | 5.5         | 40     | 0.393  | 1.303 | N | 1.684 | N    | 2.021   | Ν | 2.423 | Ν |
| 4.5         | 6.5         | 27     | 0.592  | 1.314 | Ν | 1.703 | Ν    | 2.052   | Ν | 2.473 | Ν |
| 5.5         | 6.5         | 33     | 0.895  | 1.308 | Ν | 1.692 | N    | 2.035   | N | 2.445 | N |
| Mono        | lithic      |        |        |       |   |       |      |         |   |       |   |
| (%          | <b>b</b> )  | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4.5         | 5.5         | 26     | 0.084  | 1.315 | N | 1.706 | N    | 2.056   | Ν | 2.479 | Ν |
| 4.5         | 6.5         | 12     | 1.069  | 1.356 | Ν | 1.782 | N    | 2.179   | Ν | 2.681 | N |
| 5.5         | 6.5         | 24     | 1.793  | 1.318 | Y | 1.711 | Y    | 2.064   | Ν | 2.492 | Ν |

Table 5.8 – Student's t-test for mean crack density versus percent air content (Figs. 5.16, 5.17, 5.18)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|                    |                 |         |        | 80%   |        | 90%   |        | 95%     |        | 98%   |        |
|--------------------|-----------------|---------|--------|-------|--------|-------|--------|---------|--------|-------|--------|
| Silica Fume        | Overlove        |         |        |       |        | Confi | done   | e Level |        |       |        |
| Sinca Fuine<br>(MP | •               | d.o.f.  | t calc | 0.20  |        | 0.10  | uenc   | 0.05    | u      | 0.02  |        |
| 38                 | <b>a)</b><br>45 | 12      | 2.969  | 1.356 | Y      | 1.782 | Y      | 2.179   | Y      | 2.681 | Y      |
| 38                 | 43<br>52        | 12      | 2.969  | 1.350 | Y      | 1.782 | ı<br>Y | 2.179   | Y      | 2.650 | ı<br>N |
| 38<br>38           | 52<br>59        | 13<br>7 | 0.554  | 1.330 | r<br>N | 1.771 | r<br>N | 2.160   | r<br>N | 2.030 | N      |
| 38<br>45           | 59<br>52        | /<br>19 | 0.334  | 1.413 |        |       | N      | 2.363   |        | 2.998 | N      |
| 43<br>45           | 52<br>59        | 19      |        |       | N<br>N | 1.729 |        |         | N      |       |        |
|                    |                 |         | 1.275  | 1.350 | N      | 1.771 | N      | 2.160   | N      | 2.650 | N      |
| 52                 | 59              | 14      | 0.747  | 1.345 | N      | 1.761 | N      | 2.145   | N      | 2.624 | N      |
| Conventiona        | l Overlavs      |         |        |       |        |       |        |         |        |       |        |
| (MP                | •               | d.o.f.  | t calc | 0.20  |        | 0.10  |        | 0.05    |        | 0.02  |        |
| 38                 | 45              | 24      | 0.133  | 1.318 | N      | 1.711 | N      | 2.064   | N      | 2.492 | N      |
| 38                 | 52              | 15      | 1.436  | 1.341 | Y      | 1.753 | Ν      | 2.131   | Ν      | 2.602 | Ν      |
| 45                 | 52              | 19      | 1.342  | 1.328 | Y      | 1.729 | Ν      | 2.093   | Ν      | 2.539 | Ν      |
|                    |                 |         |        |       |        |       |        |         |        |       |        |
| Overlay S          | ubdecks         |         |        |       |        |       |        |         |        |       |        |
| (MP                | a)              | d.o.f.  | t calc | 0.20  |        | 0.10  |        | 0.05    |        | 0.02  |        |
| 31                 | 38              | 22      | 0.189  | 1.321 | Ν      | 1.717 | N      | 2.074   | Ν      | 2.508 | Ν      |
| 31                 | 45              | 18      | 1.403  | 1.330 | Y      | 1.734 | Ν      | 2.101   | Ν      | 2.552 | Ν      |
| 31                 | 52              | 9       | 0.496  | 1.383 | Ν      | 1.833 | Ν      | 2.262   | Ν      | 2.821 | Ν      |
| 38                 | 45              | 28      | 1.768  | 1.313 | Y      | 1.701 | Y      | 2.048   | Ν      | 2.467 | Ν      |
| 38                 | 52              | 19      | 0.614  | 1.328 | Ν      | 1.729 | Ν      | 2.093   | Ν      | 2.539 | Ν      |
| 45                 | 52              | 15      | 0.600  | 1.341 | Ν      | 1.753 | Ν      | 2.131   | Ν      | 2.602 | N      |
|                    |                 |         |        |       |        |       |        |         |        |       |        |
| Monol              | ithic           |         |        |       |        |       |        |         |        |       |        |
| (MP                | a)              | d.o.f.  | t calc | 0.20  |        | 0.10  |        | 0.05    |        | 0.02  |        |
| 31                 | 38              | 17      | 1.015  | 1.333 | N      | 1.740 | N      | 2.110   | Ν      | 2.567 | Ν      |
| 31                 | 45              | 15      | 2.359  | 1.341 | Y      | 1.753 | Y      | 2.131   | Y      | 2.602 | Ν      |
| 38                 | 45              | 20      | 2.012  | 1.325 | Y      | 1.725 | Y      | 2.086   | Ν      | 2.528 | Ν      |

# Table 5.9 – Student's t-test for mean crack density versus compressive strength (Figs. 5.19, 5.20, 5.21, 5.22)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|            |             |        |        | 80%   |   | 90%   |      | 95%       |    | 98%   |   |
|------------|-------------|--------|--------|-------|---|-------|------|-----------|----|-------|---|
| Silica Fum | e Overlavs  |        |        |       |   | Confi | denc | e Level ( | 12 |       |   |
| (°(        | v           | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |    | 0.02  |   |
| 5          | 15          | 33     | 1.244  | 1.308 | N | 1.692 | N    | 2.035     | Ν  | 2.445 | N |
| 5          | 25          | 31     | 0.064  | 1.309 | Ν | 1.696 | Ν    | 2.040     | Ν  | 2.453 | Ν |
| 15         | 25          | 38     | 1.267  | 1.304 | N | 1.686 | N    | 2.024     | N  | 2.429 | N |
| Convention | al Overlays |        |        |       |   |       |      |           |    |       |   |
| (°(        | C)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |    | 0.02  |   |
| 5          | 15          | 19     | 0.640  | 1.328 | Ν | 1.729 | Ν    | 2.093     | Ν  | 2.539 | Ν |
| 5          | 25          | 41     | 0.847  | 1.303 | Ν | 1.683 | Ν    | 2.020     | Ν  | 2.421 | Ν |
| 15         | 25          | 52     | 0.407  | 1.298 | N | 1.675 | N    | 2.007     | N  | 2.400 | N |
| Overlay S  | Subdecks    |        |        |       |   |       |      |           |    |       |   |
| (°(        |             | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |    | 0.02  |   |
| 5          | 15          | 19     | 0.268  | 1.328 | Ν | 1.729 | Ν    | 2.093     | Ν  | 2.539 | Ν |
| 5          | 25          | 35     | 0.494  | 1.306 | Ν | 1.690 | Ν    | 2.030     | Ν  | 2.438 | Ν |
| 15         | 25          | 44     | 0.202  | 1.301 | N | 1.680 | N    | 2.015     | N  | 2.414 | Ν |
| Mono       | lithic      |        |        |       |   |       |      |           |    |       |   |
| (°(        | C)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |    | 0.02  |   |
| 5          | 15          | 26     | 0.268  | 1.315 | N | 1.706 | Ν    | 2.056     | Ν  | 2.479 | Ν |
| 5          | 25          | 15     | 0.347  | 1.341 | Ν | 1.753 | Ν    | 2.131     | Ν  | 2.602 | Ν |
| 15         | 25          | 17     | 0.080  | 1.333 | Ν | 1.740 | Ν    | 2.110     | Ν  | 2.567 | Ν |

# Table 5.10 – Student's t-test for mean crack density versus average air temperature (Figs. 5.23, 5.24, 5.25)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|                   |             |        |        | 80%   |   | 90%   |      | 95%     |           | 98%   |   |
|-------------------|-------------|--------|--------|-------|---|-------|------|---------|-----------|-------|---|
| Silica Fum        | a Avarlays  |        |        |       |   | Confi | done | e Level | <b>N4</b> |       |   |
| Sinca Fund<br>(°( | e           | d.o.f. | t calc | 0.20  |   | 0.10  | uene | 0.05    | u         | 0.02  |   |
| 0                 | 10          | 37     | 1.665  | 1.305 | Y | 1.687 | N    | 2.026   | N         | 2.431 | N |
| 0                 | 20          | 23     | 0.952  | 1.319 | N | 1.714 | N    | 2.020   | N         | 2.500 | N |
| 10                | 20<br>20    | 36     | 2.524  | 1.306 | Y | 1.688 | Y    | 2.009   | Y         | 2.300 | Y |
| Convention        | al Overlays |        |        |       |   |       |      |         |           |       |   |
| (°(               | •           | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |           | 0.02  |   |
| 0                 | 10          | 26     | 0.914  | 1.315 | Ν | 1.706 | N    | 2.056   | Ν         | 2.479 | Ν |
| 0                 | 20          | 25     | 1.430  | 1.316 | Y | 1.708 | Ν    | 2.060   | Ν         | 2.485 | Ν |
| 10                | 20          | 45     | 1.560  | 1.301 | Y | 1.679 | N    | 2.014   | N         | 2.412 | N |
| Overlay S         | Subdecks    |        |        |       |   |       |      |         |           |       |   |
| (°(               |             | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |           | 0.02  |   |
| 0                 | 10          | 26     | 0.399  | 1.315 | Ν | 1.706 | Ν    | 2.056   | Ν         | 2.479 | Ν |
| 0                 | 20          | 25     | 0.343  | 1.316 | Ν | 1.708 | Ν    | 2.060   | Ν         | 2.485 | Ν |
| 10                | 20          | 45     | 0.096  | 1.301 | N | 1.679 | N    | 2.014   | N         | 2.412 | N |
| Mono              | lithic      |        |        |       |   |       |      |         |           |       |   |
| (°(               | C)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |           | 0.02  |   |
| 0                 | 10          | 25     | 0.412  | 1.316 | N | 1.708 | N    | 2.060   | Ν         | 2.485 | N |
| 0                 | 20          | 20     | 0.282  | 1.325 | Ν | 1.725 | Ν    | 2.086   | Ν         | 2.528 | Ν |
| 10                | 20          | 13     | 0.450  | 1.350 | Ν | 1.771 | N    | 2.160   | Ν         | 2.650 | Ν |

# Table 5.11 – Student's t-test for mean crack density versus minimum air temperature (Figs. 5.26, 5.27, 5.28)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|                  |             |         |                | 80%   |        | 90%   |      | 95%       |   | 98%   |   |
|------------------|-------------|---------|----------------|-------|--------|-------|------|-----------|---|-------|---|
| Silica Fum       | e Overlays  |         |                |       |        | Confi | denc | e Level ( | x |       |   |
| (° <b>(</b>      | C)          | d.o.f.  | t calc         | 0.20  |        | 0.10  |      | 0.05      |   | 0.02  |   |
| 15               | 25          | 39      | 0.726          | 1.304 | Ν      | 1.685 | N    | 2.023     | Ν | 2.426 | N |
| 15               | 35          | 25      | 0.868          | 1.316 | Ν      | 1.708 | Ν    | 2.060     | Ν | 2.485 | 1 |
| 25               | 35          | 34      | 1.610          | 1.307 | Y      | 1.691 | N    | 2.032     | N | 2.441 | 1 |
| Convention       | al Overlays |         |                |       |        |       |      |           |   |       |   |
| (° <b>(</b>      | C)          | d.o.f.  | t calc         | 0.20  |        | 0.10  |      | 0.05      |   | 0.02  |   |
| 15               | 25          | 31      | 2.875          | 1.309 | Y      | 1.696 | Y    | 2.040     | Y | 2.453 | Ŋ |
| 15               | 35          | 33      | 1.752          | 1.308 | Y      | 1.692 | Y    | 2.035     | Ν | 2.445 | ľ |
| 25               | 35          | 46      | 1.121          | 1.300 | Ν      | 1.679 | Ν    | 2.013     | Ν | 2.410 | 1 |
| Overlay S<br>(°( |             | d.o.f.  | t calc         | 0.20  |        | 0.10  |      | 0.05      |   | 0.02  |   |
| 15               | 25          | 32      | 1.276          | 1.309 | N      | 1.694 | N    | 2.037     | N | 2.449 | 1 |
| 15               | 35          | 23      | 1.043          | 1.319 | N      | 1.714 | N    | 2.069     | N | 2.500 | 1 |
| 25               | 35          | 43      | 0.441          | 1.302 | N      | 1.681 | N    | 2.007     | N | 2.416 | 1 |
| Mono             | 1.41. • .   |         |                |       |        |       |      |           |   |       |   |
| N10110<br>(°(    |             | d.o.f.  | t calc         | 0.20  |        | 0.10  |      | 0.05      |   | 0.02  |   |
| 5                |             | 17      | 0.912          | 1.333 | N      | 1.740 | N    | 2.110     | N | 2.567 | 1 |
| 5                | 13<br>25    | 17      | 0.912          | 1.363 | N      | 1.740 | N    | 2.110     | N | 2.307 | 1 |
| 5                | 23<br>35    | 6       | 0.802<br>1.590 | 1.303 | N<br>Y | 1.943 | N    | 2.201     | N | 3.143 | 1 |
| 5<br>15          | 35<br>25    | 0<br>22 | 0.315          | 1.440 | r<br>N | 1.943 |      | 2.447     |   | 2.508 |   |
|                  |             |         |                |       |        |       | N    |           | N |       | 1 |
| 15               | 35          | 17      | 0.703          | 1.333 | N      | 1.740 | N    | 2.110     | N | 2.567 | 1 |
| 25               | 35          | 11      | 0.281          | 1.363 | Ν      | 1.796 | Ν    | 2.201     | Ν | 2.718 | 1 |

## Table 5.12 – Student's t-test for mean crack density versus maximum air temperature (Figs. 5.29, 5.30, 5.31)

#### Key:

Key: d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|             |             |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|-------------|-------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
|             |             |        |        |       |   |       |      |         |   |       |   |
| Silica Fume | e Overlays  |        |        |       |   | Confi | denc | e Level | α |       |   |
| (°C         | C)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4           | 12          | 39     | 1.828  | 1.304 | Y | 1.685 | Y    | 2.023   | Ν | 2.426 | Ν |
| 4           | 20          | 21     | 1.370  | 1.323 | Y | 1.721 | Ν    | 2.080   | Ν | 2.518 | Ν |
| 12          | 20          | 44     | 0.546  | 1.301 | N | 1.680 | N    | 2.015   | N | 2.414 | N |
| Convention  | al Overlays |        |        |       |   |       |      |         |   |       |   |
| (°C         | C)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4           | 12          | 50     | 0.363  | 1.299 | Ν | 1.676 | Ν    | 2.009   | Ν | 2.403 | Ν |
| 4           | 20          | 21     | 0.525  | 1.323 | Ν | 1.721 | Ν    | 2.080   | Ν | 2.518 | Ν |
| 12          | 20          | 49     | 0.325  | 1.299 | Ν | 1.677 | N    | 2.010   | N | 2.405 | N |
| Overlay S   | Subdecks    |        |        |       |   |       |      |         |   |       |   |
| (°C         |             | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4           | 12          | 42     | 0.186  | 1.302 | N | 1.682 | N    | 2.018   | Ν | 2.418 | N |
| 4           | 20          | 21     | 0.817  | 1.323 | Ν | 1.721 | Ν    | 2.080   | Ν | 2.518 | Ν |
| 12          | 20          | 43     | 1.135  | 1.302 | N | 1.681 | N    | 2.017   | N | 2.416 | N |
| Mono        | lithic      |        |        |       |   |       |      |         |   |       |   |
| (°C         | C)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 4           | 12          | 22     | 0.874  | 1.321 | Ν | 1.717 | Ν    | 2.074   | Ν | 2.508 | Ν |
| 4           | 20          | 12     | 0.937  | 1.356 | Ν | 1.782 | Ν    | 2.179   | Ν | 2.681 | Ν |
| 12          | 20          | 30     | 1.124  | 1.310 | Ν | 1.697 | Ν    | 2.042   | Ν | 2.457 | Ν |

# Table 5.13 – Student's t-test for mean crack density versus daily air temperature range (Figs. 5.32, 5.33, 5.34)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|            |             |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|------------|-------------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Silica Fum | e Overlays  |        |        |       |   | Confi | denc | e Level ( | χ |       |   |
| bridg      | e type      | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| SMCC       | SWCC        | 22     | 1.029  | 1.321 | N | 1.717 | N    | 2.074     | N | 2.508 | Ν |
| SMCC       | SWCH        | 9      | 0.350  | 1.383 | Ν | 1.833 | Ν    | 2.262     | Ν | 2.821 | Ν |
| SWCC       | SWCH        | 21     | 1.271  | 1.323 | N | 1.721 | N    | 2.080     | Ν | 2.518 | N |
| Convention | al Overlays |        |        |       |   |       |      |           |   |       |   |
| bridg      | e type      | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| SMCC       | SWCC        | 23     | 1.626  | 1.319 | Y | 1.714 | N    | 2.069     | N | 2.500 | Ν |
| SMCC       | SWCH        | 13     | 0.773  | 1.350 | Ν | 1.771 | Ν    | 2.160     | Ν | 2.650 | Ν |
| SWCC       | SWCH        | 18     | 3.038  | 1.330 | Y | 1.734 | Y    | 2.101     | Y | 2.552 | Y |
| Mono       | olithic     |        |        |       |   |       |      |           |   |       |   |
| bridg      | e type      | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| SMCC       | SWCC        | 12     | 0.414  | 1.356 | Ν | 1.782 | Ν    | 2.179     | Ν | 2.681 | Ν |
| SMCC       | SWCH        | 7      | 0.188  | 1.415 | Ν | 1.895 | Ν    | 2.365     | Ν | 2.998 | Ν |
| SWCC       | SWCH        | 7      | 0.480  | 1.415 | N | 1.895 | N    | 2.365     | N | 2.998 | N |
| All Bridge | Deck Types  |        |        |       |   |       |      |           |   |       |   |
| bridg      | e type      | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| SMCC       | SWCC        | 59     | 0.670  | 1.296 | Ν | 1.671 | Ν    | 2.001     | Ν | 2.391 | Ν |
| SMCC       | SWCH        | 31     | 0.050  | 1.309 | Ν | 1.696 | Ν    | 2.040     | Ν | 2.453 | Ν |
| SWCC       | SWCH        | 48     | 0.482  | 1.299 | Ν | 1.677 | Ν    | 2.011     | Ν | 2.407 | Ν |

# Table 5.14 – Student's t-test for mean crack density versus structure type (Figs. 5.35 and 5.36)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|            |             |        |         | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|------------|-------------|--------|---------|-------|---|-------|------|-----------|---|-------|---|
| Silica Fum | e Overlays  |        |         |       |   | Confi | denc | e Level ( | x |       |   |
| (m         | m)          | d.o.f. | t calc  | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 16         | 19          | 20     | 0.403   | 1.325 | Ν | 1.725 | Ν    | 2.086     | Ν | 2.528 | N |
| 16         | 16, 19      | 18     | 0.657   | 1.330 | Ν | 1.734 | Ν    | 2.101     | Ν | 2.552 | N |
| 19         | 16, 19      | 12     | 1.013   | 1.356 | N | 1.782 | N    | 2.179     | Ν | 2.681 | N |
| Convention | al Overlays |        |         |       |   |       |      |           |   |       |   |
| (m         | m)          | d.o.f. | t calc  | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 13, 16     | 16          | 22     | 2.396   | 1.321 | Y | 1.717 | Y    | 2.074     | Y | 2.508 | N |
| 13, 16     | 19          | 18     | 0.166   | 1.330 | Ν | 1.734 | Ν    | 2.101     | Ν | 2.552 | Ν |
| 16         | 19          | 16     | 2.773   | 1.337 | Y | 1.746 | Y    | 2.120     | Y | 2.583 | Y |
| Mono       | olithic     |        |         |       |   |       |      |           |   |       |   |
| (m         | m)          | d.o.f. | t calc  | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 13, 16     | 16          | 12     | 0.910   | 1.356 | Ν | 1.782 | Ν    | 2.179     | Ν | 2.681 | N |
| All Brid   | ge Decks    |        |         |       |   |       |      |           |   |       |   |
| (m         | m)          | d.o.f. | t calc  | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 13, 16     | 16          | 42     | 0.28048 | 1.302 | Ν | 1.682 | Ν    | 2.018     | Ν | 2.418 | Ν |
| 13, 16     | 16, 19      | 16     | 0.07429 | 1.337 | Ν | 1.746 | Ν    | 2.120     | Ν | 2.583 | N |
| 13, 16     | 19          | 27     | 2.56599 | 1.314 | Y | 1.703 | Y    | 2.052     | Y | 2.473 | Y |
| 16         | 16, 19      | 38     | 0.17355 | 1.304 | Ν | 1.686 | Ν    | 2.024     | Ν | 2.429 | N |
| 16         | 19          | 49     | 2.67844 | 1.299 | Y | 1.677 | Y    | 2.010     | Y | 2.405 | Y |
| 16, 19     | 19          | 23     | 2.57128 | 1.319 | Y | 1.714 | Y    | 2.069     | Y | 2.500 | Y |

Table 5.15 – Student's t-test for mean crack density versus top transverse bar size (Figs. 5.37, 5.38, 5.39, 5.40)

## Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|             |             |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|-------------|-------------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Silica Fum  | e Overlays  |        |        |       |   | Confi | denc | e Level ( | x |       |   |
| (m          | ım)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| ≤153 (≤6)   | > 153 (> 6) | 18     | 2.166  | 1.330 | Y | 1.734 | Y    | 2.101     | Y | 2.552 | N |
| Conventior  | al Overlays |        |        |       |   |       |      |           |   |       |   |
| (m          | ım)         | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| ≤ 153 (≤ 6) | > 153 (> 6) | 28     | 3.148  | 1.313 | Y | 1.701 | Y    | 2.048     | Y | 2.467 | Y |

Table 5.16 – Student's t-test for mean crack density versus top transverse bar spacing (Figs. 5.41)

# TABLE 5.17 – INFLUENCE OF TOP TRANSVERSE BAR SPACING ON CRACK DENSITY CORRECTED FOR BAR SIZE FOR OVERLAY DECKS OBTAINED USING DUMMY VARIABLE ANALYSES

|                          | Number of<br>Bridges | Number of<br>Surveys | Cracking Rate<br>(m/m <sup>2</sup> /mm) | R <sup>2</sup> |
|--------------------------|----------------------|----------------------|-----------------------------------------|----------------|
| Silica Fume<br>Overlays  | 18                   | 32                   | 0.0045                                  | 0.17           |
| Conventional<br>Overlays | 28                   | 50                   | 0.0025                                  | 0.34           |

|            |             |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|------------|-------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fum | e Overlays  |        |        |       |   | Confi | denc | e Level | α |       |   |
| (m         | m)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 216        | 220         | 19     | 1.272  | 1.328 | N | 1.729 | N    | 2.093   | N | 2.539 | N |
| 216        | 229         | 16     | 0.932  | 1.337 | Ν | 1.746 | Ν    | 2.120   | Ν | 2.583 | Ν |
| 220        | 229         | 13     | 0.169  | 1.350 | N | 1.771 | N    | 2.160   | N | 2.650 | Ν |
| Convention | al Overlays |        |        |       |   |       |      |         |   |       |   |
| (m         | m)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 210 & 216  | 229         | 26     | 1.283  | 1.315 | Ν | 1.706 | Ν    | 2.056   | Ν | 2.479 | N |
| Mono       | olithic     |        |        |       |   |       |      |         |   |       |   |
| (m         | m)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 203        | 210 & 216   | 7      | 1.016  | 1.415 | Ν | 1.895 | Ν    | 2.365   | Ν | 2.998 | Ν |
| 203        | 222 & 229   | 5      | 0.552  | 1.476 | Ν | 2.015 | Ν    | 2.571   | Ν | 3.365 | Ν |
| 210 & 216  | 222 &229    | 8      | 0.430  | 1.397 | Ν | 1.860 | Ν    | 2.306   | Ν | 2.896 | Ν |

Table 5.18 – Student's t-test for mean crack density versus deck thickness (Figs. 5.43, 5.44, 5.45)

Table 5.19 – Student's t-test for mean crack density versus top cover (Fig.5.46)

|     |         |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|-----|---------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
|     |         |        |        |       |   |       |      |           |   |       |   |
| Mon | olithic |        |        |       |   | Confi | denc | e Level o | χ |       |   |
| (n  | ım)     | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| 64  | 76      | 12     | 1.544  | 1.356 | Y | 1.782 | N    | 2.179     | Ν | 2.681 | N |

Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

Table 5.20 – Probability of subsidence (settlement) cracking of fresh concrete based on cover depth, transverse bar size, and concrete slump (Dakhil, Cady, and Carrier 1975)

|        |                     |                   |                   | Prob              | ability           | of crack          | king, pe          | rcent             |                   |                   |
|--------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|        | Slump               | 51                | mm (2.0           | in.)              | 76                | mm (3.0           | in.)              | 102               | mm (4.0           | in.)              |
| E      | Bar Size            | No. 13<br>(No. 4) | No. 16<br>(No. 5) | No. 19<br>(No. 6) | No. 13<br>(No. 4) | No. 16<br>(No. 5) | No. 19<br>(No. 6) | No. 13<br>(No. 4) | No. 16<br>(No. 5) | No. 19<br>(No. 6) |
|        | 19 mm<br>(0.75 in.) | 81                | 88                | 93                | 92                | 99                | 100               | 100               | 100               | 100               |
| Cove r | 38 mm<br>(1.5 in.)  | 20                | 35                | 46                | 32                | 48                | 59                | 45                | 62                | 73                |
|        | 51 mm<br>(2.0 in.)  | 0                 | 2                 | 14                | 0                 | 13                | 27                | 6                 | 25                | 40                |

Table 5.21 – Cracking rates for end sections of silica fume and conventional overlays obtained from a dummy variable regression analysis

|                            | End<br>Condition | Number of<br>End<br>Sections | Mean Age<br>(months) | Cracking Rate<br>(m/m <sup>2</sup> /month) | R <sup>2</sup> |
|----------------------------|------------------|------------------------------|----------------------|--------------------------------------------|----------------|
| 5% Silica Fume<br>Overlays | Fixed            | 11                           | 59                   | 0.0054                                     | 0.89           |
| Conventional<br>Overlays   | Fixed            | 9                            | 93                   | 0.0018                                     | 0.93           |
| 5% Silica Fume<br>Overlays | Pinned           | 9                            | 48                   | 0.0032                                     | 0.97           |
| Conventional<br>Ovelays    | Pinned           | 7                            | 92                   | 0.0019                                     | 0.95           |

|               |             |            |          | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|---------------|-------------|------------|----------|-------|---|-------|------|-----------|---|-------|---|
| Silica Fum    | e Overlays  |            |          |       |   | Confi | denc | e Level ( | χ |       |   |
| end co        | ndition     | d.o.f.     | t calc   | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| fixed         | pinned      | 28         | 4.183    | 1.313 | Y | 1.701 | Y    | 2.048     | Y | 2.467 | Y |
|               |             |            |          |       |   |       |      |           |   |       |   |
| Convention    | al Overlays |            |          |       |   |       |      |           |   |       |   |
| end con       | ndition     | d.o.f.     | t calc   | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| fixed         | pinned      | 28         | 4.183    | 1.313 | Y | 1.701 | Y    | 2.048     | Y | 2.467 | Y |
|               |             |            |          |       |   |       |      |           |   |       |   |
| Silica Fume O | verlays En  | d Section  | Ratio    |       |   |       |      |           |   |       |   |
| end co        | ndition     | d.o.f.     | t calc   | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| fixed         | pinned      | 28         | 4.183    | 1.313 | Y | 1.701 | Y    | 2.048     | Y | 2.467 | Y |
|               |             |            |          |       |   |       |      |           |   |       |   |
| Conventional  | Overlays E  | nd Section | on Ratio |       |   |       |      |           |   |       |   |
| end co        | ndition     | d.o.f.     | t calc   | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| fixed         | pinned      | 27         | 3.310    | 1.314 | Y | 1.703 | Y    | 2.052     | Y | 2.473 | Y |

# Table 5.22 – Student's t-test for mean crack density versus girder endcondition (Figs. 5.47 and 5.48)

## Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|            |                 |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|------------|-----------------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Silica Fum | ne Overlays     |        |        |       |   | Confi | denc | e Level ( | χ |       |   |
| Span       | Туре            | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| End (F)    | End (P)         | 49     | 1.092  | 1.299 | N | 1.677 | N    | 2.010     | N | 2.405 | N |
| End (F)    | Interior (F)    | 74     | 0.372  | 1.293 | Ν | 1.666 | Ν    | 1.993     | Ν | 2.378 | Ν |
| End (P)    | Interior (F)    | 55     | 0.809  | 1.297 | N | 1.673 | N    | 2.004     | N | 2.396 | N |
| Conventior | nal Overlays    |        |        |       |   |       |      |           |   |       |   |
| Span       | Туре            | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| End (F)    | End (P)         | 56     | 0.965  | 1.297 | Ν | 1.673 | Ν    | 2.003     | Ν | 2.395 | Ν |
| End (F)    | Interior (F)    | 76     | 0.311  | 1.293 | Ν | 1.665 | Ν    | 1.992     | Ν | 2.376 | Ν |
| End (P)    | Interior (F)    | 54     | 0.711  | 1.297 | N | 1.674 | N    | 2.005     | N | 2.397 | N |
| -          | olithic<br>Type | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| End (F)    | Interior        | 50     | 0.490  | 1.299 | N | 1.676 | N    | 2.009     | N | 2.403 | N |

# Table 5.23 – Student's t-test for mean crack density versus span type (Figs. 5.49, 5.50)

## Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|            |             |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|------------|-------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fum | e Overlays  |        |        |       |   | Confi | denc | e Level | α |       |   |
| (deg       | rees)       | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0          | 10          | 13     | 0.494  | 1.350 | Ν | 1.771 | Ν    | 2.160   | Ν | 2.650 | Ν |
| 0          | 30          | 13     | 2.048  | 1.350 | Y | 1.771 | Y    | 2.160   | Ν | 2.650 | Ν |
| 0          | 50          | 15     | 0.836  | 1.341 | Ν | 1.753 | Ν    | 2.131   | Ν | 2.602 | Ν |
| 10         | 30          | 8      | 2.305  | 1.397 | Y | 1.860 | Y    | 2.306   | Ν | 2.896 | Ν |
| 10         | 50          | 10     | 0.332  | 1.372 | Ν | 1.812 | Ν    | 2.228   | Ν | 2.764 | Ν |
| 30         | 50          | 10     | 1.591  | 1.372 | Y | 1.812 | N    | 2.228   | N | 2.764 | N |
| Convention | al Overlays |        |        |       |   |       |      |         |   |       |   |
| (deg       | rees)       | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0          | 10          | 13     | 0.513  | 1.350 | Ν | 1.771 | Ν    | 2.160   | Ν | 2.650 | Ν |
| 0          | 30          | 13     | 0.348  | 1.350 | Ν | 1.771 | Ν    | 2.160   | Ν | 2.650 | Ν |
| 0          | 50          | 12     | 1.289  | 1.356 | Ν | 1.782 | Ν    | 2.179   | Ν | 2.681 | Ν |
| 10         | 30          | 14     | 0.858  | 1.345 | Ν | 1.761 | Ν    | 2.145   | Ν | 2.624 | Ν |
| 10         | 50          | 13     | 0.530  | 1.350 | Ν | 1.771 | Ν    | 2.160   | Ν | 2.650 | Ν |
| 30         | 50          | 13     | 1.745  | 1.350 | Y | 1.771 | N    | 2.160   | N | 2.650 | N |
| Mono       | olithic     |        |        |       |   |       |      |         |   |       |   |
| (deg       | rees)       | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 0          | 30          | 10     | 0.753  | 1.372 | Ν | 1.812 | Ν    | 2.228   | Ν | 2.764 | Ν |
| 0          | 50          | 11     | 1.108  | 1.363 | Ν | 1.796 | Ν    | 2.201   | Ν | 2.718 | N |
| 30         | 50          | 5      | 0.120  | 1.476 | Ν | 2.015 | Ν    | 2.571   | Ν | 3.365 | Ν |

## Table 5.24 – Student's t-test for mean crack density versus bridge skew(Figs. 5.51 and 5.52)

## Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|             |             |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|-------------|-------------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Cilian From | Onerland    |        |        |       |   | Conf  | م    |         |   |       |   |
| Silica Fume | •           | 1 6    |        | 0.00  |   |       | aenc | e Level | α | 0.00  |   |
| (m          |             | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 5           | 15          | 20     | 0.110  | 1.325 | Ν | 1.725 | Ν    | 2.086   | Ν | 2.528 | Ν |
| 5           | 25          | 24     | 0.443  | 1.318 | Ν | 1.711 | Ν    | 2.064   | Ν | 2.492 | Ν |
| 5           | 35          | 36     | 0.076  | 1.306 | Ν | 1.688 | Ν    | 2.028   | Ν | 2.434 | Ν |
| 5           | 45          | 10     | 0.494  | 1.372 | Ν | 1.812 | Ν    | 2.228   | Ν | 2.764 | Ν |
| 5           | 55          | 6      | 0.724  | 1.440 | Ν | 1.943 | Ν    | 2.447   | Ν | 3.143 | Ν |
| 15          | 25          | 38     | 0.526  | 1.304 | Ν | 1.686 | Ν    | 2.024   | Ν | 2.429 | Ν |
| 15          | 35          | 50     | 0.352  | 1.299 | Ν | 1.676 | Ν    | 2.009   | Ν | 2.403 | Ν |
| 15          | 45          | 24     | 0.901  | 1.318 | Ν | 1.711 | Ν    | 2.064   | Ν | 2.492 | Ν |
| 15          | 55          | 20     | 1.287  | 1.325 | Ν | 1.725 | Ν    | 2.086   | Ν | 2.528 | Ν |
| 25          | 35          | 54     | 0.973  | 1.297 | Ν | 1.674 | Ν    | 2.005   | Ν | 2.397 | Ν |
| 25          | 45          | 28     | 1.480  | 1.313 | Y | 1.701 | Ν    | 2.048   | Ν | 2.467 | Ν |
| 25          | 55          | 24     | 1.794  | 1.318 | Y | 1.711 | Y    | 2.064   | Ν | 2.492 | Ν |
| 35          | 45          | 40     | 0.976  | 1.303 | Ν | 1.684 | Ν    | 2.021   | Ν | 2.423 | Ν |
| 35          | 55          | 36     | 1.166  | 1.306 | Ν | 1.688 | Ν    | 2.028   | Ν | 2.434 | Ν |
| 45          | 55          | 10     | 0.578  | 1.372 | N | 1.812 | N    | 2.228   | N | 2.764 | N |
|             |             |        |        |       |   |       |      |         |   |       |   |
| Convention  | al Overlays |        |        |       |   |       |      |         |   |       |   |
| (n          | ı)          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 15          | 25          | 75     | 1.076  | 1.293 | Ν | 1.665 | Ν    | 1.992   | Ν | 2.377 | N |
| 15          | 35          | 40     | 0.984  | 1.303 | Ν | 1.684 | Ν    | 2.021   | Ν | 2.423 | Ν |
| 15          | 45          | 47     | 0.980  | 1.300 | Ν | 1.678 | Ν    | 2.012   | Ν | 2.408 | Ν |
| 25          | 35          | 47     | 0.394  | 1.300 | Ν | 1.678 | Ν    | 2.012   | Ν | 2.408 | Ν |
| 25          | 45          | 54     | 0.171  | 1.297 | Ν | 1.674 | Ν    | 2.005   | Ν | 2.397 | Ν |
| 35          | 45          | 19     | 0.363  | 1.328 | Ν | 1.729 | Ν    | 2.093   | Ν | 2.539 | Ν |

## Table 5.25 - Student's t-test for mean crack density versus span length(Figs. 5.53, 5.54, 5.55)

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

| Mono | olithic |        |        |       |   |       |   |       |   |       |   |
|------|---------|--------|--------|-------|---|-------|---|-------|---|-------|---|
| (n   | n)      | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 15   | 25      | 36     | 0.415  | 1.306 | Ν | 1.688 | N | 2.028 | Ν | 2.434 | Ν |
| 15   | 35      | 20     | 0.435  | 1.325 | Ν | 1.725 | Ν | 2.086 | Ν | 2.528 | Ν |
| 25   | 35      | 34     | 0.682  | 1.307 | Ν | 1.691 | Ν | 2.032 | Ν | 2.441 | Ν |

Table 5.25 (con't) – Student's t-test for mean crack density versus span length (Figs. 5.53, 5.54, 5.55)

Table 5.26 – Student's t-test for mean crack density versus bridge length (Fig. 5.56)

|                |          |        |        | 80%   |   | 90%   |      | 95%     |   | 98%   |   |
|----------------|----------|--------|--------|-------|---|-------|------|---------|---|-------|---|
| Silica Fume O  | verlays  |        |        |       |   | Confi | denc | e Level | α |       |   |
| (m)            |          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 50             | 90       | 16     | 2.000  | 1.337 | Y | 1.746 | Y    | 2.120   | N | 2.583 | N |
| 50             | 130      | 10     | 1.168  | 1.372 | Ν | 1.812 | Ν    | 2.228   | Ν | 2.764 | Ν |
| 90             | 130      | 18     | 1.565  | 1.330 | Y | 1.734 | N    | 2.101   | N | 2.552 | N |
| Conventional ( | Overlays |        |        |       |   |       |      |         |   |       |   |
| (m)            |          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 50             | 90       | 24     | 1.380  | 1.318 | Y | 1.711 | Ν    | 2.064   | Ν | 2.492 | Ν |
| 50             | 130      | 15     | 1.069  | 1.341 | Ν | 1.753 | Ν    | 2.131   | Ν | 2.602 | Ν |
| 90             | 130      | 15     | 0.201  | 1.341 | N | 1.753 | N    | 2.131   | N | 2.602 | Ν |
| Monolith       | nic      |        |        |       |   |       |      |         |   |       |   |
| (m)            |          | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05    |   | 0.02  |   |
| 50             | 90       | 9      | 0.248  | 1.383 | Ν | 1.833 | Ν    | 2.262   | Ν | 2.821 | Ν |
| 50             | 130      | 4      | 0.236  | 1.533 | Ν | 2.132 | Ν    | 2.776   | Ν | 3.747 | Ν |
| 90             | 130      | 11     | 0.004  | 1.363 | Ν | 1.796 | Ν    | 2.201   | Ν | 2.718 | Ν |

#### Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

|             |          |        |        | 80%   |   | 90%   |      | 95%       |   | 98%   |   |
|-------------|----------|--------|--------|-------|---|-------|------|-----------|---|-------|---|
| Silica Fume | Overlays |        |        |       |   | Confi | denc | e Level ( | x |       |   |
| (contra     | ctor)    | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| А           | В        | 12     | 1.087  | 1.356 | Ν | 1.782 | Ν    | 2.179     | Ν | 2.681 | Ν |
| А           | D        | 11     | 0.017  | 1.363 | Ν | 1.796 | Ν    | 2.201     | Ν | 2.718 | Ν |
| А           | F        | 23     | 1.293  | 1.319 | Ν | 1.714 | Ν    | 2.069     | Ν | 2.500 | Ν |
| А           | Н        | 12     | 2.771  | 1.356 | Y | 1.782 | Y    | 2.179     | Y | 2.681 | Y |
| В           | D        | 9      | 1.622  | 1.383 | Y | 1.833 | Ν    | 2.262     | Ν | 2.821 | Ν |
| В           | F        | 21     | 0.011  | 1.323 | Ν | 1.721 | Ν    | 2.080     | Ν | 2.518 | Ν |
| В           | Н        | 10     | 4.120  | 1.372 | Y | 1.812 | Y    | 2.228     | Y | 2.764 | Y |
| D           | F        | 20     | 1.227  | 1.325 | Ν | 1.725 | Ν    | 2.086     | Ν | 2.528 | Ν |
| D           | Н        | 9      | 3.763  | 1.383 | Y | 1.833 | Y    | 2.262     | Y | 2.821 | Y |
| F           | Н        | 21     | 2.353  | 1.323 | Y | 1.721 | Y    | 2.080     | Y | 2.518 | N |
|             |          |        |        |       |   |       |      |           |   |       |   |
| Conventiona | •        |        |        |       |   | 0.40  |      |           |   | 0.00  |   |
| (contra     | /        | d.o.f. | t calc | 0.20  |   | 0.10  |      | 0.05      |   | 0.02  |   |
| В           | Е        | 22     | 3.758  | 1.321 | Y | 1.717 | Y    | 2.074     | Y | 2.508 | Y |
| В           | F        | 48     | 3.288  | 1.299 | Y | 1.677 | Y    | 2.011     | Y | 2.407 | Y |
| В           | G        | 22     | 0.902  | 1.321 | Ν | 1.717 | Ν    | 2.074     | Ν | 2.508 | Ν |
| В           | Н        | 22     | 0.207  | 1.321 | Ν | 1.717 | Ν    | 2.074     | Ν | 2.508 | Ν |
| Е           | F        | 32     | 1.691  | 1.309 | Y | 1.694 | Ν    | 2.037     | Ν | 2.449 | Ν |
| Е           | G        | 6      | 4.163  | 1.440 | Y | 1.943 | Y    | 2.447     | Y | 3.143 | Y |
| E           | Н        | 6      | 4.831  | 1.440 | Y | 1.943 | Y    | 2.447     | Y | 3.143 | Y |
| F           | G        | 32     | 1.301  | 1.309 | Ν | 1.694 | Ν    | 2.037     | Ν | 2.449 | Ν |
| F           | Н        | 32     | 1.931  | 1.309 | Y | 1.694 | Y    | 2.037     | Ν | 2.449 | Ν |
| G           | Н        | 6      | 1.716  | 1.440 | Y | 1.943 | Ν    | 2.447     | Ν | 3.143 | Ν |

Table 5.27 – Student's t-test for mean crack density versus bridge contractor(Figs. 5.57, 5.58, 5.59)

## Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

Table 5.27 (con't) – Student's t-test for mean crack density versus bridge contractor (Figs. 5.57, 5.58, 5.59)

| Mono    | lithic |        |        |       |   |       |   |       |   |       |   |
|---------|--------|--------|--------|-------|---|-------|---|-------|---|-------|---|
| (contra | actor) | d.o.f. | t calc | 0.20  |   | 0.10  |   | 0.05  |   | 0.02  |   |
| А       | С      | 15     | 0.819  | 1.341 | Ν | 1.753 | N | 2.131 | N | 2.602 | Ν |
| Α       | Ι      | 13     | 6.407  | 1.350 | Y | 1.771 | Y | 2.160 | Y | 2.650 | Y |
| С       | Ι      | 12     | 6.333  | 1.356 | Y | 1.782 | Y | 2.179 | Y | 2.681 | Y |

Table 5.28 – Student's t-test for mean crack density versus average annual daily traffic (AADT) (Figs. 5.60 and 5.61)

|                      |          |        |        | 80%                |   | 90%   |   | 95%   |   | 98%   |   |
|----------------------|----------|--------|--------|--------------------|---|-------|---|-------|---|-------|---|
| Silica Fume Overlays |          |        |        | Confidence Level a |   |       |   |       |   |       |   |
| (AADT)               |          | d.o.f. | t calc | 0.20               |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 2500                 | 7500     | 16     | 3.292  | 1.337              | Y | 1.746 | Y | 2.120 | Y | 2.583 | Y |
| 2500                 | 12500    | 11     | 0.644  | 1.363              | Ν | 1.796 | Ν | 2.201 | Ν | 2.718 | Ν |
| 7500                 | 12500    | 15     | 1.274  | 1.341              | N | 1.753 | N | 2.131 | N | 2.602 | N |
| Conventional         | Overlays |        |        |                    |   |       |   |       |   |       |   |
| (AADT)               |          | d.o.f. | t calc | 0.20               |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 2500                 | 7500     | 18     | 0.338  | 1.330              | Ν | 1.734 | N | 2.101 | N | 2.552 | N |
| 2500                 | 12500    | 11     | 1.258  | 1.363              | Ν | 1.796 | Ν | 2.201 | Ν | 2.718 | Ν |
| 7500                 | 12500    | 19     | 1.092  | 1.328              | N | 1.729 | N | 2.093 | N | 2.539 | N |
| Monolithic           |          |        |        |                    |   |       |   |       |   |       |   |
| (AADT)               |          | d.o.f. | t calc | 0.20               |   | 0.10  |   | 0.05  |   | 0.02  |   |
| 1000                 | 3000     | 10     | 3.854  | 1.372              | Y | 1.812 | Y | 2.228 | Y | 2.764 | Y |
| 1000                 | 5000     | 8      | 1.765  | 1.397              | Y | 1.860 | Ν | 2.306 | Ν | 2.896 | Ν |
| 3000                 | 5000     | 6      | 0.714  | 1.440              | Ν | 1.943 | Ν | 2.447 | Ν | 3.143 | Ν |

## Key:

d.o.f. = degrees of freedom for the two categories being compared

t calc = calculated value of t

 $\alpha$  = level of significance

t table test values = value for Student's t-distribution for the given value of  $\alpha$ 

Y = statistically significant difference between groups

Table 5.29 – Average rate of change of crack density as a function of load cycles obtained from dummy variable regression analyses

|                               | Number of<br>Bridges | Number of<br>Surveys | Weighted<br>Average<br>Intercept<br>(m/m <sup>2</sup> ) | Cracking Rate<br>(m/m <sup>2</sup> per 1×10 <sup>6</sup><br>cycles) | R <sup>2</sup> |
|-------------------------------|----------------------|----------------------|---------------------------------------------------------|---------------------------------------------------------------------|----------------|
| Silica Fume<br>Overlay Decks  | 27                   | 45                   | 0.25                                                    | 0.0164                                                              | 0.80           |
| Conventional<br>Overlay Decks | 30                   | 52                   | 0.48                                                    | 0.0019                                                              | 0.83           |
| Monolithic Decks              | 16                   | 32                   | 0.32                                                    | 0.0078                                                              | 0.92           |

Table 5.30 – Average rate of change of age-corrected crack density as a function of load cycles obtained from dummy variable regression analyses

|                               | Number of<br>Bridges | Number of<br>Surveys | Weighted<br>Average<br>Intercept<br>(m/m <sup>2</sup> ) | Cracking Rate<br>(m/m <sup>2</sup> / per 1×10 <sup>6</sup><br>cycles) | R <sup>2</sup> |
|-------------------------------|----------------------|----------------------|---------------------------------------------------------|-----------------------------------------------------------------------|----------------|
| Silica Fume<br>Overlay Decks  | 27                   | 45                   | 0.46                                                    | 0.0045                                                                | 0.78           |
| Conventional<br>Overlay Decks | 30                   | 52                   | 0.51                                                    | 0.0003                                                                | 0.87           |
| Monolithic Decks              | 16                   | 32                   | 0.33                                                    | 0.0025                                                                | 0.92           |

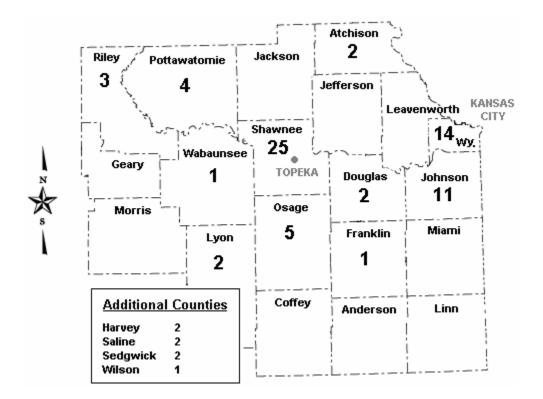



Fig. 2.1 – Breakdown of the number of bridges selected from each county

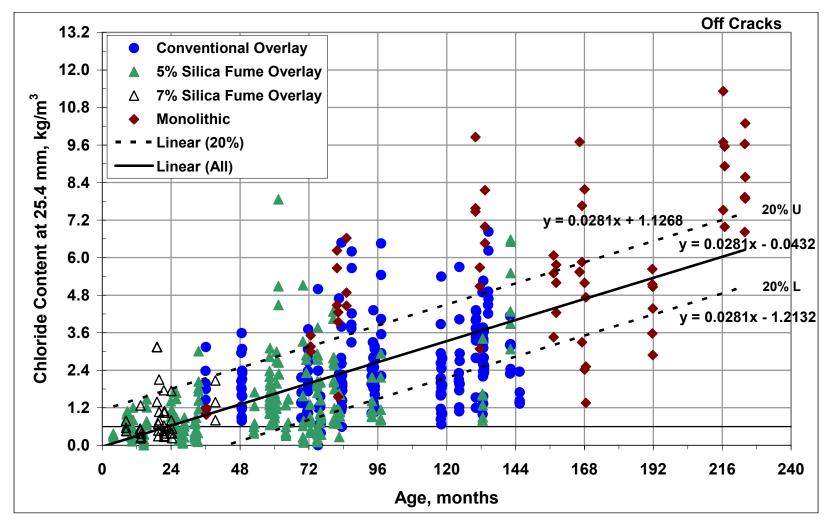



Fig. 3.1 – Chloride content taken away from cracks interpolated at a depth of 25.4 mm (1.0 in.) versus placement age. Twenty percent upper (20% U) and lower (20% L) bound prediction intervals are included.

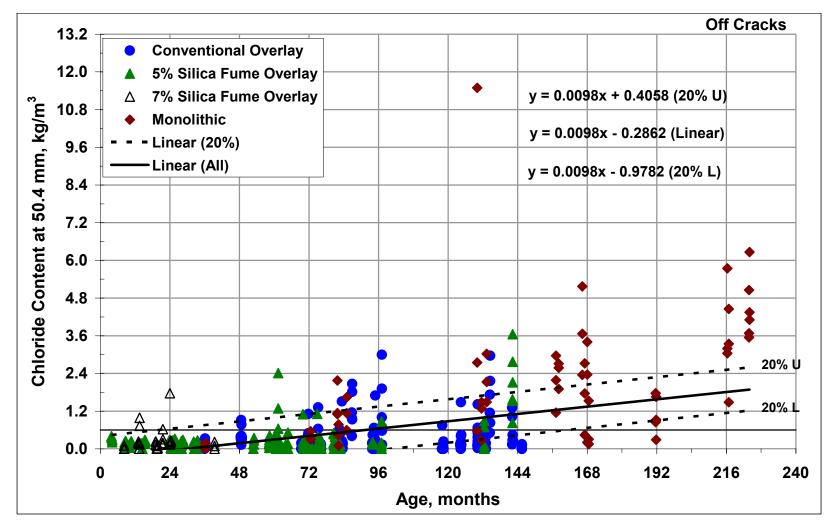



Fig. 3.2 – Chloride content taken away from cracks interpolated at a depth of 50.8 mm (2.0 in.) versus placement age. Twenty percent upper (20% U) and lower (20% L) bound prediction intervals are included.

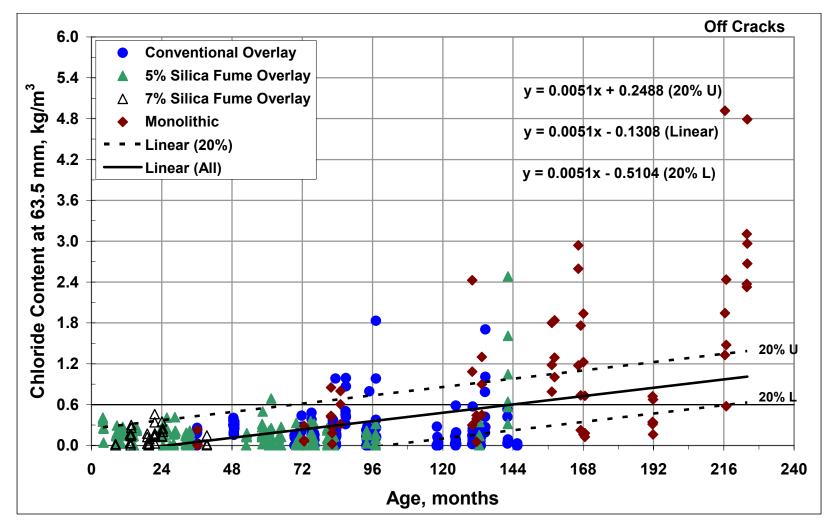



Fig. 3.3 – Chloride content taken away from cracks interpolated at a depth of 63.5 mm (2.5 in.) versus placement age. Twenty percent upper (20% U) and lower (20% L) bound prediction intervals are included.

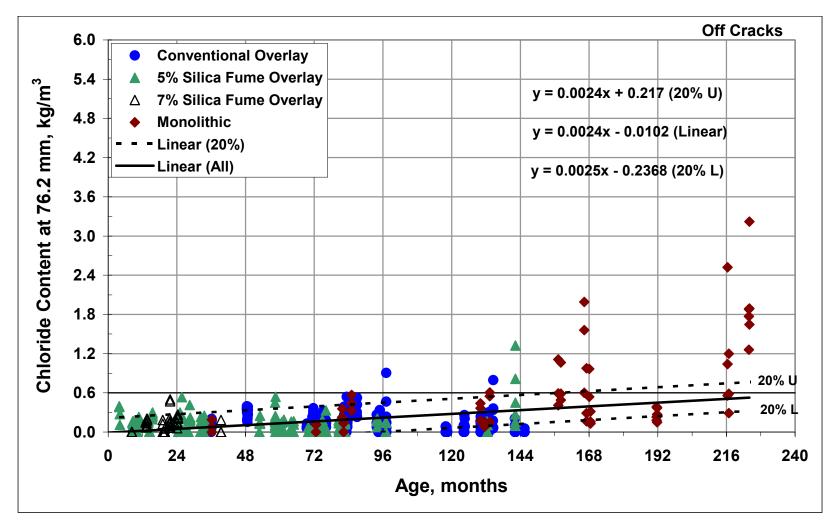



Fig. 3.4 – Chloride content taken away from cracks interpolated at a depth of 76.2 mm (3.0 in.) versus placement age. Twenty percent upper (20% U) and lower (20% L) bound prediction intervals are included.

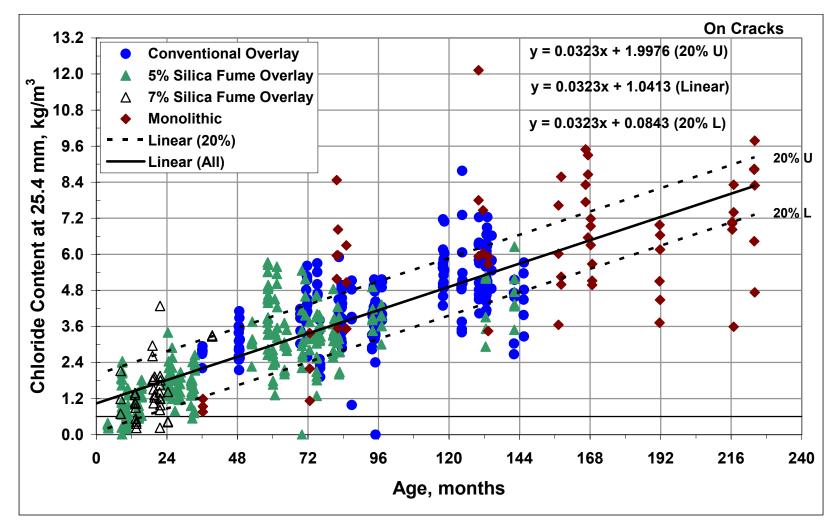



Fig. 3.5 – Chloride content taken on cracks interpolated at a depth of 25.4 mm (1.0 in.) versus placement age. Twenty percent upper (20% U) and lower (20% L) bound prediction intervals are included.

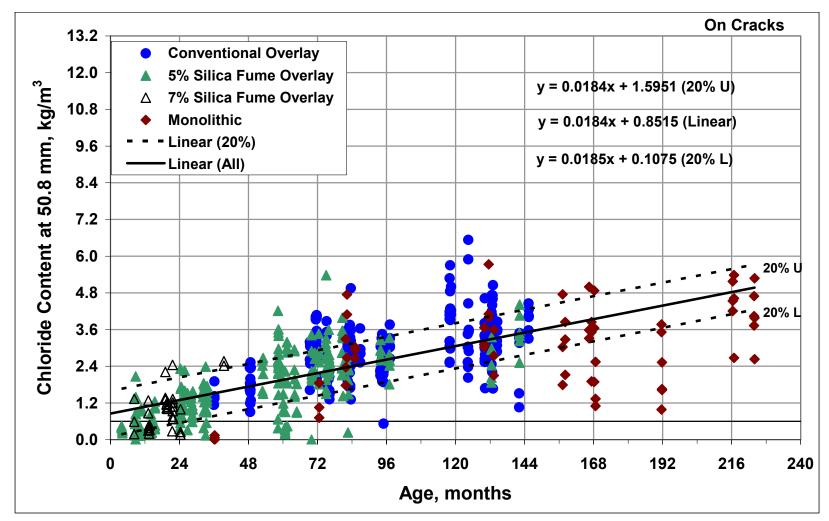



Fig. 3.6 – Chloride content taken on cracks interpolated at a depth of 50.8 mm (2.0 in.) versus placement age. Twenty percent upper (20% U) and lower (20% L) bound prediction intervals are included.

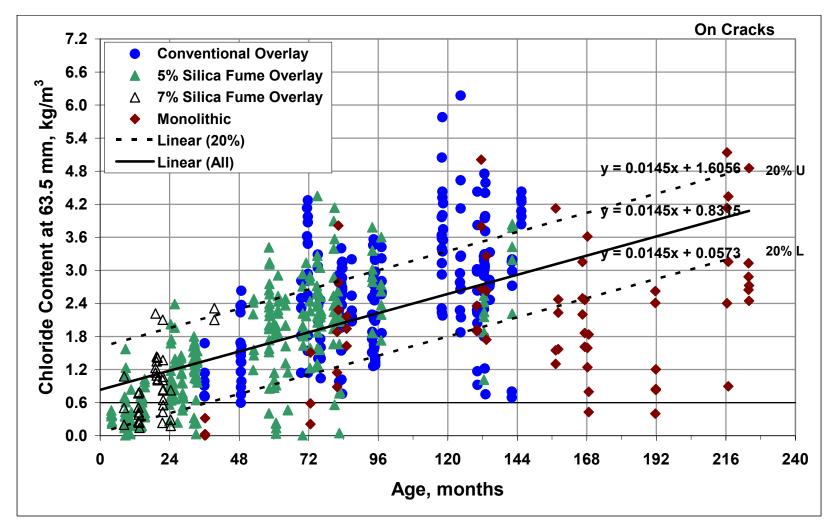



Fig. 3.7 – Chloride content taken on cracks interpolated at a depth of 63.5 mm (2.5 in.) versus placement age. Twenty percent upper (20% U) and lower (20% L) bound prediction intervals are included.

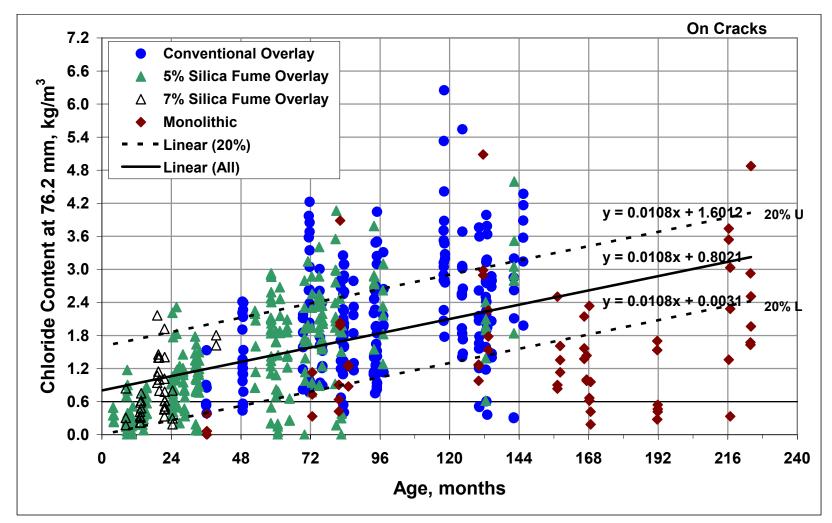



Fig. 3.8 – Chloride content taken on cracks interpolated at a depth of 76.2 mm (3.0 in.) versus placement age. Twenty percent upper (20% U) and lower (20% L) bound prediction intervals are included.

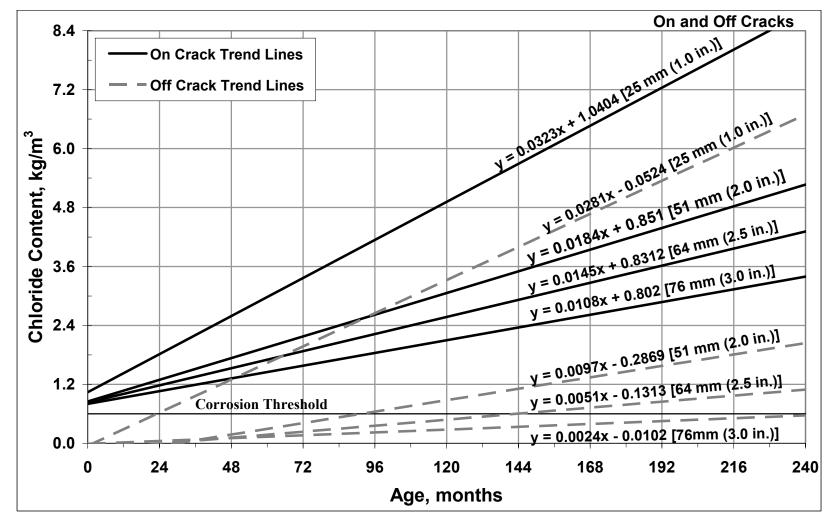
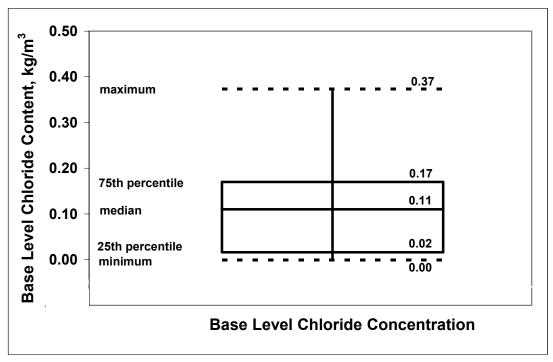
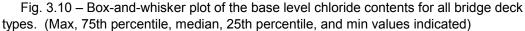





Fig. 3.9 – Linear trend lines for interpolated chloride data taken on and off of cracks at four depths. The depths are 25.4 mm (1.0 in.), 50.8 mm (2.0 in.), 63.5 mm (2.5 in.), and 76.2 mm (3.0 in.) and progress from top to bottom for the two sample types.





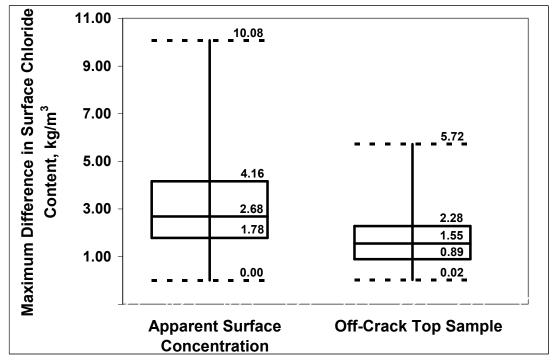



Fig. 3.11 – Box-and-whisker plot of the difference between the maximum and minimum apparent surface concentration and the top sample taken from off-crack locations for each placement. (Max, 75th percentile, median, 25th percentile, and min values indicated)

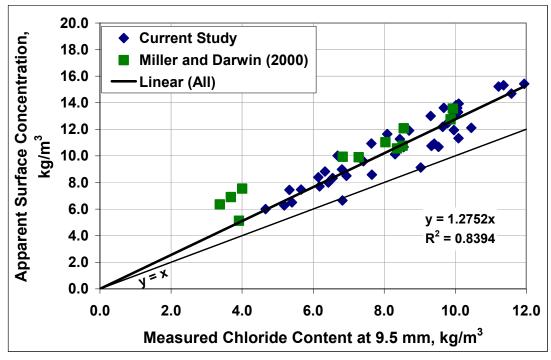



Fig. 3.12 – Apparent surface concentration  $C_o$  calculated from Fick's Second Law versus the measured chloride content away from cracks at 9.5 mm for monolithic bridge decks.

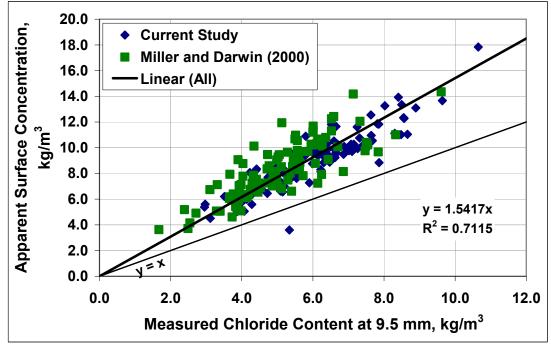



Fig. 3.13 – Apparent surface concentration  $C_o$  calculated from Fick's Second Law versus the measured chloride content away from cracks at 9.5 mm for conventional overlays.

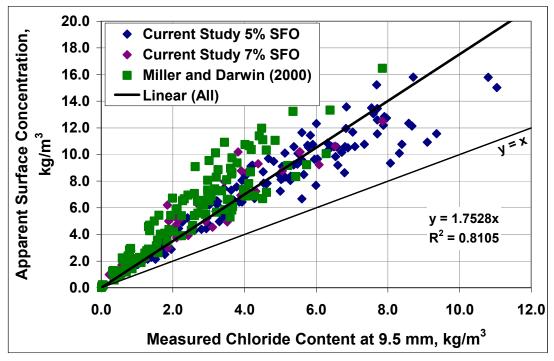



Fig. 3.14 – Apparent surface concentration  $C_o$  calculated from Fick's Second Law versus the measured chloride content away from cracks at 9.5 mm for silica fume overlays.

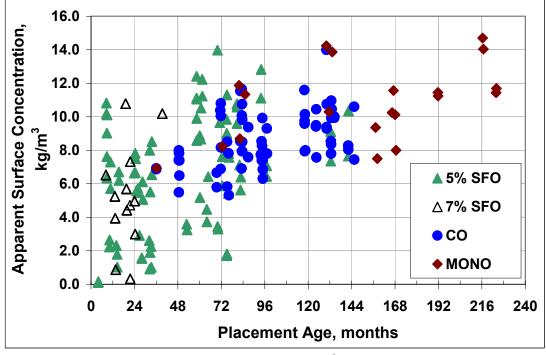



Fig. 3.15 – Average apparent surface concentration  $C_o$  calculated from Fick's Second Law versus bridge deck placement age at the time of sampling.

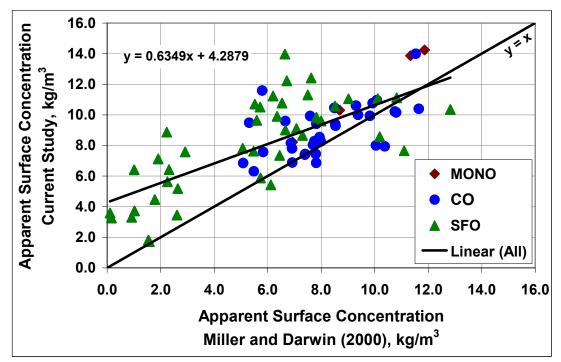



Fig. 3.16 – Average apparent surface concentration  $C_o$  calculated from Fick's Second Law for the current study versus the results based on data obtained by Miller and Darwin (2000).

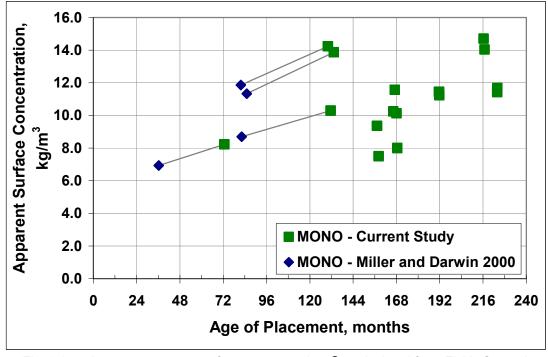



Fig. 3.17 – Average apparent surface concentration  $C_o$  calculated from Fick's Second Law versus age of placement for monolithic deck placements. Observations connected by lines indicate placements surveyed multiple times.

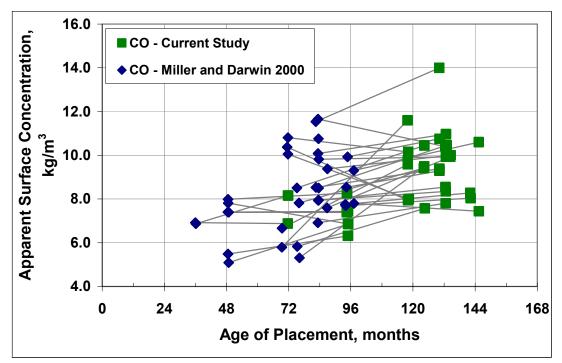



Fig 3.18 – Average apparent surface concentration  $C_o$  calculated from Fick's Second Law versus bridge deck age of placement for conventional overlay deck placements. Observations connected by lines indicate placements surveyed multiple times.

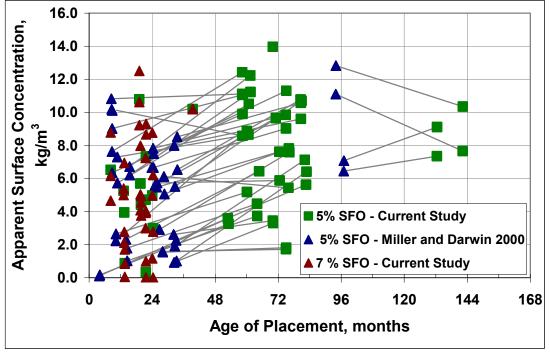



Fig 3.19 – Average apparent surface concentration  $C_o$  calculated from Fick's Second Law versus bridge deck age of placement for silica fume overlay deck placements. Observations connected by lines indicate placements surveyed multiple times.

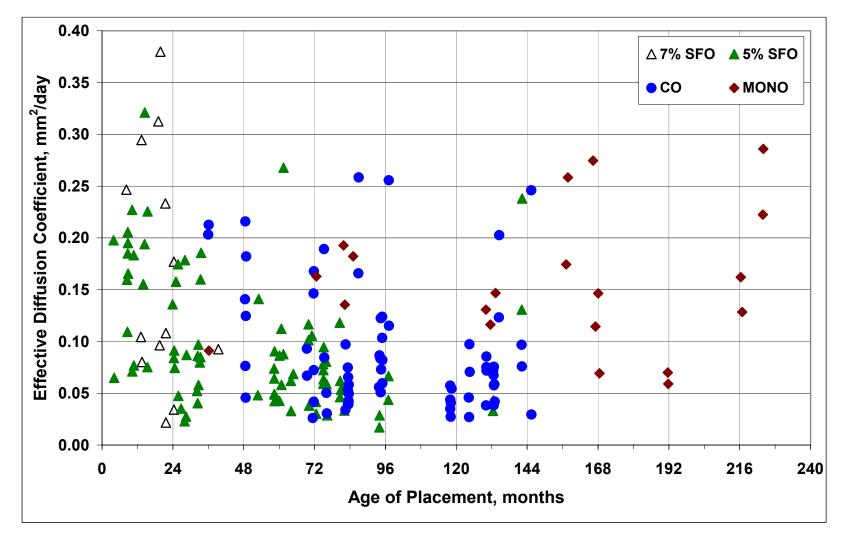



Fig 3.20 – Effective diffusion coefficient  $D_{eff}$  versus age of placement.

214

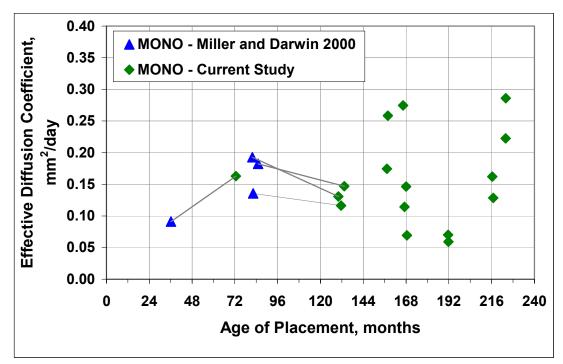



Fig. 3.21 – Effective diffusion coefficient  $D_{eff}$  versus age for monolithic bridge placements. Observations connected by lines indicate the same placement surveyed multiple times.

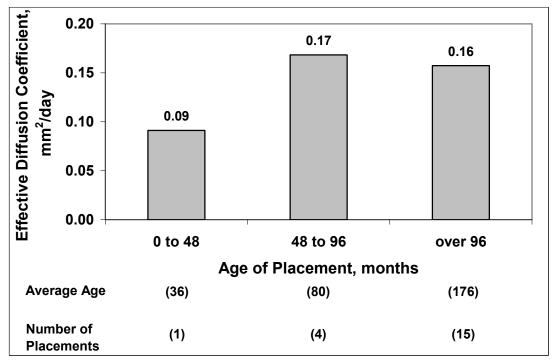



Fig. 3.22 – Mean effective diffusion coefficient  $D_{eff}$  versus placement age for monolithic bridge placements.

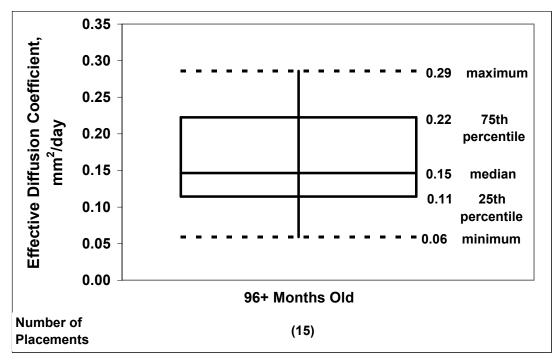



Fig. 3.23 – Box-and-whiskers plot of effective diffusion coefficients  $D_{eff}$  for monolithic placements sampled at an age of 96 months or greater. (max, 75th percentile, median, 25th percentile, and min values indicated)

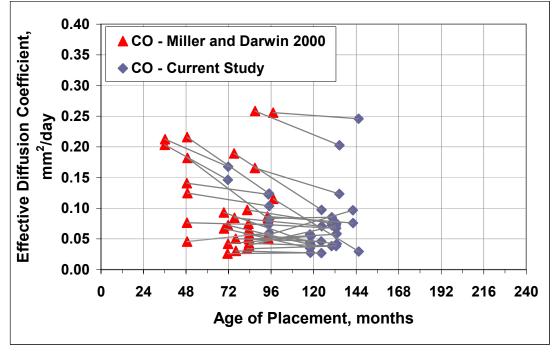



Fig. 3.24 – Effective diffusion coefficient  $D_{eff}$  versus age for conventional overlay bridge placements. Observations connected by lines indicate the same placement surveyed multiple times.



Fig. 3.25 – Mean effective diffusion coefficient  $D_{eff}$  versus placement age range for conventional overlay bridge placements.

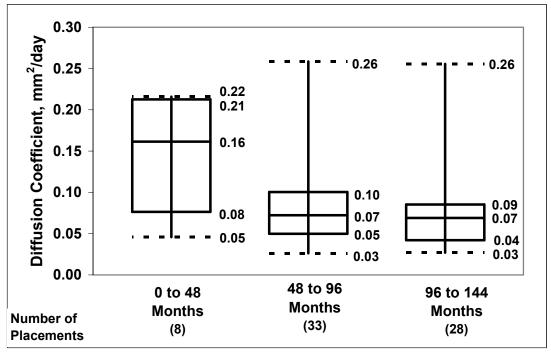



Fig. 3.26 – Box-and-whiskers plot of effective diffusion coefficients  $D_{eff}$  for conventional overlay bridge placements for three age ranges. (max, 75th percentile, median, 25th percentile, and min values indicated)

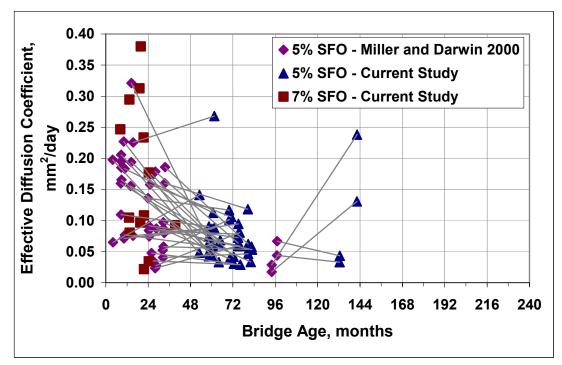



Fig. 3.27 – Effective diffusion coefficient  $D_{eff}$  versus age for silica fume overlay bridge placements. Observations connected by lines indicate the same placement surveyed multiple times.

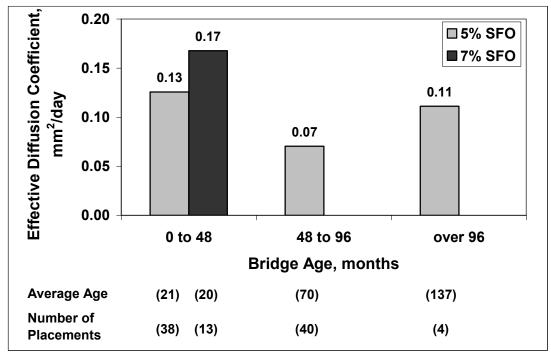



Fig. 3.28 – Mean effective diffusion coefficient  $D_{eff}$  versus placement age range for silica fume overlay bridge placements.

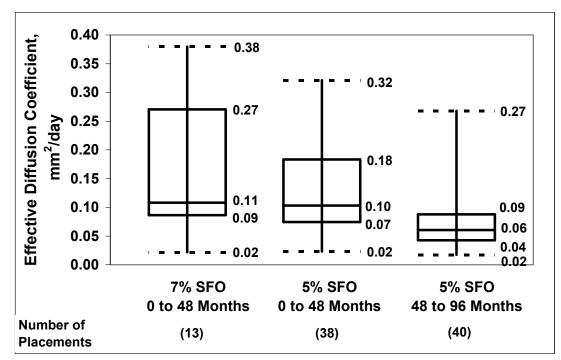



Fig. 3.29 – Box-and-whiskers plot of effective diffusion coefficients  $D_{eff}$  for silica fume overlay bridge placements in two age ranges. (max, 75th percentile, median, 25th percentile, and min values indicated)



Fig. 3.30 – Mean effective diffusion coefficient  $D_{eff}$  and adjusted mean effective diffusion coefficient  $D_{eff}^*$  versus bridge deck type for individual placements between 0 and 48 months old.

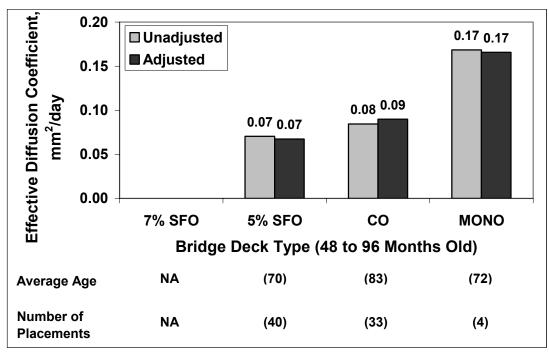



Fig. 3.31 – Mean effective diffusion coefficient  $D_{eff}$  and adjusted mean effective diffusion coefficient  $D_{eff}^*$  versus bridge deck type for individual placements between 48 and 96 months old.

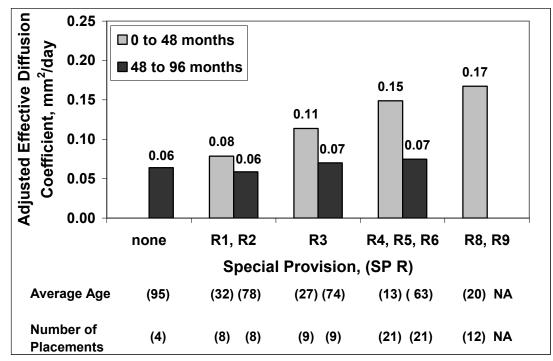



Fig 3.32 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus special provision number for silica fume overlay placements between 0 and 48 months and 48 and 96 months old.

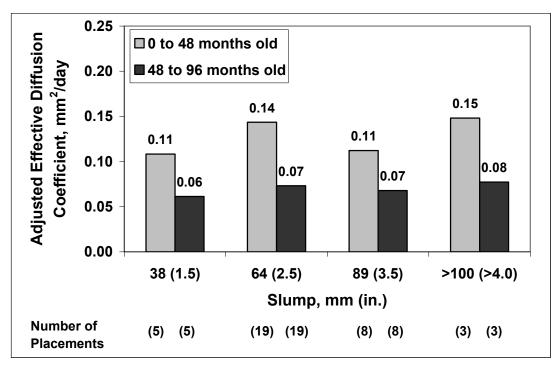



Fig 3.33 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus concrete slump for 5% silica fume overlay placements between 0 and 48 months and 48 and 96 months old.

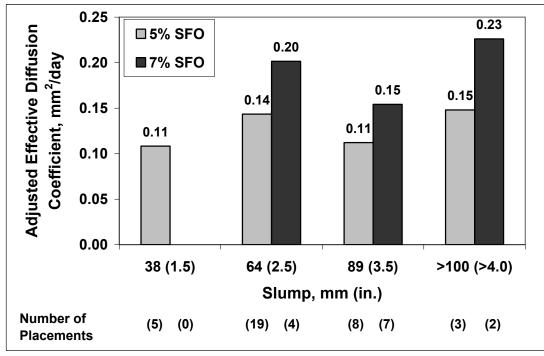



Fig. 3.34 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus concrete slump for 5% silica fume and 7% silica fume overlay placements between 0 and 48 months old.

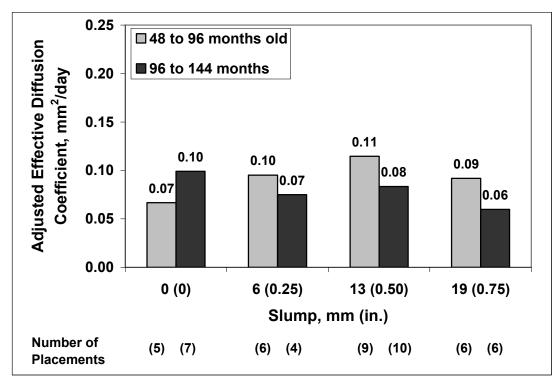
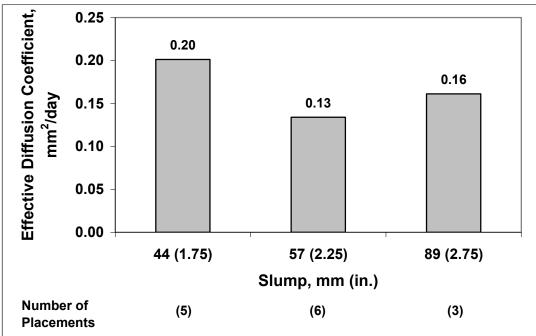
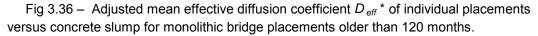





Fig 3.35 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus concrete slump for conventional overlay placements between 48 and 96 months and 96 and 144 months old.





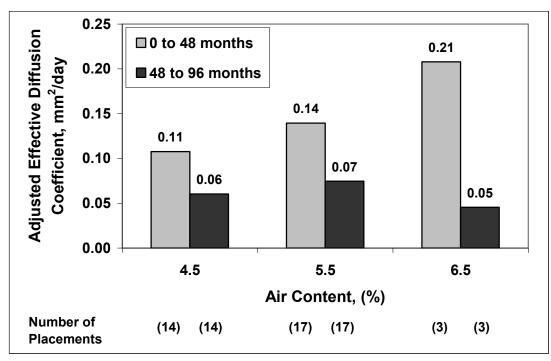



Fig 3.37 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus air content for 5% silica fume overlay placements between 0 and 48 months and 48 and 96 months old.

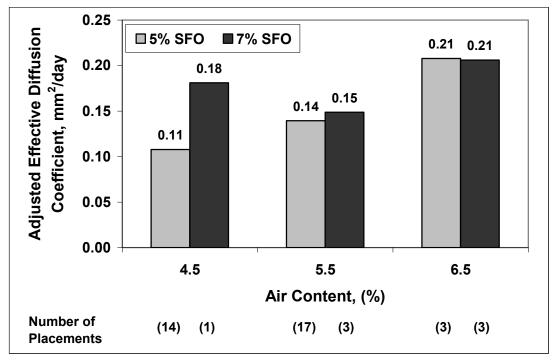



Fig. 3.38 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus air content for 5% silica fume and 7% silica fume overlay placements between 0 and 48 months old.

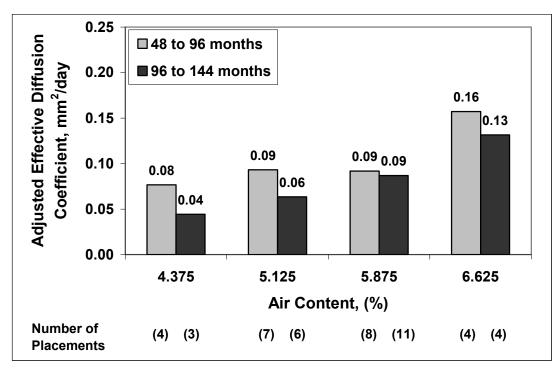



Fig. 3.39 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus air content for conventional overlay placements between 48 and 96 months and 96 and 144 months old.

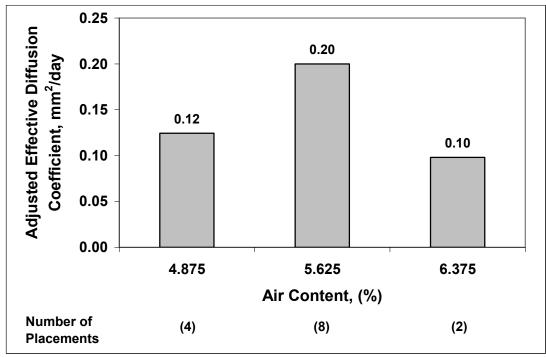



Fig. 3.40 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus air content for monolithic bridge placements older than 120 months.

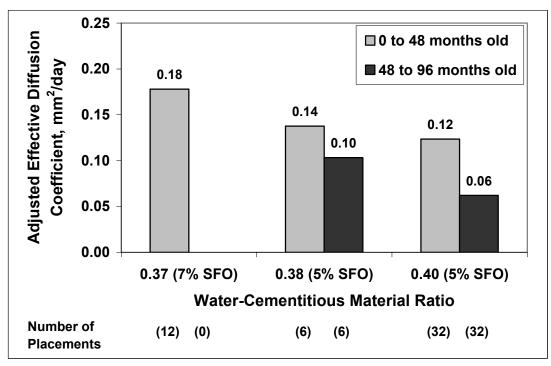



Fig. 3.41 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus water-cementitious material ratio for silica fume overlay placements.

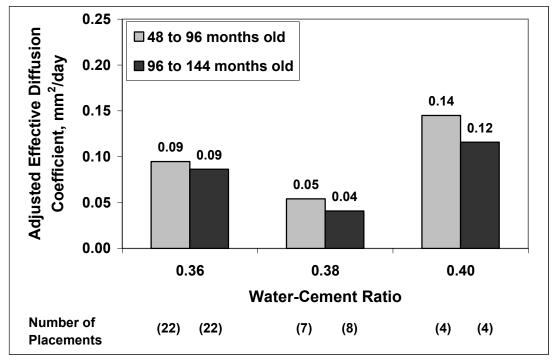



Fig. 3.42 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus water-cement ratio for conventional overlay placements.

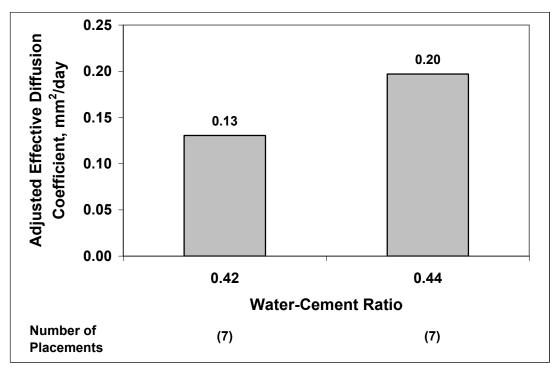



Fig. 3.43 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus water-cement ratio for monolithic bridge placements older than 120 months.

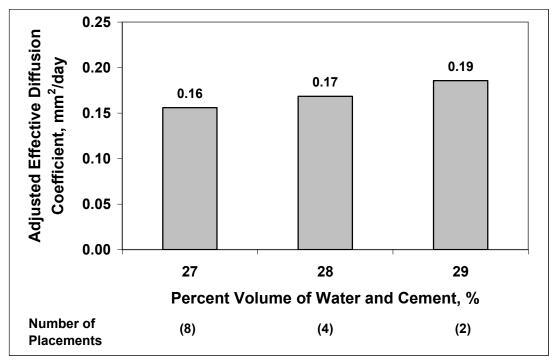



Fig. 3.44 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus concrete slump for monolithic bridge placements older than 120 months.

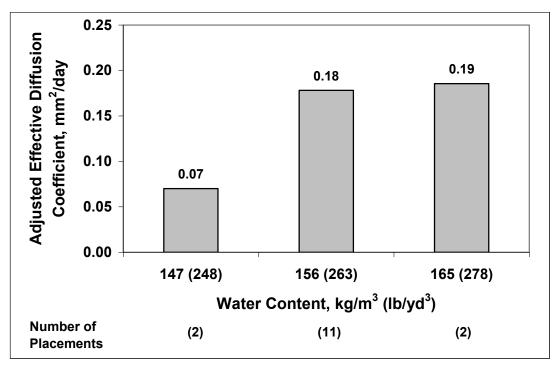



Fig. 3.45 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus water content for monolithic bridge placements older than 120 months.

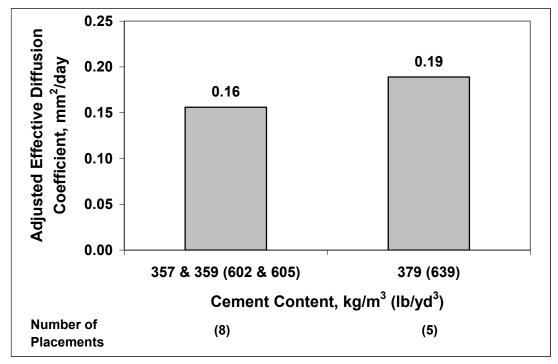



Fig. 3.46 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus cement content for monolithic bridge placements older than 120 months.

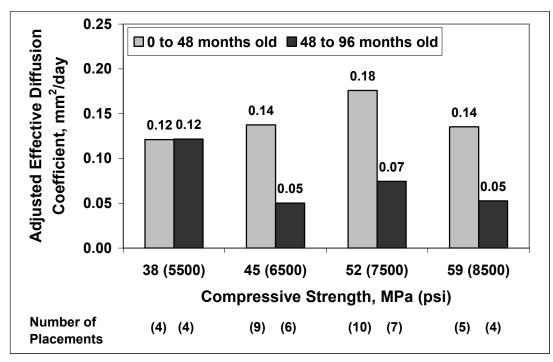



Fig. 3.47 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus concrete compressive strength for 5% silica fume overlay placements between 0 and 48 months and 48 and 96 months old.

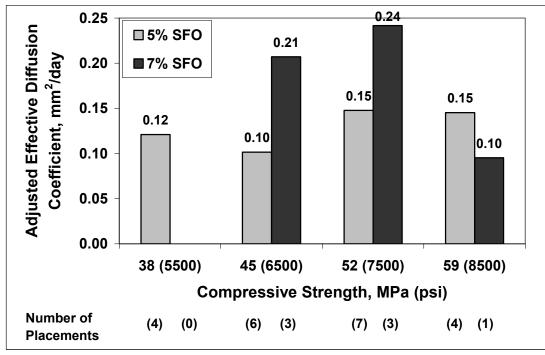



Fig. 3.48 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus concrete compressive strength for 5% silica fume and 7% silica fume overlay placements between 0 and 48 months old.

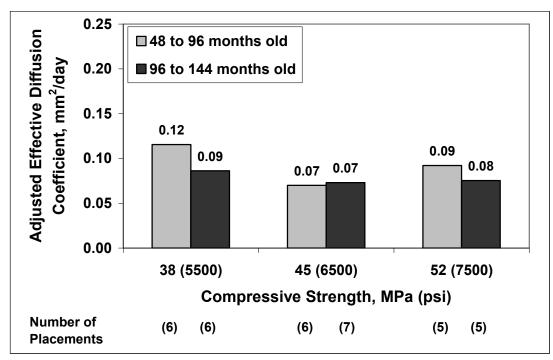



Fig. 3.49 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus concrete compressive strength for conventional overlay placements between 48 and 96 months and 96 and 144 months old.

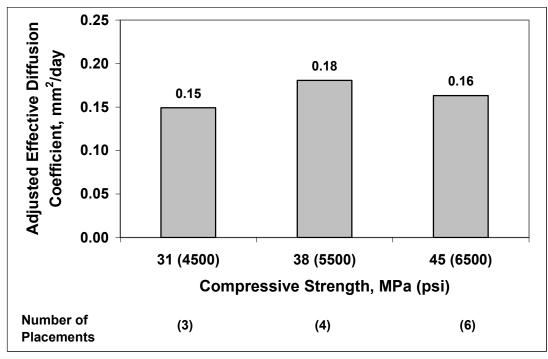



Fig. 3.50 – Adjusted mean effective diffusion coefficient  $D_{eff}^*$  of individual placements versus concrete compressive strength for monolithic bridge placements older than 120 months.

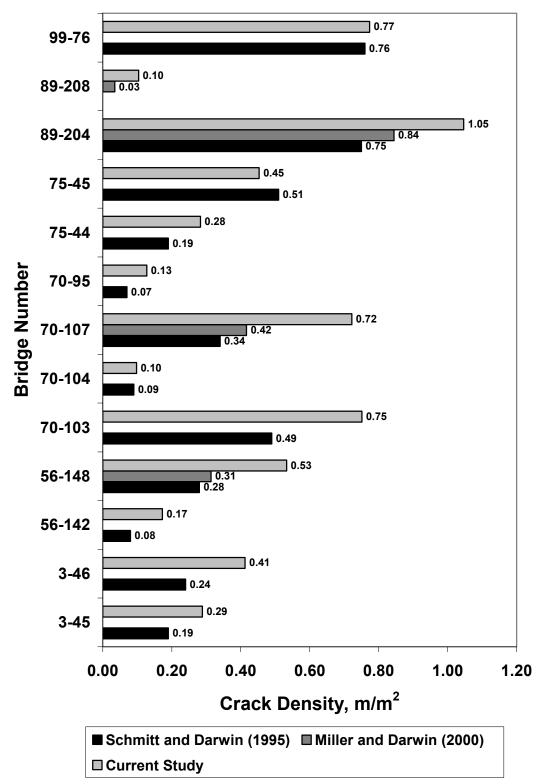



Fig. 4.1 – Crack density of entire **monolithic** bridge decks evaluated in the current study and by Schmitt and Darwin (1995) and/or Miller and Darwin (2000).

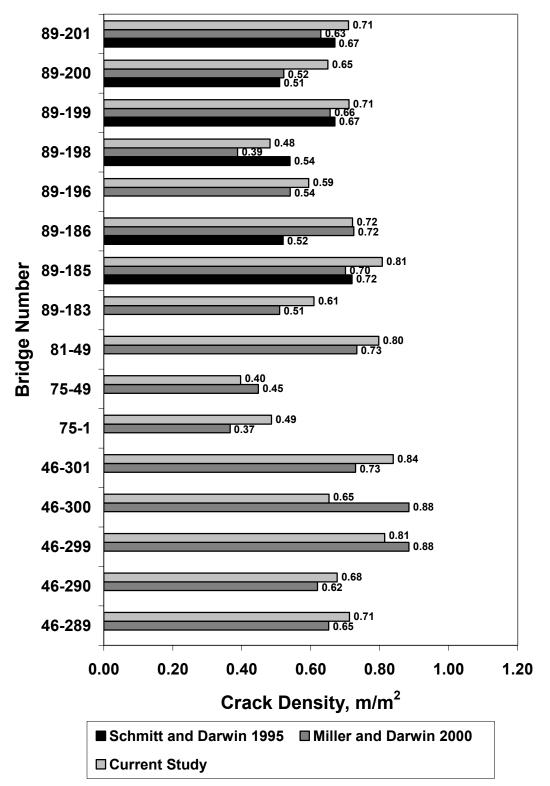



Fig. 4.2 – Crack density of entire **conventional overlay** bridge decks evaluated in the current study and by Schmitt and Darwin (1995) and/or Miller and Darwin (2000).

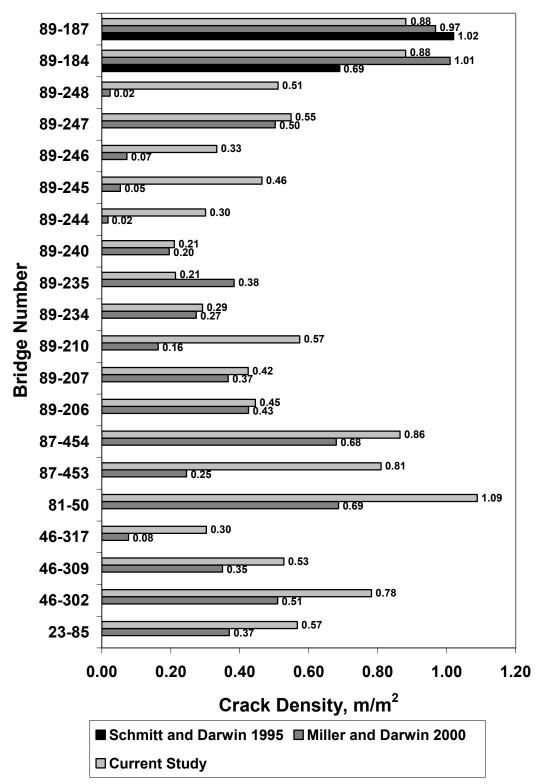



Fig. 4.3 – Crack density of entire **silica fume overlay** bridge decks evaluated in the current study and by Schmitt and Darwin (1995) and/or Miller and Darwin (2000).

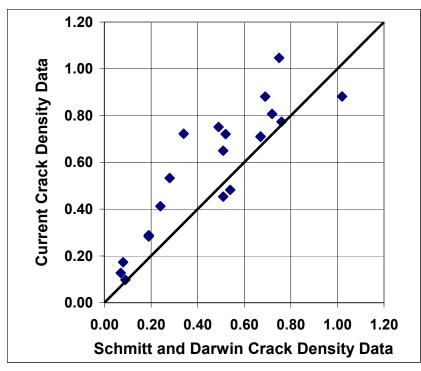



Fig. 4.4 – Correlation of crack density of entire bridge decks for bridges evaluated in the current study and by Schmitt and Darwin (1995).

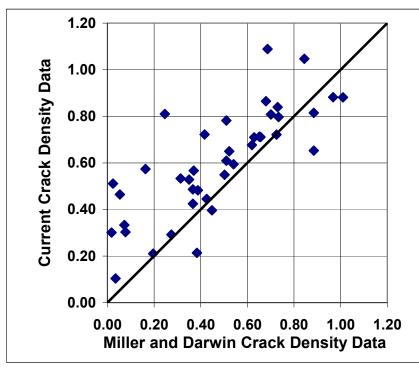



Fig. 4.5 – Correlation of crack density of entire bridge decks for bridges evaluated in the current study and by Miller and Darwin (2000).

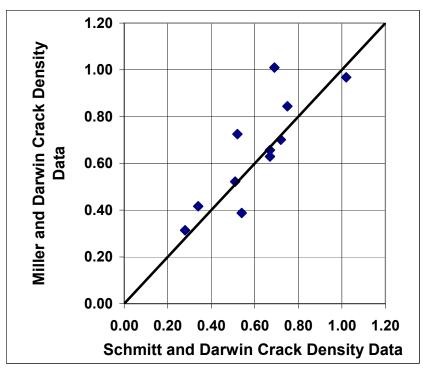



Fig. 4.6 – Correlation of crack density of entire bridge decks for bridges evaluated by Miller and Darwin (2000) and by Schmitt and Darwin (1995).

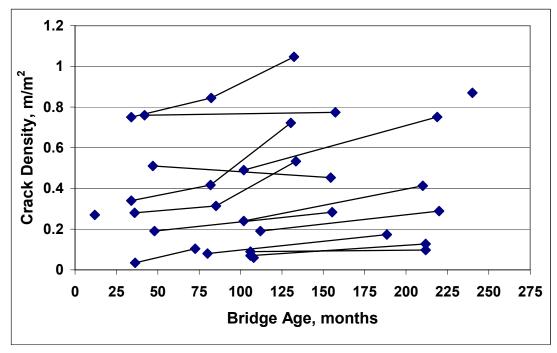



Fig. 4.7 – Crack density of entire bridge decks versus bridge age for all monolithic decks included in the analysis. Observations connected by lines indicate the same bridge surveyed multiple times.

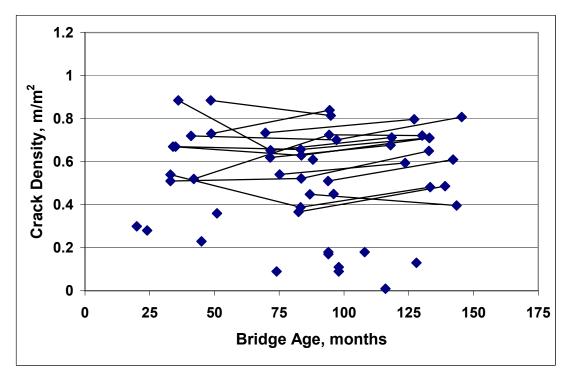



Fig. 4.8 – Crack density of entire bridge decks versus bridge age for all conventional overlays included in the analysis. Observations connected by lines indicate the same bridge surveyed multiple times.

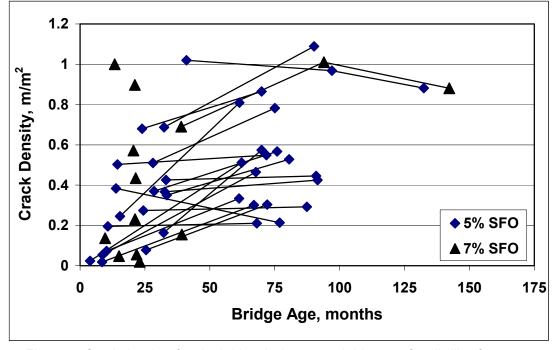



Fig. 4.9 – Crack density of entire bridge decks versus bridge age for all silica fume overlays included in the analysis. Observations connected by lines indicate the same bridge surveyed multiple times.

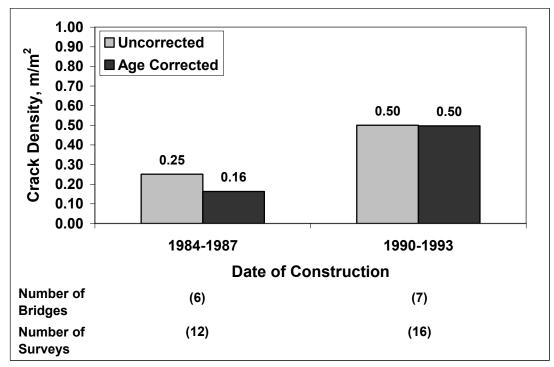



Fig. 4.10 – Mean crack density of entire bridge decks versus date of construction for all monolithic decks included in the analysis.

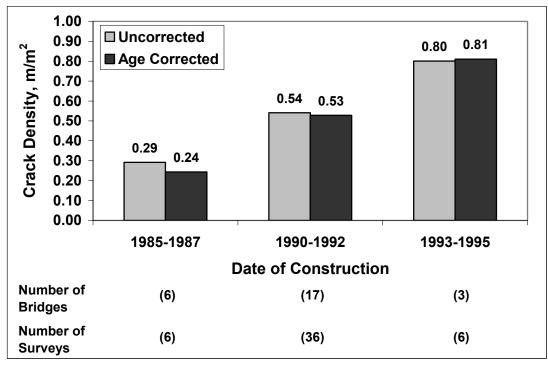



Fig. 4.11 – Mean crack density of entire bridge decks versus date of construction for all conventional overlays included in the analysis.

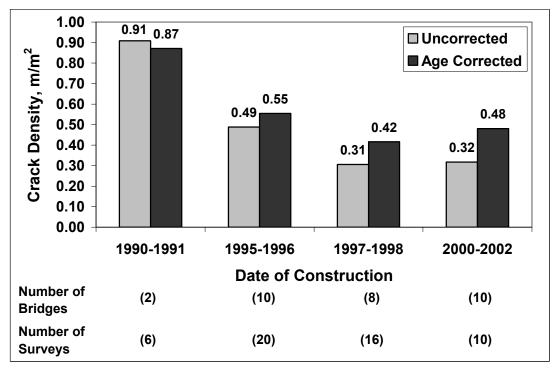



Fig. 4.12 – Mean crack density of entire bridge decks versus date of construction for all silica fume overlays included in the analysis.

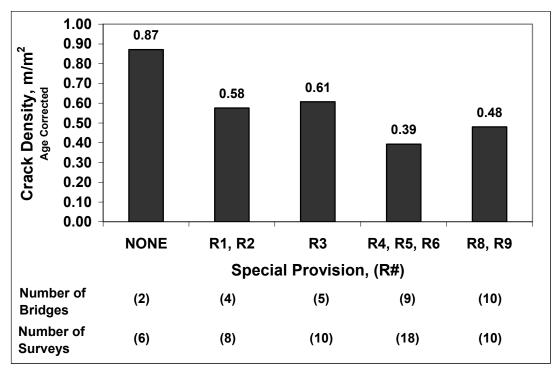
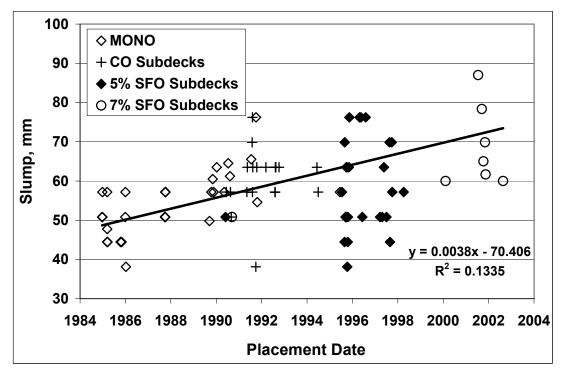
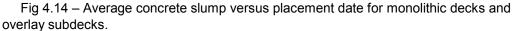





Fig. 4.13 – Mean crack density of entire bridge decks corrected to an age of 78 months versus special provision revision number for silica fume overlay bridge decks.





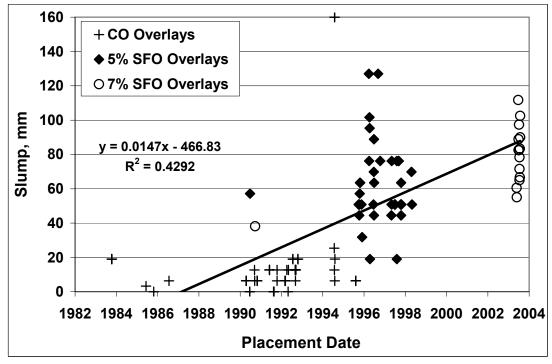



Fig 4.15 – Average concrete slump versus placement date for overlay placements.

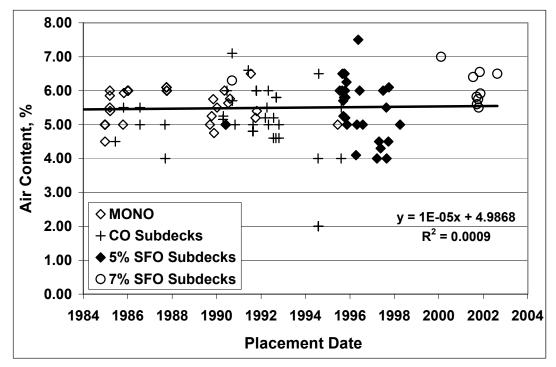



Fig 4.16 – Average air content versus placement date for monolithic decks and overlay subdecks.

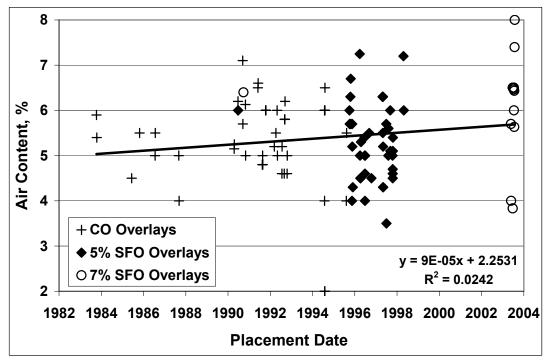
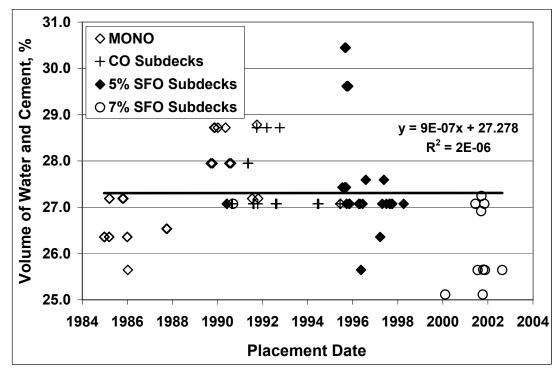




Fig 4.17 – Average concrete air content versus placement date for overlay placements.





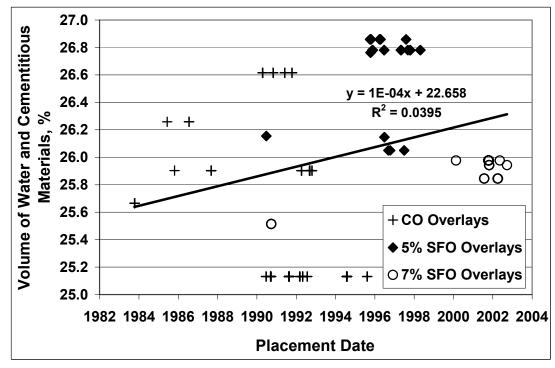



Fig 4.19 – Percent volume of water and cementitious materials versus placement date for overlay placements.

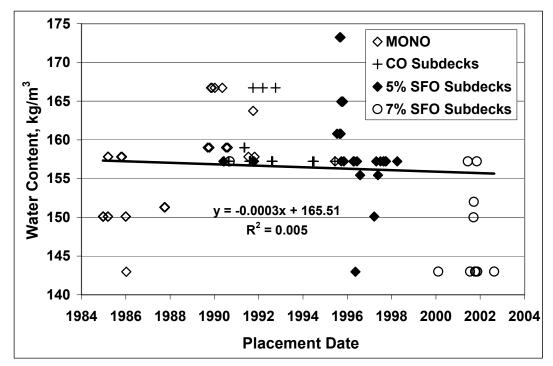



Fig 4.20 – Water content versus placement date for monolithic decks and overlay subdecks.

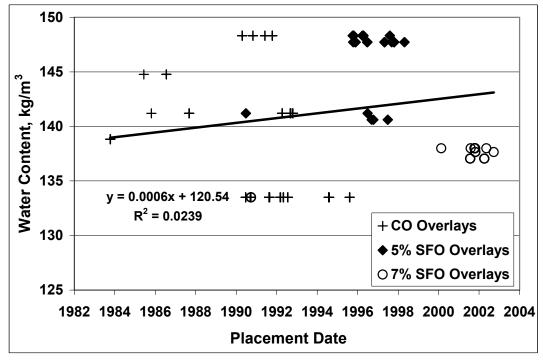
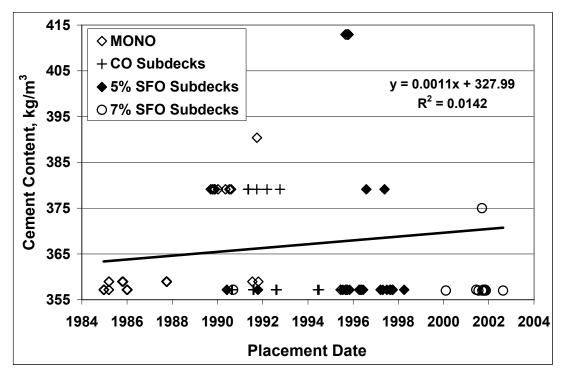
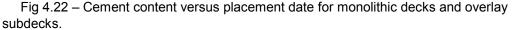





Fig 4.21 – Water content versus placement date for overlay placements.





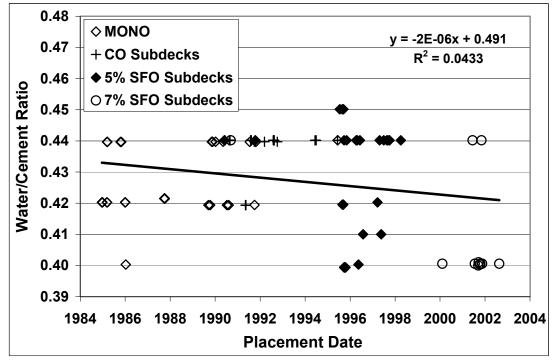
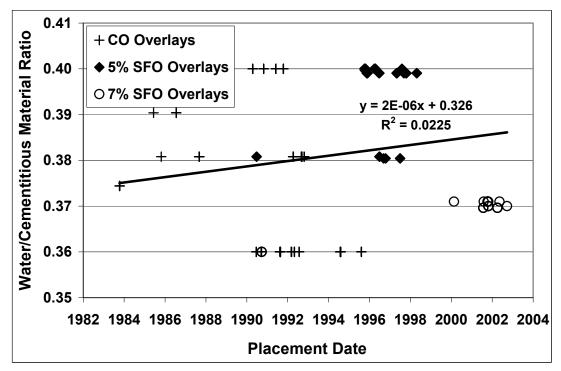
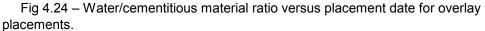





Fig 4.23 – Water/cement ratio versus placement date for monolithic decks and overlay subdecks.





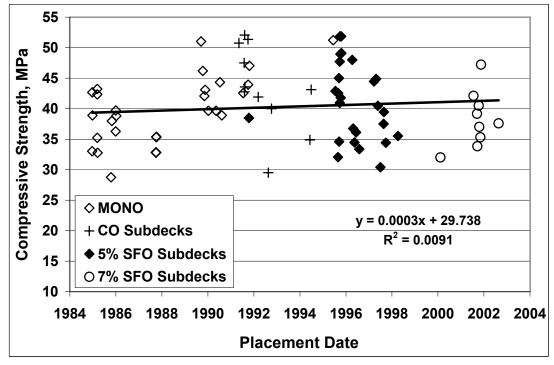
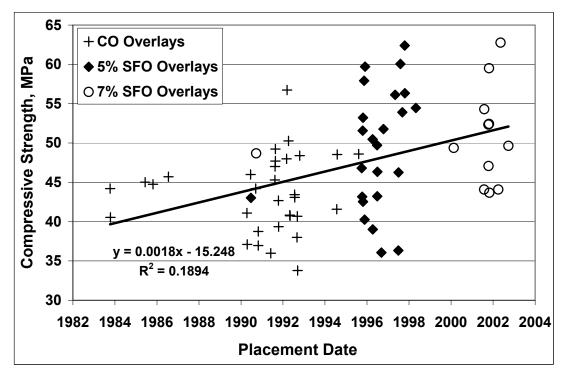
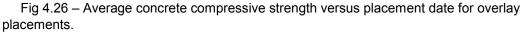





Fig 4.25 – Average concrete compressive strength versus placement date for monolithic decks and overlay subdecks.





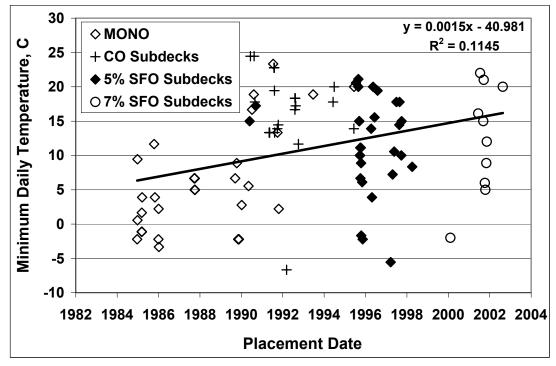



Fig 4.27 – Minimum daily temperature versus placement date for monolithic deck and overlay subdecks.

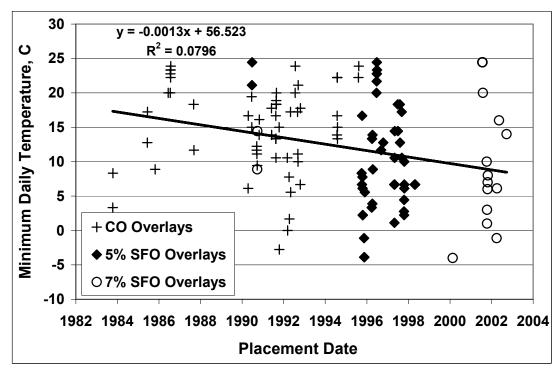



Fig 4.28 – Minimum daily temperature versus placement date for overlay placements.

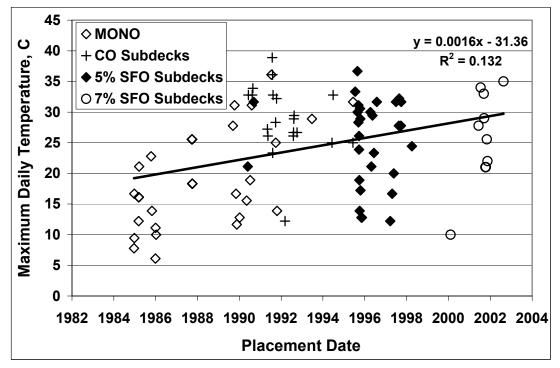



Fig 4.29 – Maximum daily temperature versus placement date for monolithic deck and overlay subdecks.

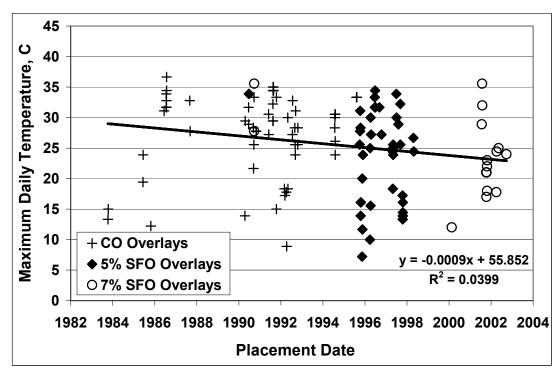



Fig 4.30 – Maximum daily temperature versus placement date for overlay placements.

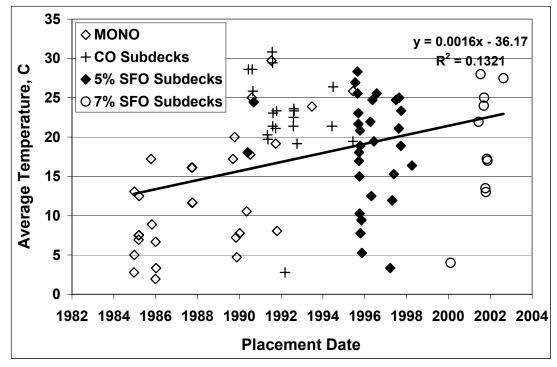



Fig 4.31 – Average temperature versus placement date for monolithic deck and overlay subdecks.

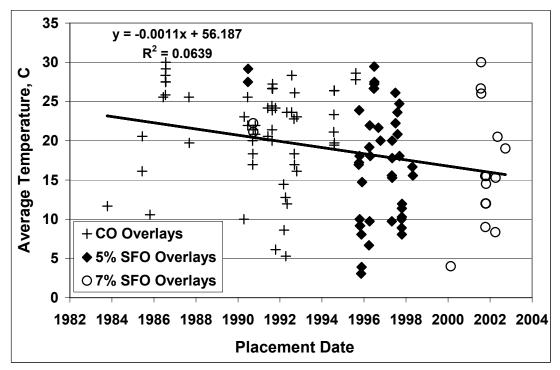



Fig 4.32 – Average temperature versus placement date for overlay placements.

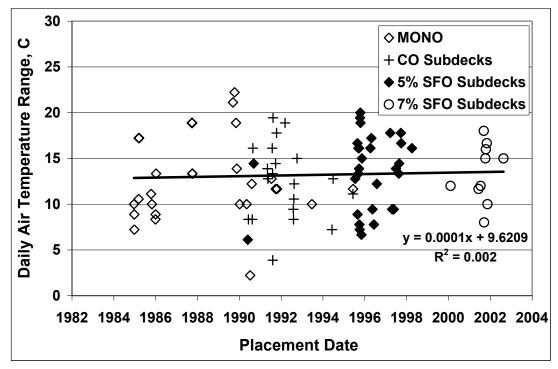



Fig 4.33 – Daily air temperature range versus placement date for monolithic deck and overlay subdecks.

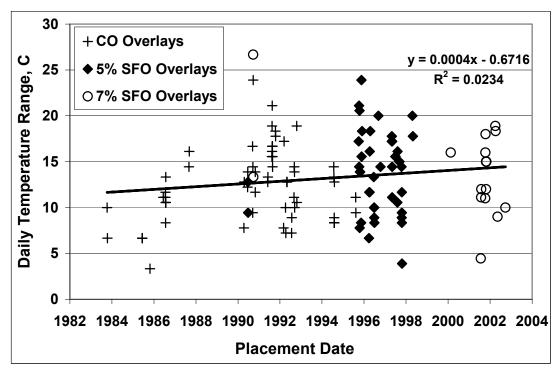



Fig 4.34 – Daily air temperature range versus placement date for overlay placements.

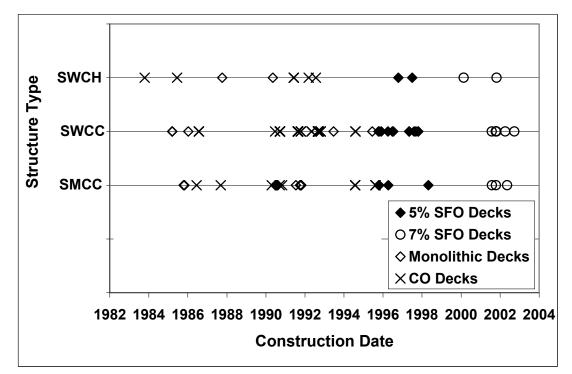



Fig 4.35 – Bridge deck superstructure type versus date of placement for all bridge deck types.




Fig 4.36 – Deck thickness versus the last day of concrete placement.

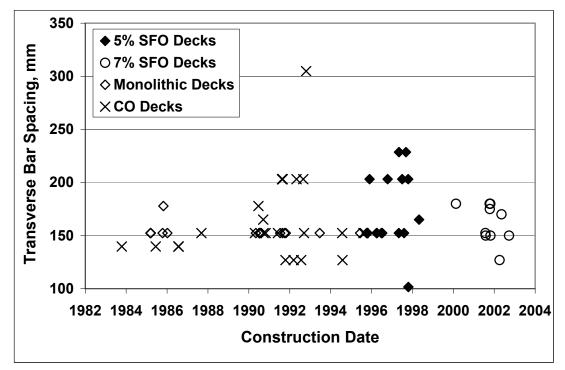



Fig 4.37 – Transverse bar spacing versus the last day of concrete placement.

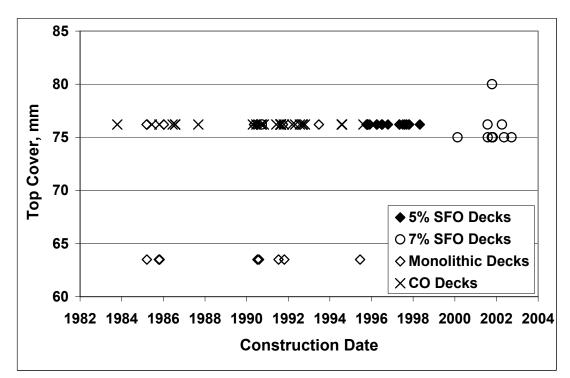



Fig 4.38 – Top cover versus the last day of concrete placement.

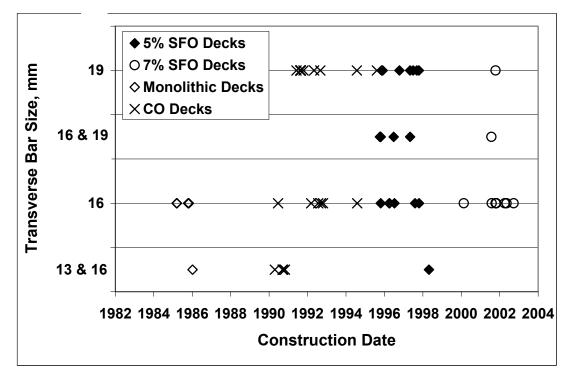



Fig 4.39 – Transverse bar spacing versus the last day of concrete placement.

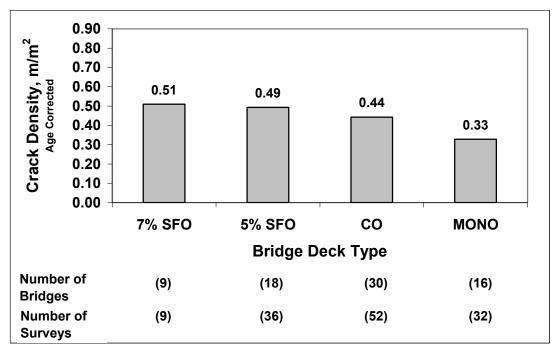



Fig. 5.1 – Mean crack density for individual placements corrected to an age of 78 months versus bridge deck type. Silica Fume Overlay (% SFO); Conventional Overlay (CO); Monolithic Bridge Decks (MONO)

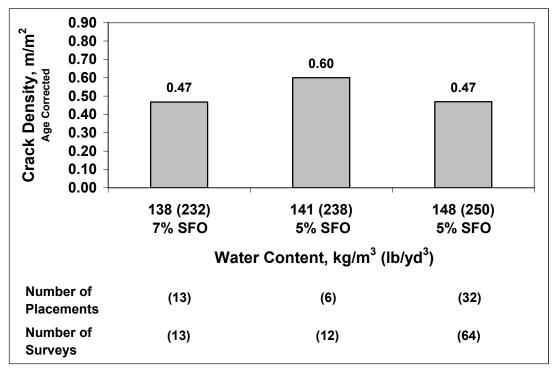



Fig. 5.2 – Mean crack density for individual placements corrected to an age of 78 months versus water content for 5% and 7% silica fume overlay placements.

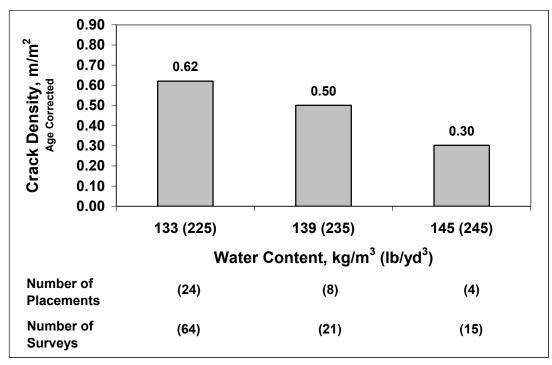



Fig. 5.3 – Mean crack density for individual placements corrected to an age of 78 months versus water content for conventional overlay placements.

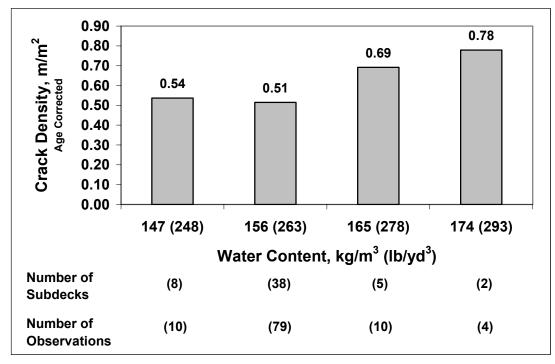



Fig. 5.4 – Mean crack density for individual bridge decks corrected to an age of 78 months versus water content for overlay subdeck placements.

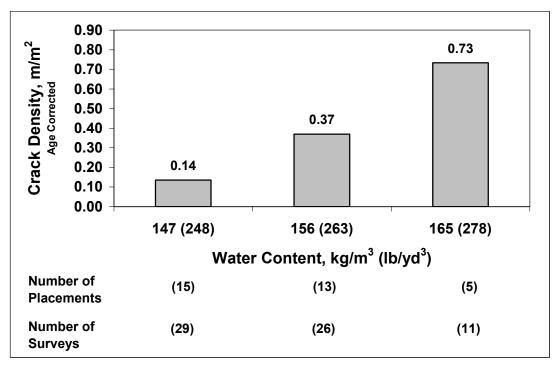



Fig. 5.5 – Mean crack density for individual placements corrected to an age of 78 months versus water content for monolithic placements.

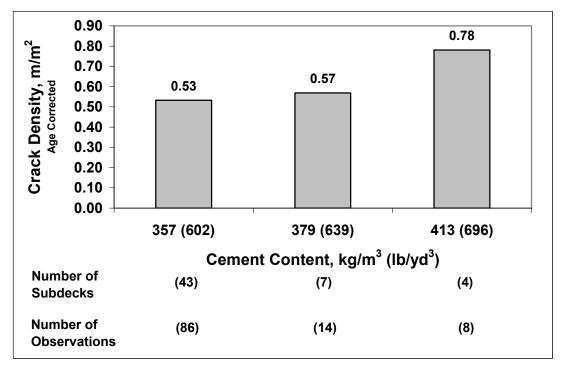



Figure 5.6 – Mean crack density for individual bridge decks corrected to an age of 78 months versus cement content for overlay subdeck placements.

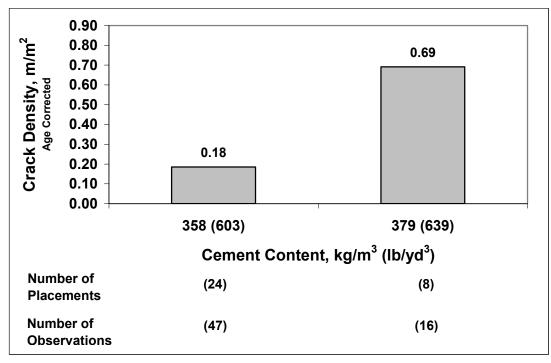



Figure 5.7 – Mean crack density for individual placements corrected to an age of 78 months versus cement content for monolithic placements.

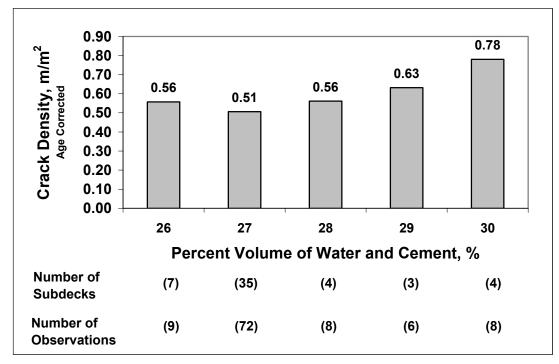



Fig. 5.8 – Mean crack density for individual bridge decks corrected to an age of 78 months versus percent volume of water and cement for overlay subdeck placements.

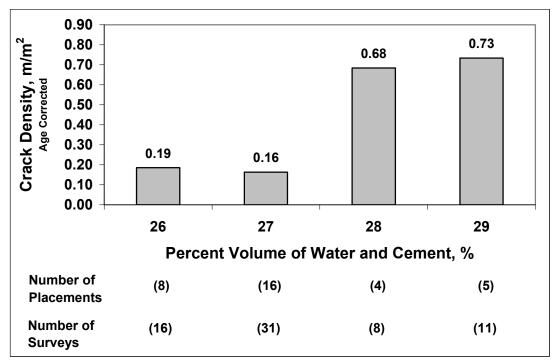



Fig. 5.9 – Mean crack density for individual placements corrected to an age of 78 months versus percent volume of water and cement for monolithic placements.




Fig. 5.10 – Mean crack density for individual placements corrected to an age of 78 months versus water-cement ratio for overlay subdeck placements.

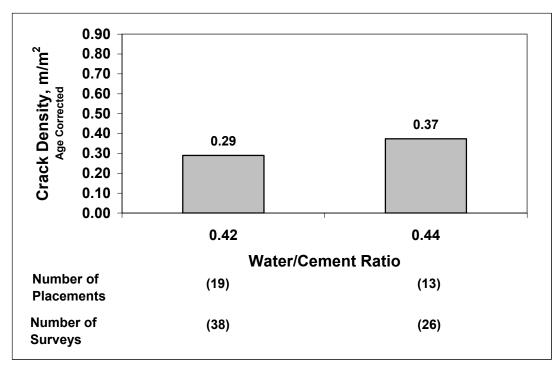



Fig. 5.11 – Mean crack density for individual placements corrected to an age of 78 months versus water-cement ratio for monolithic placements.

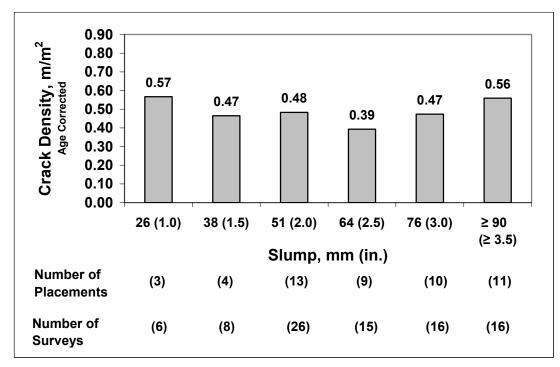



Fig. 5.12 – Mean crack density for individual placements corrected to an age of 78 months versus concrete slump for 5% and 7% silica fume overlay placements.

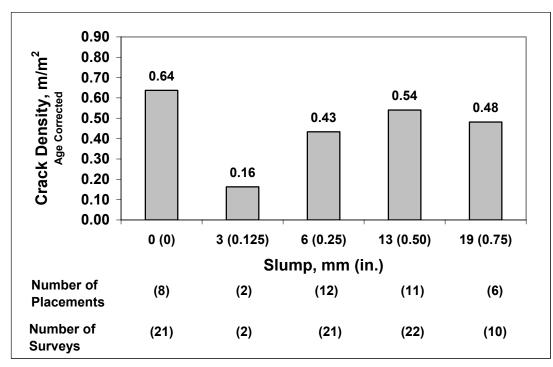



Fig. 5.13 – Mean crack density for individual placements corrected to an age of 78 months versus concrete slump for conventional overlay placements.

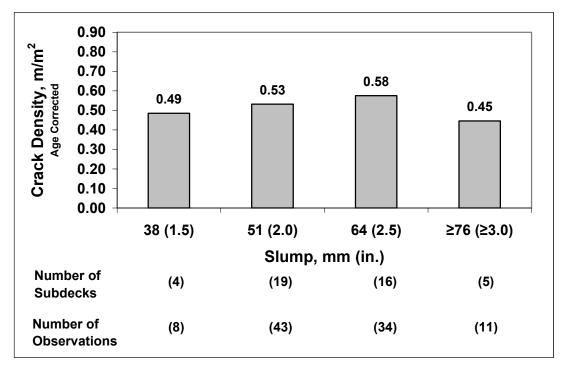



Fig. 5.14 – Mean crack density for individual bridge decks corrected to an age of 78 months versus concrete slump for subdeck placements.

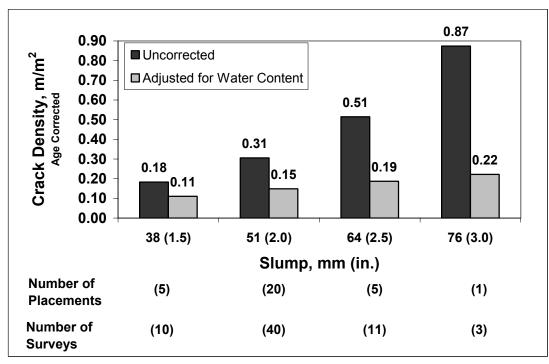



Fig. 5.15 – Mean crack density for individual placements corrected to an age of 78 months versus concrete slump for monolithic placements.

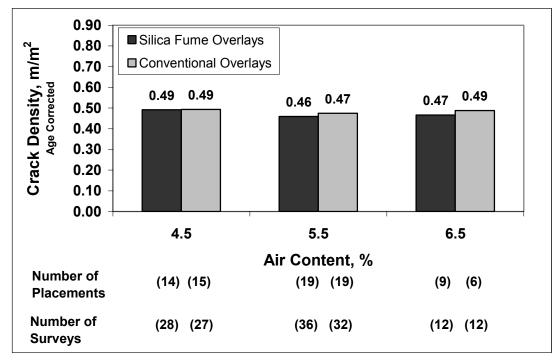



Fig. 5.16 – Mean crack density for individual placements corrected to an age of 78 months versus air content for 5% and 7% silica fume overlay and conventional overlay placements.

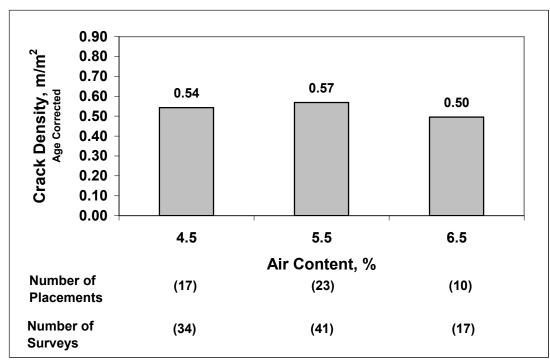



Figure 5.17 – Mean crack density for individual bridge decks corrected to an age of 78 months versus air content for overlay subdeck placements.

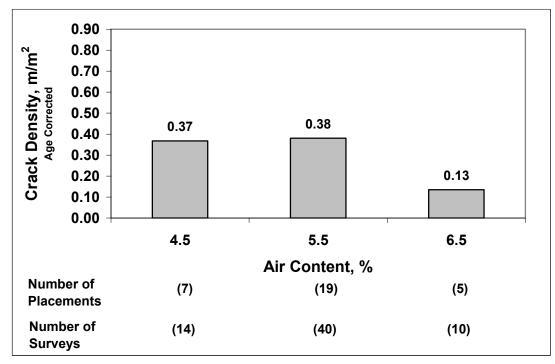



Figure 5.18 – Mean crack density for individual placements corrected to an age of 78 months versus air content for monolithic bridge placements.

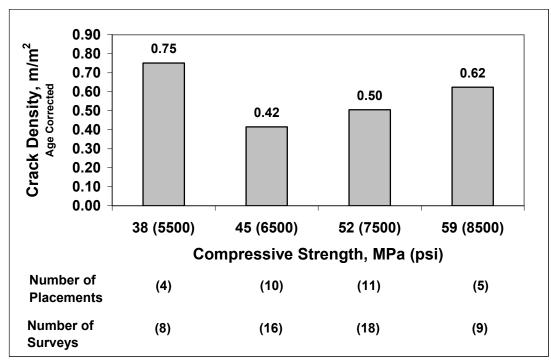



Fig. 5.19 – Mean crack density for individual placements corrected to an age of 78 months versus compressive strength for 5% and 7% silica fume overlay placements.

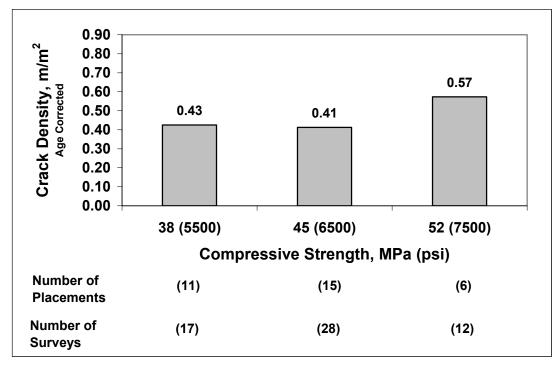



Fig. 5.20 – Mean crack density for individual placements corrected to an age of 78 months versus compressive strength for conventional overlay placements.

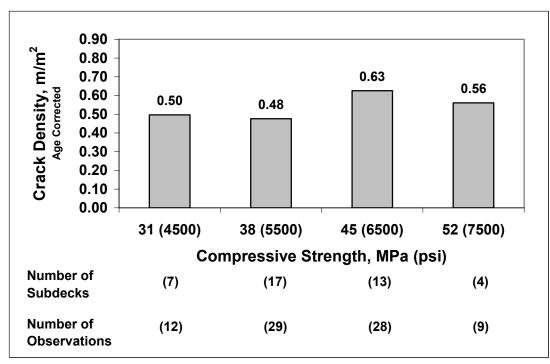



Figure 5.21 – Mean crack density for individual bridge decks corrected to an age of 78 months versus compressive strength for subdeck placements.

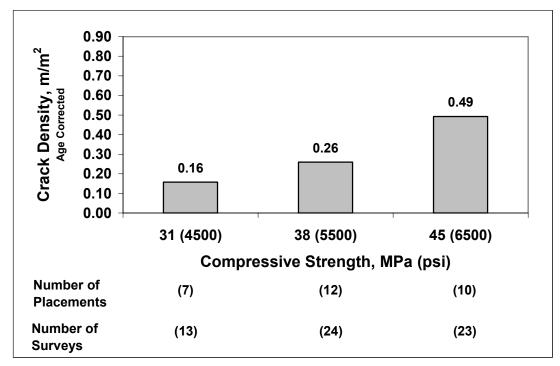



Figure 5.22 – Mean crack density for individual placements corrected to an age of 78 months versus compressive strength for monolithic placements.

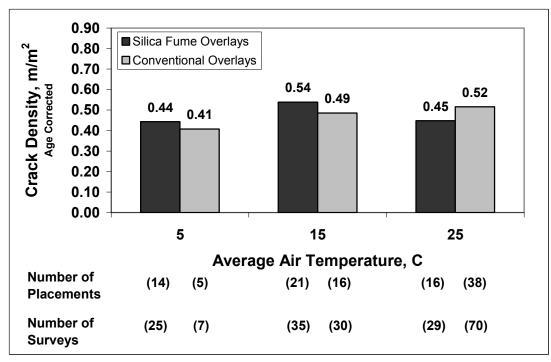



Fig. 5.23 – Mean crack density for individual placements corrected to an age of 78 months versus average air temperature for 5% and 7% silica fume overlay and conventional overlay placements.

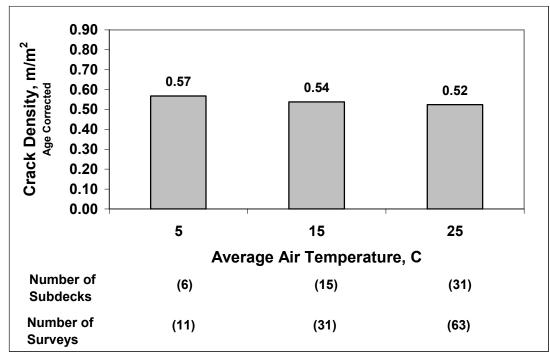



Fig. 5.24 – Mean crack density for individual bridge decks corrected to an age of 78 months versus average air temperature for overlay subdeck placements.



Fig. 5.25 – Mean crack density for individual bridge placements corrected to an age of 78 months versus average air temperature for monolithic placements.

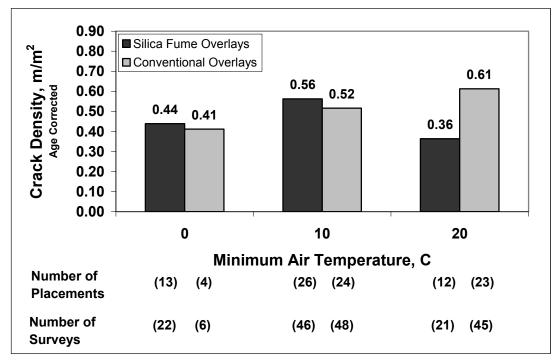



Fig. 5.26 – Mean crack density for individual placements corrected to an age of 78 months versus minimum air temperature for 5% and 7% silica fume overlay and conventional overlay placements.

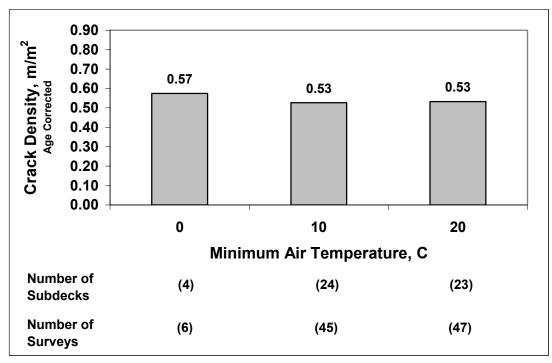



Fig. 5.27 – Mean crack density for individual bridge decks corrected to an age of 78 months versus minimum air temperature for overlay subdeck placements.

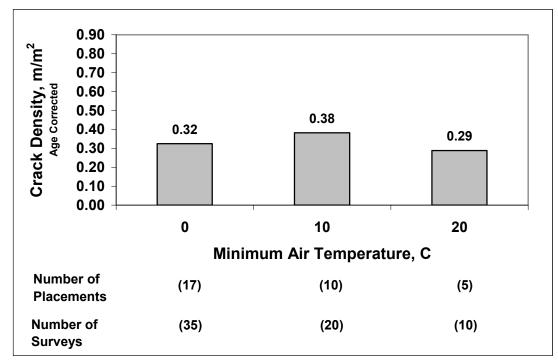



Figure 5.28 – Mean crack density for individual bridge placements corrected to an age of 78 months versus minimum air temperature for monolithic bridge placements.

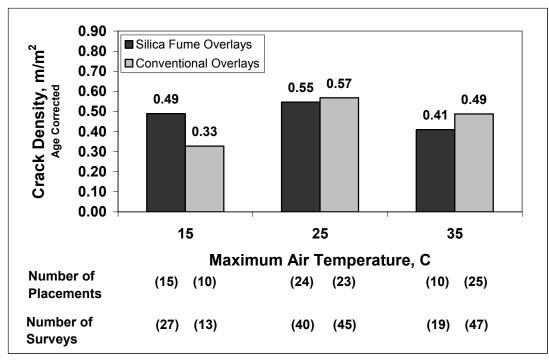



Fig. 5.29 – Mean crack density for individual placements corrected to an age of 78 months versus maximum air temperature for 5% and 7% silica fume overlay and conventional overlay placements.

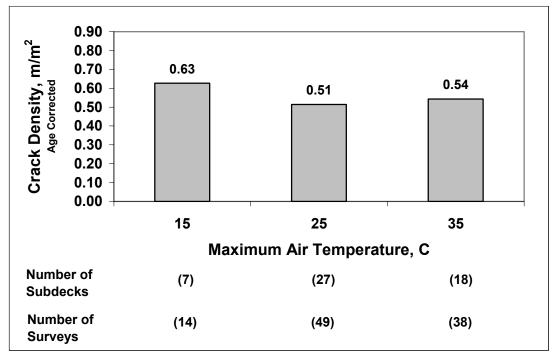



Fig. 5.30 – Mean crack density for individual bridge placements corrected to an age of 78 months versus maximum air temperature for overlay subdeck placements.

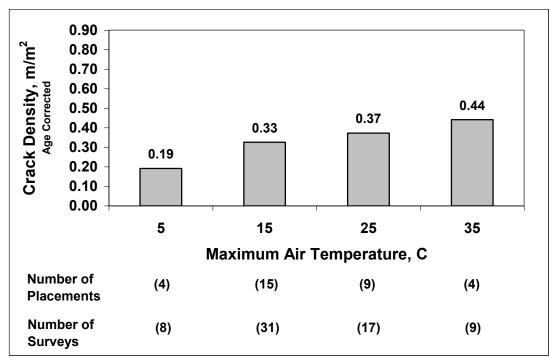



Figure 5.31 – Mean crack density for individual bridge placements corrected to an age of 78 months versus maximum air temperature for monolithic bridge placements.

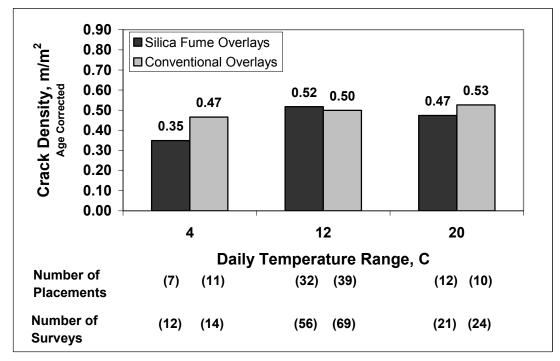



Fig. 5.32 – Mean crack density for individual placements corrected to an age of 78 months versus daily air temperature range for 5% and 7% silica fume overlay and conventional overlay placements.

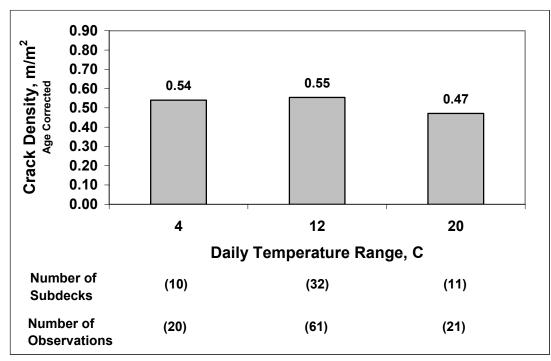



Fig. 5.33 – Mean crack density for individual bridge decks corrected to an age of 78 months versus daily air temperature range for overlay subdeck placements.

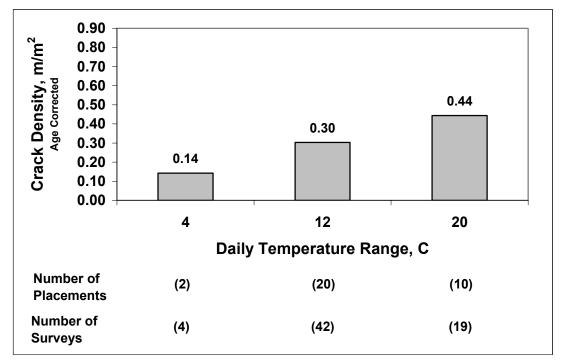



Figure 5.34 – Mean crack density for individual bridge decks corrected to an age of 78 months versus daily air temperature range for monolithic bridge placements.

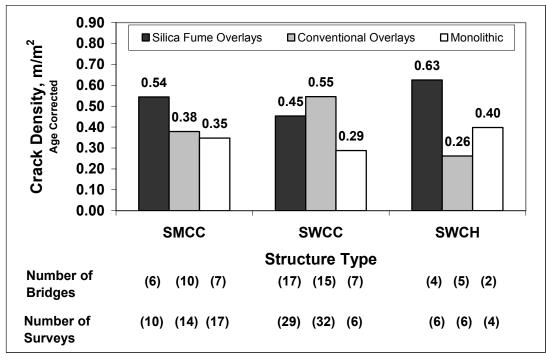



Fig. 5.35 – Mean crack density for bridge decks corrected to an age of 78 months versus structure type, based on deck type, for all bridge deck types.

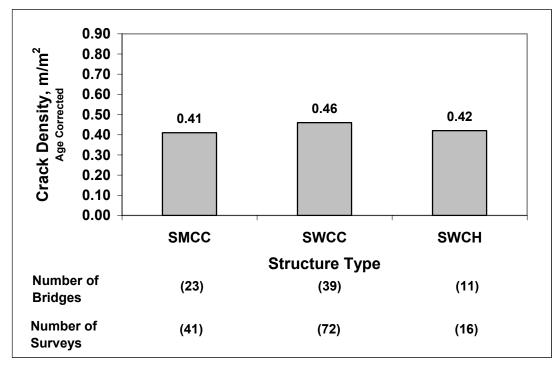



Fig. 5.36 – Mean crack density for bridge decks corrected to an age of 78 months versus structure type for all bridge deck types.

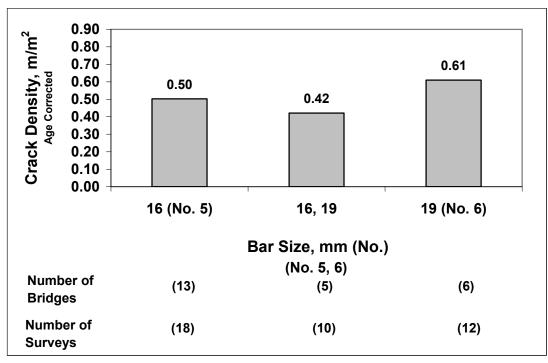



Fig. 5.37 – Mean crack density for bridge decks corrected to an age of 78 months versus top transverse reinforcing bar size for 5% and 7% silica fume overlay bridges.

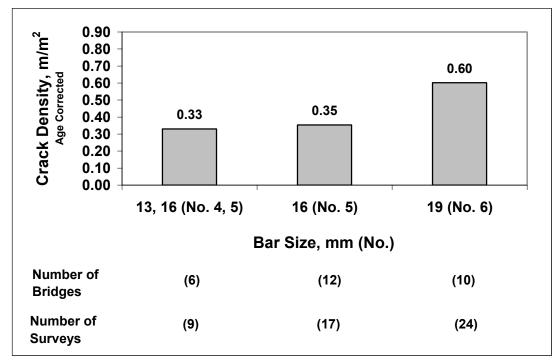



Fig. 5.38 – Mean crack density for bridge decks corrected to an age of 78 months versus top transverse reinforcing bar size for conventional overlay bridges.

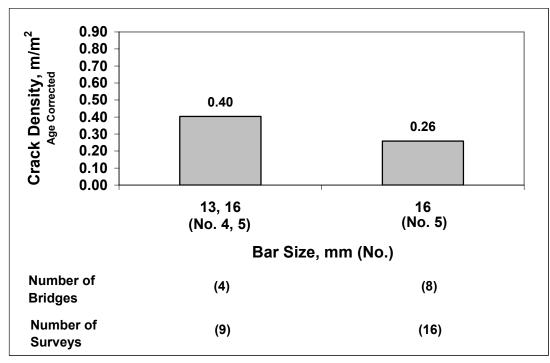



Fig. 5.39 – Mean crack density for bridge decks corrected to an age of 78 months versus top transverse reinforcing bar size for monolithic bridges.

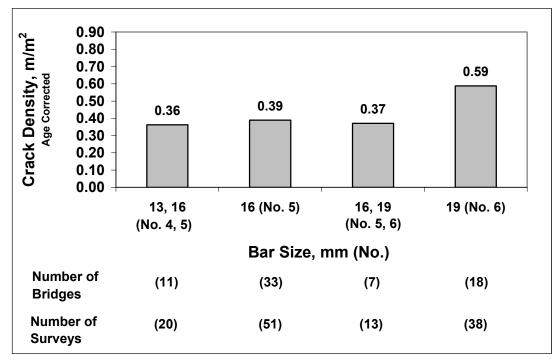



Fig. 5.40 – Mean crack density for bridge decks corrected to an age of 78 months versus top transverse reinforcing bar size for all bridge deck types.

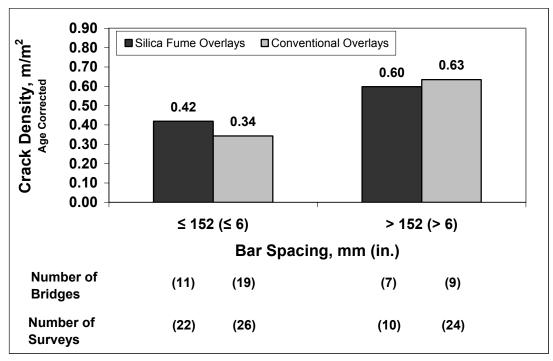



Fig. 5.41 – Mean crack density for bridge decks corrected to an age of 78 months versus top transverse bar spacing for 5% and 7% silica fume and conventional overlay bridges.

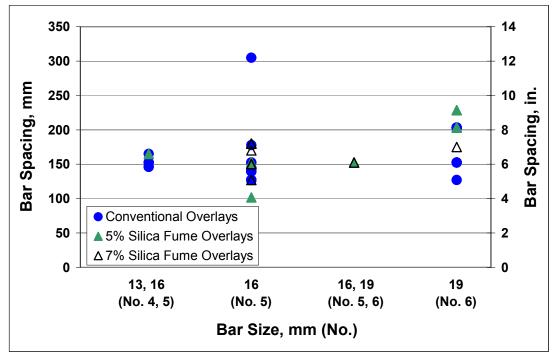



Fig. 5.42 – Top transverse bar spacing versus top transverse bar size for 5% and 7% silica fume and conventional overlay bridges.

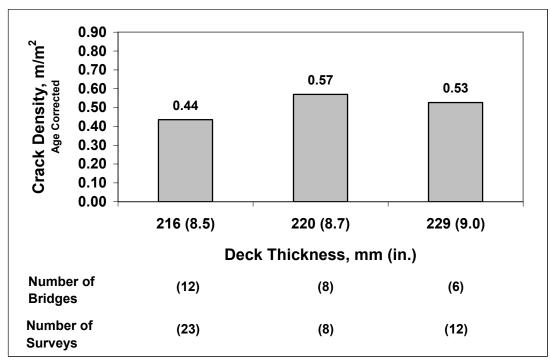



Fig. 5.43 – Mean crack density for bridge decks corrected to an age of 78 months versus deck thickness for 5% and 7% silica fume overlay bridges.

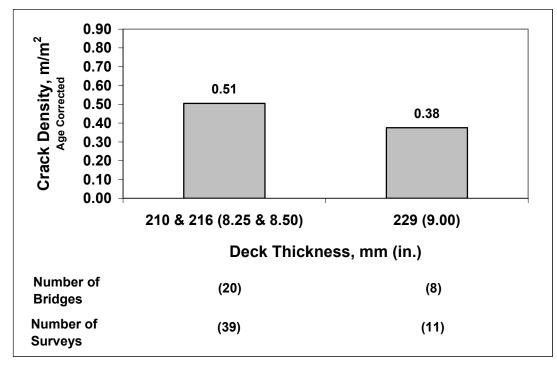



Fig. 5.44 – Mean crack density for bridge decks corrected to an age of 78 months versus deck thickness for conventional overlay bridges.

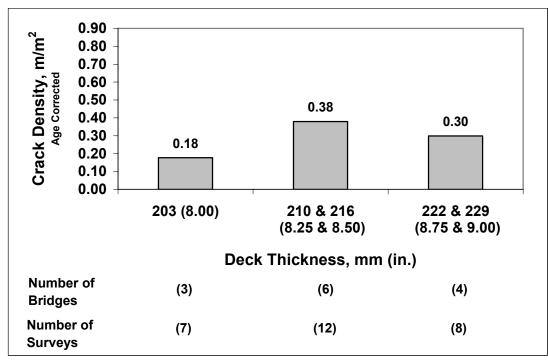



Fig. 5.45 – Mean crack density for bridge decks corrected to an age of 78 months versus deck thickness for monolithic bridges.

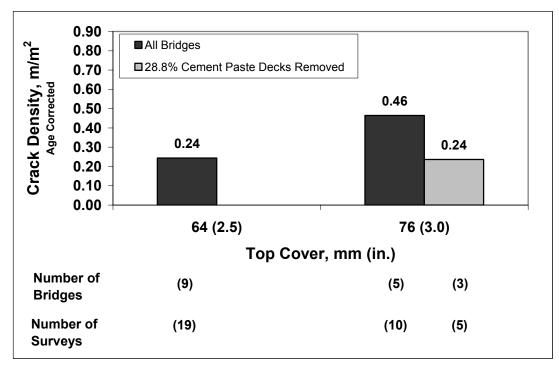



Fig. 5.46 – Mean crack density for bridge decks corrected to an age of 78 months versus top cover for monolithic bridges.

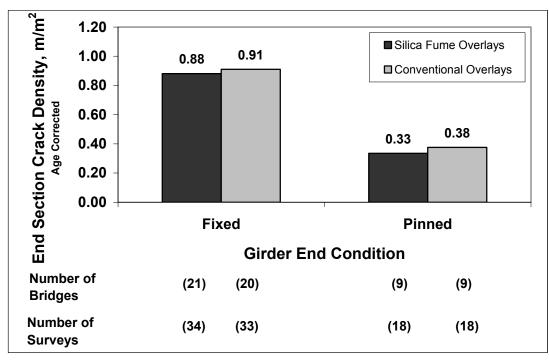



Fig. 5.47 – Mean crack density of end sections corrected to an age of 78 months versus girder end condition for 5% and 7% silica fume overlay and conventional overlay bridges.

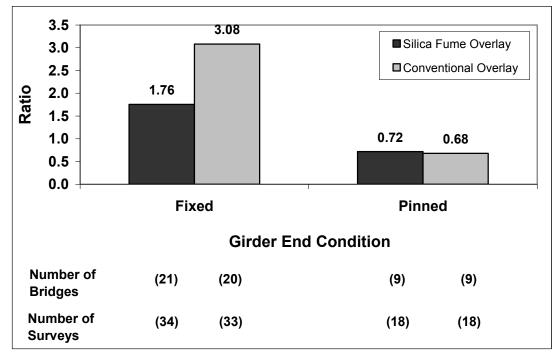



Fig. 5.48 – Ratio of end section crack density to the crack density of the entire deck versus girder end condition for 5% and 7% silica fume overlay and conventional overlay bridges.

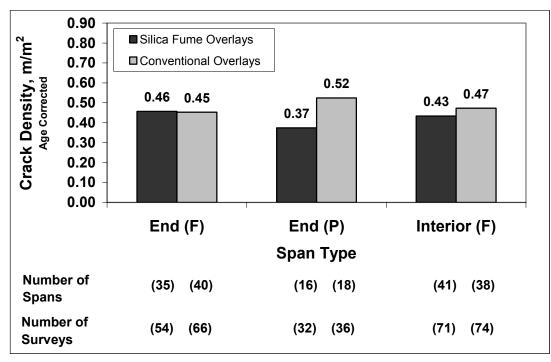



Fig. 5.49 – Mean crack density for individual spans corrected to an age of 78 months versus span type for 5% and 7% silica fume overlay and conventional overlay bridges.

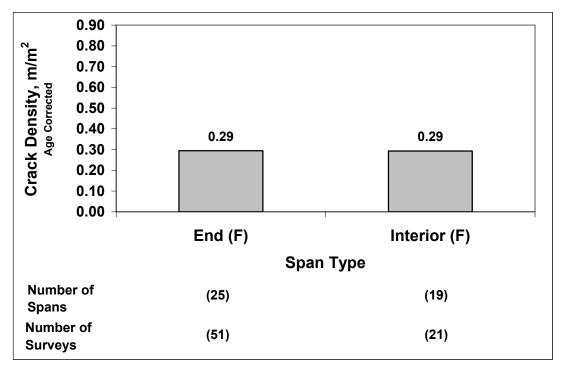



Fig. 5.50 – Mean crack density for individual spans corrected to an age of 78 months versus span type for monolithic bridges.

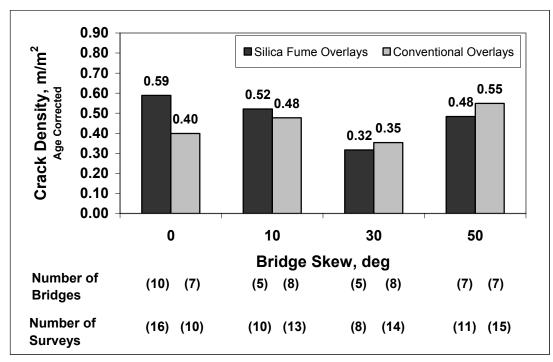



Fig. 5.51 – Mean crack density for bridge decks corrected to an age of 78 months versus bridge skew for 5% and 7% silica fume overlays and conventional overlay bridges.

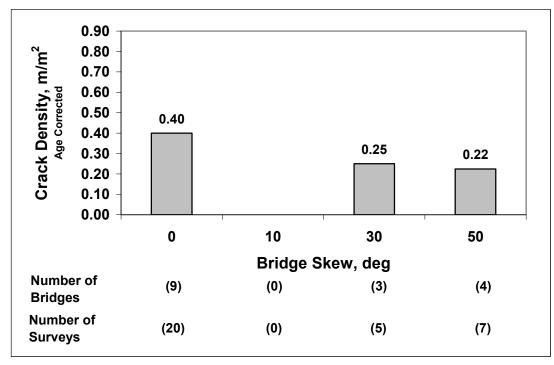



Fig. 5.52 – Mean crack density for bridge decks corrected to an age of 78 months versus bridge skew for monolithic bridges.

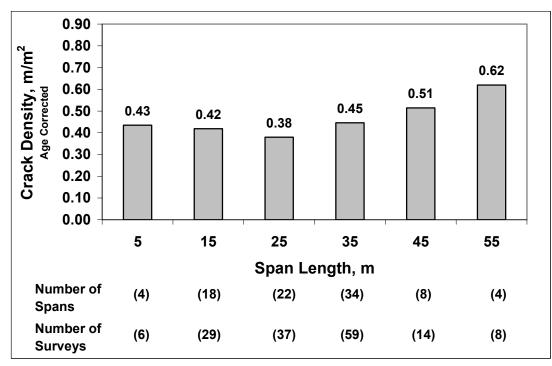



Fig. 5.53 – Mean crack density for individual spans corrected to an age of 78 months versus span length for 5% and 7% silica fume overlay bridges.

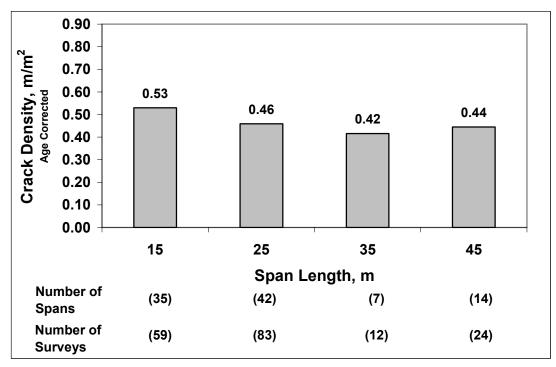



Fig. 5.54 – Mean crack density for individual spans corrected to an age of 78 months versus span length for conventional overlay bridges.

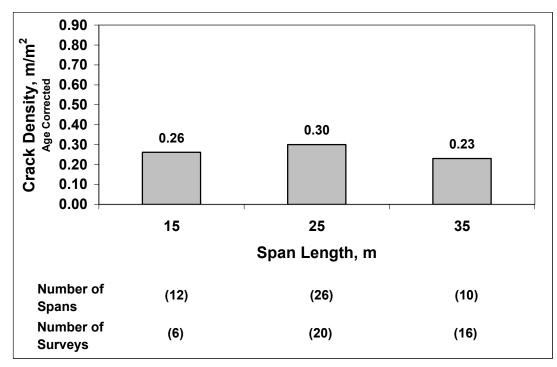



Fig. 5.55 – Mean crack density for individual spans corrected to an age of 78 months versus span length for monolithic bridges.

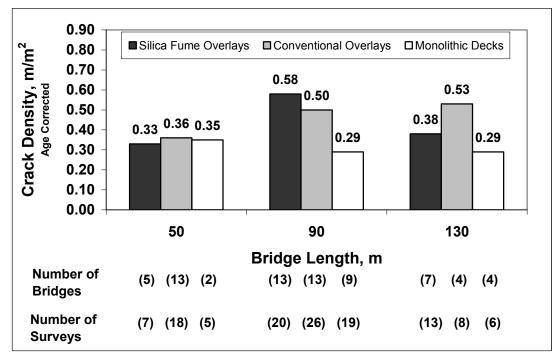



Fig. 5.56 – Mean crack density for bridge decks corrected to an age of 78 months versus bridge length for 5% and 7% silica fume overlay, conventional overlay, and monolithic bridges.

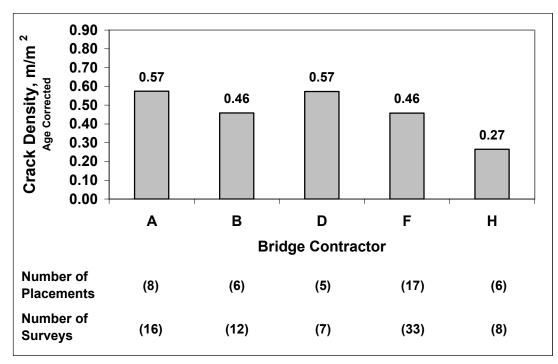



Fig. 5.57 – Mean crack density for individual placements corrected to an age of 78 months versus bridge contractor (names withheld) for 5% and 7% silica fume overlay placements.

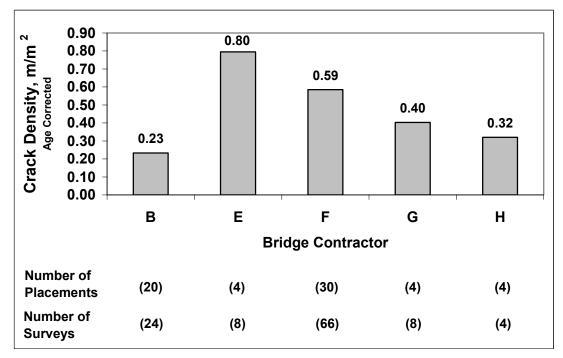



Fig. 5.58 – Mean crack density for individual placements corrected to an age of 78 months versus bridge contractor (names withheld) for conventional overlay placements.

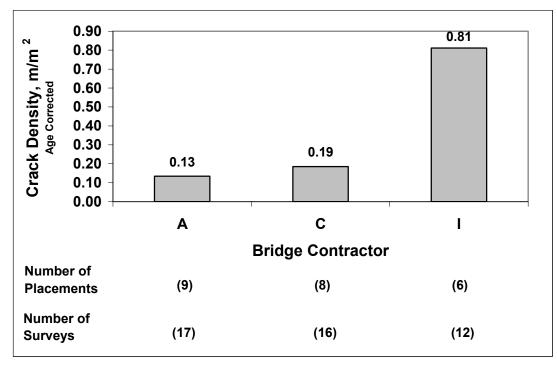



Fig. 5.59 – Mean crack density for individual placements corrected to an age of 78 months versus bridge contractor (names withheld) for monolithic placements.

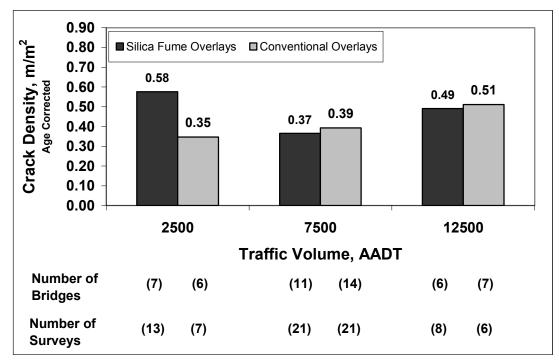



Fig. 5.60 – Mean crack density for entire bridge decks corrected to an age of 78 months versus traffic volume for 5% and 7% silica fume overlays and conventional overlays.

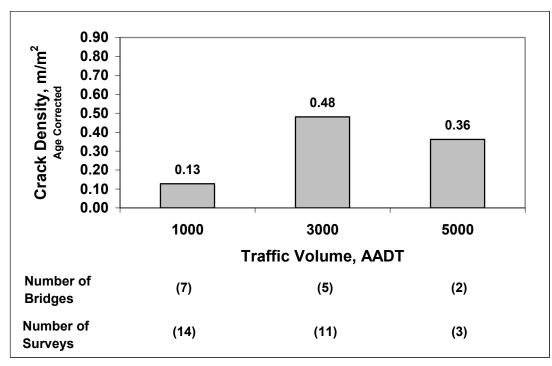



Fig. 5.61 – Mean crack density for entire bridge decks corrected to an age of 78 months versus traffic volume for monolithic bridge decks.

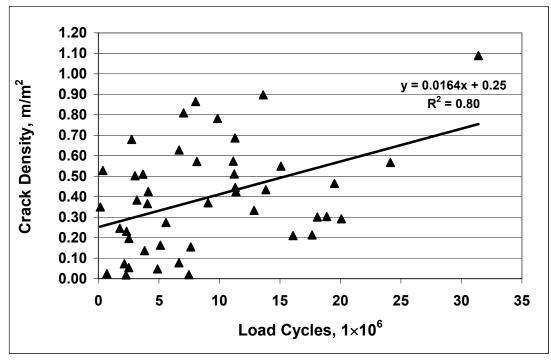



Fig. 5.62 – Crack density and dummy variable analysis results for bridge decks versus total number of load cycles for 5% and 7% silica fume overlay bridges.

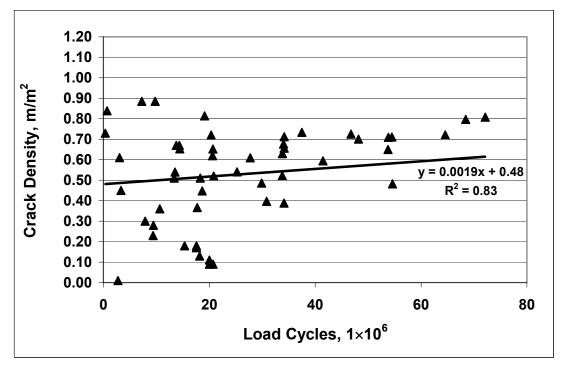



Fig. 5.63 – Crack density and dummy variable analysis results for bridge decks versus total number of load cycles for conventional overlay bridges.

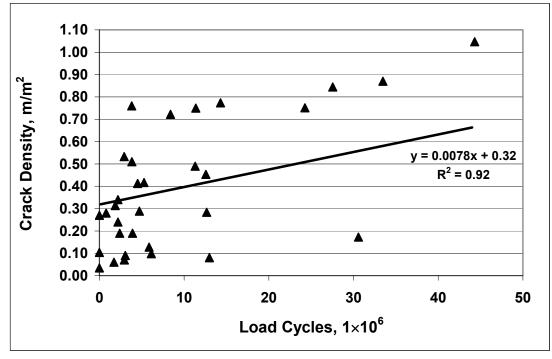



Fig. 5.64 – Crack density and dummy variable analysis results for bridge decks versus total number of load cycles for monolithic bridges.

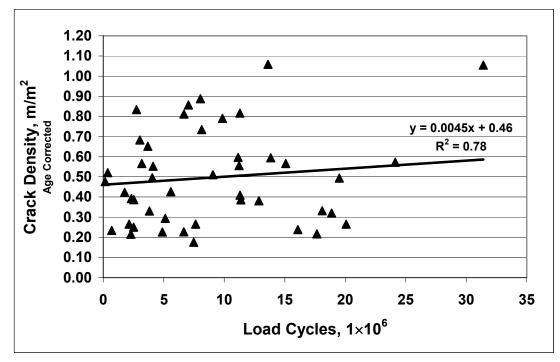



Fig. 5.65 – Crack density and dummy variable analysis results for bridge decks corrected to an age of 78 months versus total number of load cycles for 5% and 7% silica fume overlay bridges.

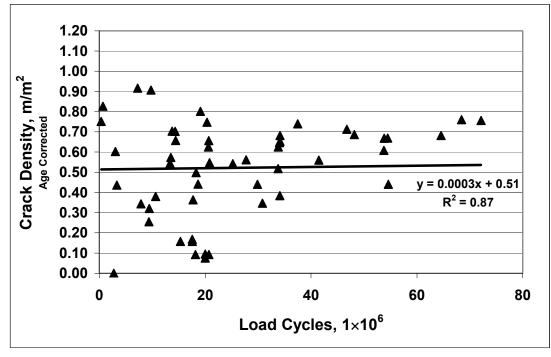



Fig. 5.66 – Crack density and dummy variable analysis results for bridge decks corrected to an age of 78 months versus total number of load cycles for conventional overlay bridges.

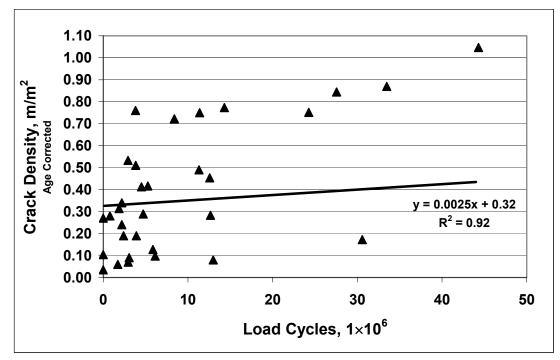



Fig. 5.67 – Crack density and dummy variable analysis results for bridge decks corrected to an age of 78 months versus total number of load cycles for monolithic bridges.

# **APPENDIX** A

# BRIDGE DECK DATA

| Bridge | Deck    | k Structure | Bridge | Bridge Length |        | Total Deck |       | Overlay   |       | Top Cover |       | Transverse Steel |      |      |       | Angle<br>of |
|--------|---------|-------------|--------|---------------|--------|------------|-------|-----------|-------|-----------|-------|------------------|------|------|-------|-------------|
| Number | Туре    | Туре        | Skew   | Diluge        | Length | Thicl      | kness | Thickness |       | Top Cover |       | Size             | Size | Spac | cing  | Rebar       |
|        |         |             | (deg.) | (m)           | (ft)   | (mm)       | (in.) | (mm)      | (in.) | (mm)      | (in.) | (mm)             | No.  | (mm) | (in.) | (deg.)      |
| 20.02  | 70/ SEO | SMCC        | 20     | 70.5          | 221    | 220        | 9.66  | 40        | 1.6   | 75        | 2.0   | 16               | F    | 150  | 5.0   | 0           |
| 30-93  | 7% SFO  | SMCC        | 20     | 70.5          | 231    | 220        | 8.66  | 40        | 1.6   | 75        | 3.0   | 16               | 5    | 150  | 5.9   | 0           |
| 40-92  | 7% SFO  | SWCC        | 0      | 100.0         | 328    | 220        | 8.66  | 40        | 1.6   | 75        | 3.0   | 16               | 5    | 180  | 7.1   | 0           |
| 40-93  | 7% SFO  | SWCC        | 0      | 100.0         | 328    | 220        | 8.66  | 40        | 1.6   | 75        | 3.0   | 16               | 5    | 180  | 7.1   | 0           |
| 46-332 | 7% SFO  | SMCC        | 56     | 76.5          | 251    | 220        | 8.66  | 40        | 1.6   | 75        | 3.0   | 16               | 5    | 170  | 6.7   | 0           |
| 81-53  | 7% SFO  | SWCH        | 0      | 37.8          | 124    | 220        | 8.66  | 40        | 1.6   | 75        | 3.0   | 16               | 5    | 180  | 7.1   | 0           |
| 85-148 | 7% SFO  | WWCH        | 58     | 110.0         | 361    | 220        | 8.66  | 40        | 1.6   | 75        | 3.0   | 16               | 5    | 150  | 5.9   | 0           |
| 85-149 | 7% SFO  | SWCC        | 58     | 111.6         | 366    | 220        | 8.66  | 40        | 1.6   | 75        | 3.0   | 16               | 5    | 150  | 5.9   | 0           |
| 89-269 | 7% SFO  | SWCC        | 39     | 65.2          | 214    | 222        | 8.75  | 38        | 1.5   | 76        | 3.0   | 15, 19           | 5,6  | 152  | 6.0   | 0           |
| 89-272 | 7% SFO  | SWCC        | 39     | 100.6         | 330    | 216        | 8.50  | 38        | 1.5   | 76        | 3.0   | 16               | 5    | 127  | 5.0   | 0           |
| 103-56 | 7% SFO  | SMCC        | 0      | 70.0          | 230    | 220        | 8.66  | 40        | 1.6   | 80        | 3.1   | 19               | 6    | 175  | 6.9   | 0           |

 Table A.1 – Bridge Data and Deck Properties for 7% Silica Fume Overlays

| Bridge<br>Number | Portion Placed | Date of<br>Placement Water Content Cement Content |            |                       | Fume<br>ntent | W/CM<br>Ratio         | Volume of<br>W+C+SF    | Types of Admixtures |      |                                    |                                          |  |  |
|------------------|----------------|---------------------------------------------------|------------|-----------------------|---------------|-----------------------|------------------------|---------------------|------|------------------------------------|------------------------------------------|--|--|
|                  |                |                                                   | $(kg/m^3)$ | (lb/yd <sup>3</sup> ) | $(kg/m^3)$    | (lb/yd <sup>3</sup> ) | $(kg/m^3)$ $(lb/yd^3)$ |                     |      |                                    |                                          |  |  |
| 30-93            | Subdeck        | 07/19/01                                          | 143        | 241                   | 357           | 602                   | 0                      | 0                   | 0.40 | 0.40 25.6 GGBFS <sup>†</sup> , AEA |                                          |  |  |
| 30-93            | Deck           | 08/04/01                                          | 138        | 233                   | 223           | 376                   | 26                     | 44                  | 0.37 | 26.4                               | GGBFS <sup>†</sup> , AEA, Type A, Type F |  |  |
| 40-92            | Subdeck        | 10/19/01                                          | 143        | 241                   | 357           | 602                   | 0                      | 0                   | 0.40 | 25.6                               | AEA, Type F                              |  |  |
| 40-92            | Deck           | 10/26/01                                          | 138        | 233                   | 346           | 583                   | 26                     | 44                  | 0.37 | 26.0                               | AEA, Type A, Type F                      |  |  |
| 40-93            | Subdeck        | 09/20/01                                          | 143        | 241                   | 357           | 602                   | 0                      | 0                   | 0.40 | 25.6                               | AEA, Type F                              |  |  |
| 40-93            | Deck           | 10/16/01                                          | 138        | 233                   | 346           | 583                   | 26                     | 44                  | 0.37 | 26.0                               | AEA, Type A, Type F                      |  |  |
| 46-332           | Subdeck        | 11/15/01                                          | 143        | 241                   | 357           | 602                   | 0                      | 0                   | 0.40 | 25.6                               | AEA, Type A, Type F                      |  |  |
| 46-332           | Deck           | 05/15/02                                          | 138        | 233                   | 346           | 583                   | 26                     | 44                  | 0.37 | 26.0                               | AEA, Type A, Type F                      |  |  |
| 81-53            | Subdeck        | 02/10/00                                          | 143        | 241                   | 357           | 602                   | 0                      | 0                   | 0.40 | 25.6                               | AEA, type A                              |  |  |
| 81-53            | Deck           | 02/21/00                                          | 138        | 233                   | 346           | 583                   | 26                     | 44                  | 0.37 | 26.0                               | AEA, Type A, Type F                      |  |  |
| 85-148           | Subdeck        | 10/11/01                                          | 143        | 241                   | 357           | 602                   | 0                      | 0                   | 0.40 | 25.6                               |                                          |  |  |
| 85-148           | East           | 10/27/01                                          | 138        | 233                   | 346           | 583                   | 26                     | 44                  | 0.37 | 26.0                               | AEA, Type A, Type F, Type I              |  |  |
| 85-148           | West           | 10/30/01                                          | 138        | 233                   | 346           | 583                   | 26                     | 44                  | 0.37 | 26.0                               | AEA, Type A, Type F, Type I              |  |  |
| 85-149           | Subdeck        | 08/22/02                                          | 143        | 241                   | 357           | 602                   | 0                      | 0                   | 0.40 | 25.6                               |                                          |  |  |
| 85-149           | Deck           | 09/26/02                                          | 138        | 233                   | 346           | 583                   | 26                     | 44                  | 0.37 | 26.0                               | AEA, Type A, Type F, Type I              |  |  |
| 89-269           | Subdeck        | 06/14/01                                          | 157        | 265                   | 357           | 602                   | 0                      | 0                   | 0.44 | 27.1                               | AEA                                      |  |  |
| 89-269           | Deck West      | 07/26/01                                          | 137        | 231                   | 345           | 581                   | 26                     | 44                  | 0.37 | 25.8                               | AEA                                      |  |  |
| 89-269           | Deck East      | 07/31/01                                          | 137        | 231                   | 345           | 581                   | 26                     | 44                  | 0.37 | 25.8                               | AEA                                      |  |  |
| 89-272           | Subdeck        | 11/06/01                                          | 157        | 265                   | 357           | 602                   | 0                      | 0                   | 0.44 | 27.1                               | AEA                                      |  |  |
| 89-272           | Deck West      | 04/04/02                                          | 137        | 231                   | 345           | 581                   | 26                     | 44                  | 0.37 | 25.8                               | AEA                                      |  |  |
| 89-272           | Deck East      | 04/10/02                                          | 137        | 231                   | 345           | 581                   | 26 44                  |                     | 0.37 | 25.8                               | AEA                                      |  |  |

 Table A.2 – Mix Design Information for 7% Silica Fume Overlay Bridge Placements

Table A.2 (con't) – Mix Design Information for 7% Silica Fume Overlay Bridge Placements

| Bridge<br>Number | Portion Placed Date of Placement |                  | Water (              | Content               | Cement               | Content               | Silica<br>Con          |    | W/CM<br>Ratio | Volume of<br>W+C+SF | Types of Admixtures |
|------------------|----------------------------------|------------------|----------------------|-----------------------|----------------------|-----------------------|------------------------|----|---------------|---------------------|---------------------|
|                  |                                  |                  | (kg/m <sup>3</sup> ) | (lb/yd <sup>3</sup> ) | (kg/m <sup>3</sup> ) | (lb/yd <sup>3</sup> ) | $(kg/m^3)$ $(lb/yd^3)$ |    |               |                     |                     |
| 103-56           | Subdeck                          | Subdeck 09/14/01 |                      | 253                   | 375                  | 632                   | 0                      | 0  | 0.40          | 26.9                | AEA                 |
| 103-56           | Deck Right                       | 10/12/01         | 150<br>138           | 233                   | 346                  | 583                   | 26                     | 44 | 0.37          | 26.0                | AEA, Type II        |
| 103-56           | Deck Left 10/17/01 1             |                  | 138                  | 233                   | 346                  | 583                   | 26                     | 44 | 0.37          | 26.0                | AEA, Type II        |

<sup>†</sup>Contains 33% Ground Granulated Blast Furnace Slag (GGBFS) by weight of cementitious materials.

-- Denotes missing data.

| Bridge | Portion Placed  | Date of   | Average Slump |       | Compr    | ressive | Air     |     |     |      | Air Tem | perature | ;   |         |     |
|--------|-----------------|-----------|---------------|-------|----------|---------|---------|-----|-----|------|---------|----------|-----|---------|-----|
| Number | Polition Placed | Placement |               |       | Strength |         | Content | Low |     | High |         | Range    |     | Average |     |
|        |                 |           | (mm)          | (in.) | (MPa)    | (psi)   | (%)     | (C) | (F) | (C)  | (F)     | (C)      | (F) | (C)     | (F) |
| 30-93  | Subdeck         | 07/19/01  | 87            | 3.4   | 42       | 6110    | 6.4     |     |     |      |         |          |     |         |     |
| 30-93  | Deck            | 08/04/01  | 55            | 2.2   | 54       | 7880    | 4.0     |     |     |      |         |          |     |         |     |
| 40-92  | Subdeck         | 10/19/01  | 110           | 4.3   | 37       | 5370    | 5.5     | 5   | 41  | 21   | 70      | 16       | 61  | 13      | 55  |
| 40-92  | Deck            | 10/26/01  | 90            | 3.5   | 60       | 8630    | 7.4     | 6   | 43  | 18   | 64      | 12       | 54  | 12      | 54  |
| 40-93  | Subdeck         | 09/20/01  | 139           | 5.5   | 34       | 4910    | 5.6     | 21  | 70  | 29   | 84      | 8        | 46  | 25      | 77  |
| 40-93  | Deck            | 10/16/01  | 103           | 4.0   | 52       | 7590    | 8.0     | 1   | 34  | 17   | 63      | 16       | 61  | 9       | 48  |
| 46-332 | Subdeck         | 11/15/01  | 62            | 2.4   | 47       | 6850    | 5.9     | 12  | 54  | 22   | 72      | 10       | 50  | 17      | 63  |
| 46-332 | Deck            | 05/15/02  | 112           | 4.4   | 63       | 9100    | 3.8     | 16  | 61  | 25   | 77      | 9        | 48  | 21      | 69  |
| 81-53  | Subdeck         | 02/10/00  | 60            | 2.4   | 32       | 4640    | 7.0     | 3   | 37  | 7    | 45      | 4        | 39  | 5       | 41  |
| 81-53  | Deck            | 02/21/00  | 61            | 2.4   | 49       | 7160    | 5.7     | 4   | 39  | 9    | 48      | 5        | 41  | 7       | 44  |
| 85-148 | Subdeck         | 10/11/01  | 65            | 2.6   | 41       | 5870    | 5.8     | 6   | 43  | 21   | 70      | 15       | 59  | 14      | 56  |
| 85-148 | West            | 10/30/01  | 72            | 2.8   | 44       | 6330    | 6.0     | 8   | 46  | 23   | 73      | 15       | 59  | 16      | 60  |
| 85-148 | East            | 10/27/01  | 65            | 2.6   | 52       | 7600    | 6.5     | 7   | 45  | 22   | 72      | 15       | 59  | 15      | 58  |
| 85-149 | Subdeck         | 08/22/02  | 60            | 2.4   | 38       | 5450    | 6.5     | 20  | 68  | 35   | 95      | 15       | 59  | 28      | 82  |
| 85-149 | Deck            | 09/26/02  | 78            | 3.1   | 50       | 7200    | 6.5     | 14  | 57  | 24   | 75      | 10       | 50  | 19      | 66  |
| 89-269 | Subdeck         | 06/14/01  |               |       |          |         |         | 16  | 61  | 28   | 82      | 12       | 53  | 22      | 72  |
| 89-269 | Deck West       | 07/26/01  | 83            | 3.3   |          |         | 6.5     | 24  | 76  | 29   | 84      | 4        | 40  | 27      | 80  |
| 89-269 | Deck East       | 07/31/01  | 89            | 3.5   | 44       | 6390    | 6.5     | 24  | 76  | 36   | 96      | 11       | 52  | 30      | 86  |
| 89-272 | Subdeck         | 11/06/01  | 70            | 2.8   | 35       | 5120    | 6.6     | 9   | 48  | 26   | 78      | 17       | 62  | 17      | 63  |
| 89-272 | Deck West       | 04/04/02  | 97            | 3.8   | 44       | 6390    | 6.5     | -1  | 30  | 18   | 64      | 19       | 66  | 8       | 47  |

 Table A.3 – Field Information and Site Conditions for 7% Silica Fume Overlay Bridge Placements

| Bridge | Portion Placed  | Date of   | Average Slump |       | Compressive |       | Air     | Air Temperature |     |      |     |       |     |         |     |  |
|--------|-----------------|-----------|---------------|-------|-------------|-------|---------|-----------------|-----|------|-----|-------|-----|---------|-----|--|
| Number | Polition Placed | Placement | Average       | siump | Strength    |       | Content | Low             |     | High |     | Range |     | Average |     |  |
|        |                 |           | (mm)          | (in.) | (MPa)       | (psi) | (%)     | (C)             | (F) | (C)  | (F) | (C)   | (F) | (C)     | (F) |  |
|        |                 |           |               |       |             |       |         |                 |     |      |     |       |     |         |     |  |
| 89-272 | Deck East       | 04/10/02  | 83            | 3.3   |             |       | 6.5     | 6               | 43  | 24   | 76  | 18    | 65  | 15      | 60  |  |
| 103-56 | Subdeck         | 09/14/01  | 78            | 3.1   | 39          | 5680  | 5.8     | 15              | 59  | 33   | 91  | 18    | 64  | 24      | 75  |  |
| 103-56 | Deck Right      | 10/12/01  | 67            | 2.6   |             |       | 6.4     | 10              | 50  | 21   | 70  | 11    | 52  | 16      | 60  |  |
| 103-56 | Deck Left       | 10/17/01  | 83            | 3.3   | 47          | 6830  | 5.6     | 3               | 37  | 21   | 70  | 18    | 64  | 12      | 54  |  |

 Table A.3 (con't) – Field Information and Site Conditions for 7% Silica Fume Overlays

# **APPENDIX B**

# **BRIDGE DECK SURVEY SPECIFICATION**

#### DRAFT

#### **1.0 DESCRIPTION.**

This specification covers the procedures and requirements to perform bridge deck surveys of reinforced concrete bridge decks.

#### 2.0 SURVEY REQUIREMENTS.

#### a. Pre-Survey Preparation.

(1) Prior to performing the crack survey, related construction documents need to be gathered to produce a scaled drawing of the bridge deck. The scale must be exactly 1 in. = 10 ft (for use with the scanning software), and the drawing only needs to include the boundaries of the deck surface.

(3) The scaled drawing should also include compass and traffic directions, deck stationing, and a scaled 5 ft by 5 ft grid on the deck.

(4) For curved bridges, the scaled drawing need not be curved, i.e., the curve may be approximated using straight lines.

(5) Coordinate with traffic control so that at least one side (or one lane) of the bridge can be closed during the time that the crack survey is being performed.

#### **b.** Preparation of Surface.

(1) After traffic has been closed, station the bridge in the longitudinal direction at ten feet intervals. The stationing shall be done as close to the centerline as possible. For curved bridges, the stationing shall follow the curve.

(2) Prior to beginning the "crack survey," mark a 5 ft by 5 ft grid using lumber crayons on the portion of the bridge closed to traffic corresponding to the grid on the scaled drawing. Measure and document any drains, repaired areas, unusual cracking, or any other items of interest.

(3) Starting with one end of the closed portion of the deck, begin tracing cracks that can be seen while bending at the waist. After beginning to trace cracks, continue to the end of the crack, even if this includes portions of the crack that were not initially seen while bending at the waist. Areas covered by sand or other debris need not be surveyed. Trace the cracks using a different color crayon than was used to mark the grid and stationing.

(4) At least one person shall check over the marked portion of the deck for any additional cracks. The goal is not to mark every crack on the deck, only those cracks that can initially be seen while bending at the waist.

#### c. Weather Limitations.

(1) Surveys are limited to days when the expected temperature during the survey will not be below 60° F.

(2) Surveys are further limited to days that are forecasted to be at least mostly sunny for a majority of the day.

(3) Regardless of the weather conditions, the bridge deck must be  $\underline{completely}$  dry before the survey can begin.

#### 3.0 BRIDGE SURVEY.

#### a. Crack Surveys.

Using the grid as a guide, transfer the cracks from the deck to the scaled drawing. Areas that are not surveyed should be marked on the scaled drawing. Spalls, regions of scaling, and other areas of special interest need not be included on the scale drawings but should be noted.

#### b. Delamination Survey.

At any time during or after the crack survey, bridge decks shall be checked for delamination. Any areas of delamination shall be noted and drawn on a separate drawing of the bridge. This second drawing need not be to scale.

#### c. Under Deck Survey.

Following the crack and delamination survey, the underside of the deck shall be examined and any unusual or excessive cracking noted.

# **APPENDIX C**

# **CRACK DENSITY CALCULATION PROGRAM LISTING**

```
*
  PROGRAM NAME: AngLen
*
  VERSION:
                3.1 originally written in Fortran 77
*
  LAST MODIFIED: September 2, 2003
*
  CREATED BY:
                Tony R. Schmitt , 1993
                University of Kansas
*
                Department of Civil Engineering
*
  LAST
*
  UPDATED BY:
                Will D. Lindquist, 2005
*
                University of Kansas
*
                Department of Civil, Environmental and
*
                Engineering
*
*
                                                            * *
  FUNCTION:
                Takes an ascii file created from a .tif file,
     locates pixels that are within a user specified * *
                                                                 gray-
level range, groups pixels that are * *
                                                     adjacent to one
another (these groups represent * *
                                               cracks), and then
                                   then calculates the length
                        * *
calculates the length and
and angle of each
                   * *
                                     crack.
INSTRUCTIONS:
*
*
     Step 1:
                The scale drawing is made of the cracks on the
*
                This program is designed to work with a scale of
*
                1 inch = 10 feet.
*
*
     Step 2:
                Photocopy the scale drawing to get a clean copy.
*
*
     Step 3:
                Scan the drawing into a computer in black and
*
                white at 100 dpi and saved as a TIFF image file
*
                (uncompressed). Record the image size in pixels
*
                for use in the program. The width of the bridge
*
                is the X coordinate and the length of the bridge
*
                is the Y coordinate.
*
*
                Remove all lines from the scanned image file that
     Step 4:
*
                do not represent cracks. Draw a single black line
*
                from the top of the page to the top left corner of *
     the bridge. This represents the starting point.
*
     Step 5: Use the programs created by Prof. John Gauch at
```

the University of Kansas. The programs are \* available at: \* http://www.ittc.ku.edu/~jgauch/research/kuim/source.html \* \* The following 2 programs are used as follows: \* \* covert raw -x Xsize -y Ysize TIFFfilename \* IMfilename Note: the Y dimension needs to be \* slightly larger than the actual image to get all \* of the pixel information. \* \* make\_raw -A IMfilename TXTfilename \* \* Step 6: The ascii file created by this method includes \* various tags and a number representing the color \* of each pixel 0 = black and 255 = white. The \* Anglen program only needs the color of the pixels, \* so the ascii file must be opened and the tags that \* do not represent pixel colors must be removed. \* This can be performed in Microsoft Notepad or \* Excel. Save the ascii file as a text file or as a space delimited file (\*.prn). \* \* Step 7: The \*.txt or \*.prn file containing only the pixel colors can then be used as the input file. \* \* \* \* VARIABLE DEFINITIONS \* **REAL VARIABLES:** \* ANGLE Angle of crack. Horizontal = 0 degrees. \* Cracks increasing from left to right are positive. \* AREA Bridge deck area in square meters. \* AREA1 Bridge deck in square feet. \* AREAPLAC Area of an individual concrete placement. \* Distance between two pixels. This is used to D \* establish the length of a given crack. \* DENS Crack density of a given deck area. \* Total crack density of a bridge division. DIVTOTD \* Total length of all cracks in a division. DIVTOTL \* Transverse crack density of a bridge division. DIVTRD \* DIVTRL Total length of all transverse cracks in a \* division. \* Length of bridge in feet. LENBRG \* Length of each bridge division. LENDIV \* Length of an individual crack. This is calculated LENGTH \* as the greatest distance between any two pixels \* in a given crack. \* LENPLACE Length of an individual concrete placement. \* RDIVS Number of bridge divisions. (real number format) \* RDWY Width of roadway in feet. \* RHIGH Real number variation of integer variable HIGH. \* RLOW Real number variation of integer variable LOW. \* RTEMP Real number variation of integer variable ITEMP. SCALE Drawing scale in ft./in. Note that many conversion

```
*
                  factors are built into the program and must be
*
                  modified if the scale of the input image is
*
                  altered.
*
      SKEW
                  Skew of the end of the bridge in degrees.
*
      SPANAREA
                  Area of an individual span.
*
      SPANG
                  Special angle, in degrees, defined by user to
*
                  investigate angles other than the default angles.
*
      SPANLEN
                  Length of a span.
*
      SPDENS
                  Density of cracks at defined special angle.
*
      SPTL
                  Total length of cracks at defined special angle.
*
      TLPG
                  Total length of cracks in a given angle group.
*
      TOL
                  Tolerance, in degrees, for the special angle.
*
      TOTDENS
                  Total crack density.
*
      TOTLEN
                  Total length of all cracks.
*
      WIDPLACE
                  Width of concrete placement.
*
                  X coordinate of a pixel.
      Xl
*
      X2
                  X coordinate of a pixel.
*
      Υ1
                  Y coordinate of a pixel.
*
      Y2
                  Y coordinate of a pixel.
*
*
   INTEGER VARIABLES:
*
*
                  Bottom bound of bridge section being considered.
      BOTBND
*
                  Used in subroutine GROUP to determine when the
      CHECK
*
                  last of the pixels have been collected into crack
*
                  groups.
*
      CHOICE
                  Represents "main menu" option.
*
                  X coordinate of a pixel within graylevel range.
      CX
*
      CY
                  Y coordinate of a pixel within graylevel range.
*
                  Total number of cracks in a division
      DIVTOTC
*
                  Total number of transverse cracks in a division.
      DIVTRC
*
                  Used to define angle groups.
      HIGH
*
                  Used to increment YLOCATOR in division analysis.
      ITEMP
*
      JUMP
                  The number of rows in the ascii file that
*
                  represent
*
                  one row of pixels in the .tif file.
*
      LDPIX
                  Length of division in units of pixels.
*
      LENPIX
                  Length of an individual placement in units of
*
                  pixels.
*
                  Graylevel of a pixel. Takes on a value of 0
      LEVEL
*
                  (black) to 255 (white)
*
                  Used to define angle groups
     LOW
*
                  Lower graylevel bound.
      LOWER
*
                  Left bound. Used to define the section of bridge
      LTBND
*
                  being analyzed.
*
     Ν
                  Total number of pixels in input file.
*
                  Limit on number of cracks program will handle.
     NCL
*
                  Number of cracks per angle group.
      NCPG
*
                  Number of additional specified angles
     NUM
*
                  Number of cracks.
     NUMCRCKS
*
                  Number of divisions.
      NUMDIVS
*
      NUMPIX
                  Number of pixels.
*
     NUMPLACE
                  Number of placements.
*
     NUMSPANS
                  Number of spans.
*
      PCL
                  Limit on maximum number of pixels allowed in a
*
                  crack.
      RDWYPIX
                  Width of roadway in units of pixels.
```

```
Resolution in DPI (dots per inch).
     RES
*
     RTBND
                 Right bound. Used to define the section of bridge
*
                 being analyzed.
*
     SLPIX
                 Span Length in units of pixels.
*
     SPNC
                 Number of cracks at the specified angle.
*
     TCHECK
                 Total number of cracks in all angle groups.
*
     TOPBND
                 Top bound. Used in defining a span.
*
     TPT.
                 Total pixel limit.
*
                 Upper graylevel bound.
     UPPER
*
     WIDPIX
                 Width of a placement in units of pixels.
                 X coordinate of a pixel.
*
     Х
*
     XCOUNT
                 Counter used to assign proper X coordinate to a
*
                 selected pixel.
*
     XEDGE
                 X coordinate of line used to locate starting
*
                 pixel.
*
                 Used to define section of bridge being analyzed.
     XLOCATOR
*
                 Permanent list of X coordinates of pixels within
     XPERM
*
                 defined graylevel range.
*
     XPT2
                 Used to define section of bridge being analyzed.
*
                 Number of pixels along X axis in input image.
     XSIZE
*
     XSTART
                 X coordinate of starting point pixel.
*
                 Y coordinate of a pixel.
     Y
*
                 Used to define section of bridge being analyzed.
     YBOTPT
*
                 Counter used to assign proper Y coordinate to a
     YCOUNT
*
                 selected pixel.
*
     YLOCATOR
                 Used to define section of bridge being analyzed.
*
     YPERM
                 Permanent list of Y coordinates of pixels within
*
                 defined graylevel range.
*
                 Used to define section of bridge being analyzed.
     YPT2
*
                 Number of pixels along Y axis in input image.
     YSIZE
*
                 Y coordinate of starting point pixel.
     YSTART
*
                 Used to define section of bridge being analyzed.
     YTOPPT
*
*
  CHARACTER VARIABLES:
*
*
                 Name of input ascii file.
     INFILE*14
*
     OUTFILE*18 Name of output file.
*
                 See subroutine SPECANG.
     YESNO
*
  BEGIN
           *****
     PROGRAM MAIN
     REAL LENGTH, ANGLE, AREA, DENS, TLPG, SCALE, TOTLEN,
                 TOTDENS, SPANG, SPTL, SPDENS, AREA1, SPANLEN, SKEW, RDWY,
     +
                 SPANAREA, LENBRG, WIDPLACE, AREAPLAC, LENPLACE,
     +
     +
                 RTEMP, RDIVS, LENDIV, DIVTRL, DIVTRD, DIVTOTL, DIVTOTD
     INTEGER X, Y, NUMCRCKS, NUMPIX, CX, CY, NCPG, RES, SPNC,
                 TCHECK, LOWER, UPPER, N, TPL, PCL, NCL, XPERM, YPERM,
     +
                 CHOICE, NUMSPANS, XLOCATOR, YLOCATOR, LTBND, RTBND,
     +
                 RTBND, BOTBND, TOPBND, XPT2, YPT2, RDWYPIX, SLPIX,
     +
                 YTOPPT, YBOTPT, NUMPLACE, WIDPIX, LENPIX, ITEMP, LDPIX,
                 NUMDIVS, XSTART, YSTART, DIVTRC, DIVTOTC, JOUT
     CHARACTER INFILE*14, OUTFILE*18
     DIMENSION
                 X(900000), Y(900000), NUMPIX(8000), CX(4000,4000),
                 CY(4000,4000),LENGTH(3000),ANGLE(3000),
     +
                 NCPG(20), TLPG(20), DENS(20), SPANG(10), SPNC(10),
```

```
296
```

```
SPTL(10), SPDENS(10), XPERM(800000), YPERM(800000),
    +
                SPANLEN(12), SLPIX(12), SPANAREA(12), WIDPLACE(8),
    +
    +
                WIDPIX(8), AREAPLAC(8), LENPLACE(8), LENPIX(8),
                DIVTRC(100), DIVTRL(100), DIVTRD(100), DIVTOTC(100),
    +
                DIVTOTL(100), DIVTOTD(100)
    +
*
  INPUT INFORMATION SECTION
     RES = 100
     SCALE = 10.0
     TPL = 800000
     PCL = 6000
     NCL = 3000
     WRITE(6, 1009)
1009 FORMAT (//,'CURRENT SETTINGS:')
     WRITE(6,*)'
                1
     WRITE(6,*)' Resolution (DPI).....', RES
     WRITE(6,*)' Drawing Scale (ft./in.).....',SCALE
     WRITE(6,*)' Total Pixel Limit.....',TPL
     WRITE(6,*)' Pixels per Crack Limit......',PCL
     WRITE(6,*)' Number of Cracks Limit.....',NCL
     WRITE(6,*)' Lower Graylevel Bound (suggested)... 0'
     WRITE(6,*)' Upper Graylevel Bound (suggested)... 200'
     WRITE(6,*)' '
     WRITE (6,*) 'ENTER INPUT FILE NAME.'
     READ (5,1010) INFILE
1010 FORMAT(A)
     WRITE (6,*) 'ENTER LOWER GRAYLEVEL BOUND.'
     READ (5,*) LOWER
     WRITE (6,*) 'ENTER UPPER GRAYLEVEL BOUND.'
     READ (5,*) UPPER
     WRITE (6,*) '
*
 MAIN SECTION
CCC=> The following subroutine scans the ascii file, records the
     coordinates of each pixel within the specified gray-level
С
С
     range, and identifies the starting point pixel from which all
С
     distances are measured (span length, placement width, etc.).
С
     and identifies the starting point pixel from which all
*
     CALL COORDS (INFILE, XPERM, YPERM, LOWER, UPPER, N, XSTART, YSTART)
CCC=> The following lines represent the program's "main menu". The
С
     IF statement in line 699 divides the main program into
С
     sections containing the commands for each menu option.
*
701
     WRITE(6,*)''
     WRITE (6, *) 'CRACK DENSITY CALCULATION OPTIONS.'
     WRITE(6,*)' (1) ENTIRE BRIDGE'
     WRITE(6,*)' (2) SPANS'
     WRITE(6,*)' (3) PLACEMENTS'
     WRITE(6,*)' (4) DIVISIONS'
     WRITE(6,*)' (5) FIRST AND LAST DIVISON'
     WRITE(6,*)' (6) QUIT'
     WRITE(6,*)' '
```

```
297
```

```
WRITE(6,*)'ENTER CHOICE.'
700
     READ(5,*) CHOICE
     IF ((CHOICE.LT.1) .OR. (CHOICE.GT.6)) THEN
       WRITE(6,*)'ENTER 1, 2, 3, 4, 5, OR 6.'
       GO TO 700
     END IF
*
CCC=>Option 1 -- Entire Bridge.
С
     This section taken alone is essentially the same as version
С
     1.0 of this program.
*
699
     IF (CHOICE .EQ. 1) THEN
       DO 702 I = 1, N
         X(I) = XPERM(I)
         Y(I) = YPERM(I)
702
       CONTINUE
       WRITE (6,'(//,A)') 'ENTER OUTPUT FILE NAME.'
       READ (5,1010) OUTFILE
       OPEN (13, FILE = OUTFILE, STATUS = 'UNKNOWN')
       WRITE (6,'(//,A)') 'ENTER BRIDGE DECK AREA (ft.^2).'
       READ (5,*) AREA
       AREA1 = AREA
       AREA = AREA*(0.09290304)
*
       WRITE(13, *) OUTFILE
       WRITE(13,*) ''
       WRITE (13,*) 'OPTION 1: ENTIRE BRIDGE'
       WRITE(13,*) ''
       WRITE(13,*)'AREA = ',AREA1,' (ft^2)'
       WRITE(13,*)'AREA = ',AREA,' (m^2)'
       WRITE(13,*)''
       CALL GROUP (N, X, Y, NUMCRCKS, NUMPIX, CX, CY)
       CALL CALCS (NUMCRCKS, NUMPIX, ANGLE, LENGTH, CX, CY)
       CALL OUTINFO (NUMCRCKS, ANGLE, LENGTH, AREA, NCPG,
                TLPG, TOTLEN, TOTDENS, TCHECK, DENS)
    +
       CALL OUTPUT (NCPG, TLPG, DENS, TCHECK, AREA, AREA1, NUMCRCKS,
    +
                TOTLEN, TOTDENS, OUTFILE)
       CALL SPECANG (AREA, NUMCRCKS, ANGLE, LENGTH, SPANG, SPNC,
    +
                SPTL, SPDENS)
       CLOSE(13)
       GO TO 701
CCC=>Option 2 -- Spans.
     ELSEIF (CHOICE .EQ. 2) THEN
       WRITE(6,*)'ENTER OUTPUT FILE NAME.'
       READ(5, 1010) OUTFILE
       OPEN(13, FILE = OUTFILE, STATUS = 'UNKNOWN')
       WRITE(6,'(//,A)')'ENTER WIDTH OF ROADWAY. (ft.)'
       READ(5,*) RDWY
       RDWYPIX = NINT(RDWY*10)
       WRITE(6,'(//,A)')'ENTER NUMBER OF SPANS.'
       READ(5, *)NUMSPANS
```

```
298
```

```
DO 710 I = 1, NUMSPANS
          WRITE(6,*)'ENTER LENGTH OF SPAN', I, '. (ft.)'
          WRITE(6,*)'(NOTE: Span 1 is at the top of the TIFF
        + image.)'
          READ(5, *)SPANLEN(I)
          SLPIX(I) = NINT(SPANLEN(I)*10)
          SPANAREA(I) = SPANLEN(I) *RDWY
          SPANAREA(I) = SPANAREA(I)*(0.09290304)
710
        CONTINUE
        WRITE(6, ' (//, A) ') 'ENTER SKEW. [(+) OP. (-) DEGREES]'
        READ(5,*) SKEW
        XLOCATOR = XSTART
        YLOCATOR = YSTART
        LTBND = XSTART
        RTBND = LTBND + RDWYPIX
        DO 712 I = 1, NUMSPANS
          AREA = SPANAREA(I)
          AREA1 = AREA/0.09290304
          IF (SKEW .EQ. 0) THEN
            BOTBND = YLOCATOR + SLPIX(I)
            TOPBND = YLOCATOR
            DO 714 J = 1, N
              IF ((XPERM(J).LT.LTBND).OR.(XPERM(J).GT.RTBND)) THEN
                X(J) = 0
                Y(J) = 0
              ELSEIF
              + ((YPERM(J).LT.TOPBND).OR.(YPERM(J).GT.BOTBND))THEN
                X(J) = 0
                Y(J) = 0
              ELSE
                 X(J) = XPERM(J)
                 Y(J) = YPERM(J)
              END IF
714
            CONTINUE
          ELSE
            YPT2 = YLOCATOR - NINT(TAND(SKEW)*RDWY*10)
            XPT2 = RTBND
            DO 716 J = 1, N
              IF ((XPERM(J).LT.LTBND).OR.(XPERM(J).GT.RTBND)) THEN
                X(J) = 0
                Y(J) = 0
              ELSE
                YTOPPT = YLOCATOR + ( (-XPERM (J) +XLOCATOR) *
     +
                        (YLOCATOR-YPT2) ) /RDWYPIX
                YBOTPT = YTOPPT + SLPIX(I)
                IF((YPERM(J).LT.YTOPPT).OR.(YPERM(J).GT.YBOTPT))THEN
                  X(J) = 0
                  Y(J) = 0
                ELSE
                  X(J) = XPERM(J)
                  Y(J) = YPERM(J)
                ENDIF
              ENDIF
716
            CONTINUE
          ENDIF
*
          WRITE(13, *) OUTFILE
                                      299
```

```
WRITE(13,*) ''
         WRITE (13,*) 'OPTION 2: SPANS'
         WRITE(13,*) ''
         WRITE(13,*)'AREA = ',AREA1,' (ft<sup>2</sup>)'
         WRITE(13,*)'AREA = ',AREA,' (m^2)'
         WRITE(13,*)''
         WRITE(13,*)'SPAN #:',I
         WRITE(13,*)'SPAN LENGTH (ft):',SPANLEN(I)
         WRITE(13,*)''
*
         CALL GROUP (N, X, Y, NUMCRCKS, NUMPIX, CX, CY)
         CALL CALCS (NUMCRCKS, NUMPIX, ANGLE, LENGTH, CX, CY)
         CALL OUTINFO (NUMCRCKS, ANGLE, LENGTH, AREA, NCPG, TLPG, TOTLEN,
                       TOTDENS, TCHECK, DENS)
     +
         CALL OUTPUT (NCPG, TLPG, DENS, TCHECK, AREA, AREA1, NUMCRCKS,
                       TOTLEN, TOTDENS, OUTFILE)
         CALL SPECANG (AREA, NUMCRCKS, ANGLE, LENGTH, SPANG, SPNC,
                       SPTL, SPDENS)
     +
         YLOCATOR = YLOCATOR + SLPIX(I)
712
       CONTINUE
       CLOSE (13)
       GO TO 701
CCC=>Option 3 -- Placements.
     ELSEIF (CHOICE .EQ. 3) THEN
       WRITE(6,*)'ENTER OUTPUT FILE NAME.'
       READ(5, 1010) OUTFILE
       OPEN(13, FILE = OUTFILE, STATUS = 'UNKNOWN')
       WRITE(6,'(//,A)')'ENTER SKEW. [(+) OR (-) DEGREES]'
       READ(5,*) SKEW
       WRITE(6,'(//,A)')'PLACEMENTS ARE . . .'
       WRITE(6,*)' (1) FULL LENGTH/PARTIAL WIDTH'
       WRITE(6,*)' (2) PARTIAL LENGTH/FULL WIDTH'
       WRITE(6,*)' '
       WRITE(6,*) 'ENTER CHOICE.'
720
       READ(5,*) CHOICE
       IF ((CHOICE.NE.1) .AND. (CHOICE.NE.2)) THEN
         WRITE(6,*)'ENTER 1 OR 2.'
         GO TO 720
       ENDIF
       IF (CHOICE .EQ. 1) THEN
         WRITE(6,'(//,A)')'ENTER LENGTH OF BRIDGE. (ft.)'
         READ(5,*) LENBRG
         WRITE(6, ' (//,A)')'ENTER NUMBER OF PLACEMENTS.'
         READ(5, *) NUMPLACE
         DO 722 I = 1,NUMPLACE
           WRITE(6,*)'ENTER WIDTH OF PLACEMENT', I, '. (ft.)'
           READ(5,*) WIDPLACE(I)
           WIDPIX(I) = NINT(WIDPLACE(I)*10)
           AREAPLAC(I) = LENBRG * WIDPLACE(I)*0.09290304
722
         CONTINUE
         XLOCATOR = XSTART
         DO 724 I = 1, NUMPLACE
           LTBND = XLOCATOR
```

```
RTBND = LTBND + WIDPIX(I)
            AREA = AREAPLAC (I)
            AREA1 = AREA/0.09290304
            DO 726 J = 1, N
              IF ((XPERM(J) .LT. LTBND) .OR. (XPERM(J) .GT.
               + RTBND))THEN
                X(J) = 0
                Y(J) = 0
              ELSE
                X(J) = XPERM(J)
                Y(J) = YPERM(J)
              ENDIF
726
            CONTINUE
          WRITE(13, *) OUTFILE
          WRITE(13,*) ''
          WRITE (13,*) 'OPTION 3: PLACEMENTS'
          WRITE(13,*) ''
          WRITE(13,*)'AREA = ',AREA1,' (ft^2)'
          WRITE(13,*)'AREA = ',AREA,' (m^2)'
          WRITE(13,*)''
          WRITE(13,*)'FULL LENGTH / PARTIAL WIDTH'
          WRITE(13,*)'PLACEMENT #:',I
          WRITE(13,*)'WIDTH OF PLACEMENT (ft):',WIDPLACE(I)
          WRITE(13,*)''
*
          CALL GROUP (N,X,Y,NUMCRCKS,NUMPIX,CX,CY)
          CALL CALCS (NUMCRCKS, NUMPIX, ANGLE, LENGTH, CX, CY)
          CALL OUTINFO (NUMCRCKS, ANGLE, LENGTH, AREA, NCPG, TLPG, TOTLEN,
                              TOTDENS, TCHECK, DENS)
     +
          CALL OUTPUT (NCPG, TLPG, DENS, TCHECK, AREA, AREA1,
                       NUMCRCKS, TOTLEN, TOTDENS, OUTFILE)
     +
          CALL SPECANG (AREA, NUMCRCKS, ANGLE, LENGTH, SPANG, SPNC,
                              SPTL, SPDENS)
     +
          XLOCATOR = RTBND
724
        CONTINUE
        ELSE
          WRITE(6,*)'ENTER NUMBER OF PLACEMENTS.'
          READ(5, *) NUMPLACE
          WRITE(6,*)'ENTER WIDTH OF ROADWAY. (ft.^2).'
          READ(5,*) RDWY
          RDWYPIX = NINT(RDWY*10)
          DO 730 I = 1, NUMPLACE
            WRITE(6,*)'ENTER LENGTH OF PLACEMENT', I, '. (ft.).'
            READ(5,*) LENPLACE(I)
            LENPIX(I) = NINT(LENPLACE(I)*10)
            AREAPLAC(I) = RDWY * LENPLACE(I) *0.09290304
730
          CONTINUE
          XLOCATOR = XSTART
          YLOCATOR = YSTART
          LTBND = XSTART
          RTBND = LTBND + RDWYPIX
          DO 732 I = 1, NUMPLACE
            AREA = AREAPLAC(I)
            AREA1 = AREA/0.09290304
            IF (SKEW .EQ. 0) THEN
```

```
BOTBND = YLOCATOR + LENPIX(I)
              TOPBND = YLOCATOR
              DO 734 J = 1, N
                IF ((XPERM(J).LT.LTBND).OR.(XPERM(J).GT.RTBND))THEN
                  X(J) = 0
                  Y(J) = 0
                ELSEIF((YPERM(J).LT.TOPBND).OR.(YPERM(J).GT.BOTBND))
                        THEN
     +
                  X(J) = 0
                  Y(J) = 0
                ELSE
                  X(J) = XPERM(J)
                  Y(J) = YPERM(J)
                END IF
734
              CONTINUE
            ELSE
            YPT2 = YLOCATOR - NINT(TAND(SKEW)*RDWY*10)
            XPT2 = RTBND
            DO 736 J = 1, N
              IF ((XPERM(J) .LT. LTBND) .OR. (XPERM(J) .GT. RTBND)) THEN
                X(J) = 0
                Y(J) = 0
              ELSE
                YTOPPT = YLOCATOR + ( (-XPERM(J) + XLOCATOR)*
                        (YLOCATOR-YPT2) ) /RDWYPIX
     +
                YBOTPT = YTOPPT + LENPIX(I)
                IF((YPERM(J).LT.YTOPPT).OR.(YPERM(J).GT.YBOTPT))
     +
                    THEN
                  X(J) = 0
                  Y(J) = 0
                ELSE
                  X(J) = XPERM(J)
                  Y(J) = YPERM(J)
                END IF
              ENDIF
736
            CONTINUE
            ENDIF
*
            WRITE(13, *) OUTFILE
            WRITE(13,*) ''
            WRITE (13,*) 'OPTION 3: PLACEMENTS'
            WRITE(13,*) ''
            WRITE(13,*)'AREA = ',AREA1,' (ft^2)'
            WRITE(13,*)'AREA = ',AREA,' (m^2)'
            WRITE(13,*)''
            WRITE(13,*)'PARTIAL LENGTH / FULL WIDTH'
            WRITE(13,*)'PLACEMENT #:',I
            WRITE(13,*)'LENGHT OF PLACEMENT (ft):',LENPLACE(I)
            WRITE(13,*)''
*
            CALL GROUP (N, X, Y, NUMCRCKS, NUMPIX, CX, CY)
            CALL CALCS (NUMCRCKS, NUMPIX, ANGLE, LENGTH, CX, CY)
            CALL OUTINFO (NUMCRCKS, ANGLE, LENGTH, AREA, NCPG, TLPG,
                           TOTLEN, TOTDENS, TCHECK, DENS)
     +
            CALL OUTPUT (NCPG, TLPG, DENS, TCHECK, AREA, AREA1, NUMCRCKS,
                         TOTLEN, TOTDENS, OUTFILE)
     +
            CALL SPECANG (AREA, NUMCRCKS, ANGLE, LENGTH, SPANG,
```

```
302
```

```
SPNC, SPTL, SPDENS)
   +
           YLOCATOR = YLOCATOR + LENPIX(I)
732
         CONTINUE
       ENDIF
       CLOSE(13)
       GO TO 701
CCC=>Option 4 -- Divisions.
     ELSEIF (CHOICE .EQ. 4) THEN
       WRITE(6,*) 'ENTER OUTPUT FILE NAME.'
       READ(5, 1010)OUTFILE
       OPEN(13, FILE=OUTFILE, STATUS='UNKNOWN')
       WRITE(6,*) 'ENTER WIDTH OF ROADWAY. (ft.)'
       READ(5,*) RDWY
       RDWYPIX = NINT(RDWY*10)
       WRITE(6,*) 'ENTER LENGTH OF BRIDGE. (ft.)'
       READ(5,*) LENBRG
*
*
       THE FOLLOWING LINES WERE CHANGED SO THAT THE LENGTH OF
       DIVISION COULD BE CHOSEN INSTEAD OF THE NUMBER OF DIVISIONS
*
       WRITE(6,*) 'ENTER NUMBER OF DIVISIONS.'
*
       READ(5,*) NUMDIVS
*
       RDIVS = REAL(NUMDIVS)
*
       LENDIV = LENBRG/RDIVS
*
       LDPIX = NINT(LENDIV*10)
       THE CHANGES START HERE
       WRITE(6,*) 'NOTE!'
       WRITE(6,*) 'THE LAST DIVISION WILL NOT NECESSARILY BE THE
                   CHOSEN LENGTH'
+
       WRITE(6,*) 'IF THE BRIDGE LENGTH IS NOT EVENLY DIVISIBLE BY
                   THE DIVISION LENGTH'
+
       WRITE(6,*)
       WRITE(6,*) 'ENTER LENGTH OF DIVISIONS (ft)'
       READ(5, *) LENDIV
       LDPIX = NINT(LENDIV*10)
       RDIVS = LENBRG/LENDIV
       NUMDIVS = (INT(RDIVS)+1)
       END OF CHANGES
       AREA = LENDIV*RDWY* 0.09290304
       AREA1 = AREA/0.09290304
       WRITE(6,*) 'ENTER SKEW. [(+) OR (-) DEGREES]'
       READ(5,*) SKEW
       XLOCATOR = XSTART
       YLOCATOR = YSTART
       LTBND = XLOCATOR
       RTBND = LTBND + RDWYPIX
       DO 742 I = 1, NUMDIVS
         IF (SKEW .EQ. 0) THEN
           BOTBND = YLOCATOR + LDPIX
           TOPBND = YLOCATOR
           DO 744 J = 1.N
             IF ((XPERM(J).LT. LTBND) .OR. (XPERM(J).GT. RTBND)) THEN
```

```
X(J) = 0
                Y(J) = 0
              ELSEIF((YPERM(J).LT.TOPBND).OR.(YPERM(J).GT.BOTBND)) THEN
                X(J) = 0
                Y(J) = 0
              ELSE
                X(J) = XPERM(J)
                Y(J) = YPERM(J)
              ENDIF
744
            CONTINUE
          ELSE
            YPT2 = YLOCATOR - NINT(TAND(SKEW)*RDWY*10)
            XPT2 = RTBND
            DO 746 J = 1, N
              IF ((XPERM(J).LT.LTBND).OR.(XPERM(J).GT.RTBND)) THEN
                X(J) = 0
                Y(J) = 0
              ELSE
                YTOPPT = YLOCATOR + ((-XPERM(J) + XLOCATOR) *
                        (YLOCATOR-YPT2)) / RDWYPIX
     +
                YBOTPT = YTOPPT + LDPIX
                IF((YPERM(J).LT.YTOPPT).OR.(YPERM(J).GT.YBOTPT))THEN
                  X(J) = 0
                  Y(J) = 0
                ELSE
                  X(J) = XPERM(J)
                  Y(J) = YPERM(J)
                ENDIF
              ENDIF
746
            CONTINUE
          END IF
*
          CALL GROUP (N, X, Y, NUMCRCKS, NUMPIX, CX, CY)
          CALL CALCS (NUMCRCKS, NUMPIX, ANGLE, LENGTH, CX, CY)
          CALL OUTINFO (NUMCRCKS, ANGLE, LENGTH, AREA, NCPG, TLPG, TOTLEN,
                TOTDENS, TCHECK, DENS)
     +
*
          DIVTRC(I) = NCPG(1)
          DIVTRL(I) = TLPG(1)
          DIVTRD(I) = DENS(1)
          DIVTOTC(I) = TCHECK
          DIVTOTL(I) = TOTLEN
          DIVTOTD(I) = TOTDENS
          RTEMP = I*LENDIV*10
          ITEMP = NINT(RTEMP)
          YLOCATOR = YSTART + ITEMP
742
        CONTINUE
        DO 747 J = 1,2
          IF (J .EQ. 1) THEN
            JOUT = 6
          ELSE
            JOUT = 13
          ENDIF
          WRITE (JOUT, *) OUTFILE
          WRITE(JOUT, *) ''
          WRITE (JOUT, *) 'OPTION 4: DIVISIONS'
          WRITE(JOUT, *)
```

```
WRITE(JOUT,*)'DIVISION LENGTH =',LENDIV,' (ft.)'
         WRITE(JOUT, *)'
                                           =',LENDIV*0.3048,' (m)'
         WRITE(JOUT, *)' '
         WRITE(JOUT, *) 'NUMBER OF DIVISIONS', NUMDIVS
         WRITE(JOUT,*)' '
         WRITE(JOUT,*)'DIVISION AREA =',AREA1,' (ft.^2)'
         WRITE(JOUT,*)'
                                    =',AREA,' (m^2)'
         WRITE(JOUT,*)' '
         WRITE (JOUT, 1730)
         WRITE (JOUT, 1732)
         WRITE (JOUT, 1734)
         WRITE (JOUT, 1736)
         DO 745 I = 1, NUMDIVS
           WRITE(JOUT, 1745) I, DIVTRC(I), DIVTRL(I), DIVTRD(I),
                 DIVTOTC(I),DIVTOTL(I),DIVTOTD(I)
745
         CONTINUE
       CONTINUE
747
         WRITE(JOUT,*) ''
1730 FORMAT (7X, '----TRANSVERSE-----', 2X,
               '-----')
    +
1732 FORMAT ('DIV.', 3X, '#CRACKS', 2X, 'LENGTH', 2X, 'DENSITY', 2X,
        '#CRACKS',2X,'LENGTH',2X,'DENSITY')
    +
1734 FORMAT (18X, '(m)', 3X, '(m/m<sup>2</sup>)', 13X, '(m)', 3X, '(m/m<sup>2</sup>)')
1736 FORMAT ('----',3X,'-----',1X,'-----',1X,'-----',2X,
                      '-----',1X,'-----',1X,'------')
    +
1745 FORMAT(2X, I2, 5X, I3, 4X, F6.2, 3X, F5.3, 5X, I3, 4X, F6.2, 3X, F5.3)
       CLOSE(13)
       GO TO 701
CCC=>Option 5 - First and Last 10 ft (or other length) of bridge deck
     ELSEIF (CHOICE .EQ. 5) THEN
       WRITE(6,*) 'ENTER OUTPUT FILE NAME.'
       READ(5, 1010)OUTFILE
       OPEN(13, FILE=OUTFILE,STATUS='UNKNOWN')
       WRITE(6,*) 'ENTER WIDTH OF ROADWAY. (ft.)'
       READ(5,*) RDWY
       RDWYPIX = NINT(RDWY*10)
       WRITE(6,*) 'ENTER LENGTH OF BRIDGE. (ft.)'
       READ(5,*) LENBRG
       WRITE(6,*) 'ENTER LENGTH OF FIRST AND LAST DIVISIONS. (ft.) (10)'
       READ(5,*) LENDIV
*
       LENDIV is now the length in feet of the first and last
*
       division
       RDIVS = LENBRG/LENDIV
       LDPIX = NINT(LENDIV*10)
*
       10 pixels per foot for a 100 dpi image
*
       LDPIX is the number of pixels for the length of the division
       AREA = LENDIV*RDWY* 0.09290304
*
       1 square ft = 0.0929304 square meters
*
       AREA is area of the div in square meters
       AREA1 = AREA/0.09290304
*
       AREA1 is the area of the div in square ft.
       WRITE(6,*) 'ENTER SKEW. [(+) OR (-) DEGREES]'
       READ(5,*) SKEW
       XLOCATOR = XSTART
```

```
305
```

```
YLOCATOR = YSTART
        LTBND = XLOCATOR
        RTBND = LTBND + RDWYPIX
        DO 2742 I = 1,2
          IF (SKEW .EQ. 0) THEN
            BOTBND = YLOCATOR + LDPIX
            TOPBND = YLOCATOR
            DO 2744 J = 1, N
              IF ((XPERM(J).LT. LTBND) .OR. (XPERM(J).GT. RTBND)) THEN
                X(J) = 0
                Y(J) = 0
              ELSEIF((YPERM(J).LT.TOPBND).OR.(YPERM(J).GT.BOTBND)) THEN
                X(J) = 0
                Y(J) = 0
              ELSE
                X(J) = XPERM(J)
                Y(J) = YPERM(J)
              ENDIF
2744
            CONTINUE
          ELSE
            YPT2 = YLOCATOR - NINT(TAND(SKEW)*RDWY*10)
            XPT2 = RTBND
            DO 2746 J = 1,N
              IF ((XPERM(J).LT.LTBND).OR.(XPERM(J).GT.RTBND)) THEN
                X(J) = 0
                Y(J) = 0
              ELSE
                YTOPPT = YLOCATOR + ((-XPERM(J) + XLOCATOR) *
                        (YLOCATOR-YPT2)) / RDWYPIX
     +
                YBOTPT = YTOPPT + LDPIX
                IF((YPERM(J).LT.YTOPPT).OR.(YPERM(J).GT.YBOTPT))THEN
                  X(J) = 0
                  Y(J) = 0
                ELSE
                  X(J) = XPERM(J)
                  Y(J) = YPERM(J)
                ENDIF
              ENDIF
2746
            CONTINUE
          END IF
          CALL GROUP (N, X, Y, NUMCRCKS, NUMPIX, CX, CY)
          CALL CALCS (NUMCRCKS, NUMPIX , ANGLE, LENGTH, CX, CY)
          CALL OUTINFO (NUMCRCKS, ANGLE, LENGTH, AREA, NCPG, TLPG, TOTLEN,
                TOTDENS, TCHECK, DENS)
     +
*
          WRITE (13, *) OUTFILE
          WRITE(13,*) ''
          WRITE (13,*) 'OPTION 5: FIRST AND LAST DIVISION'
          WRITE (13,*)
          WRITE (13,*) 'DIVISION NUMBER ',I
          WRITE(13,*)
          WRITE(13,*)'DIVISION LENGTH =',LENDIV,' (ft.)'
          WRITE(13,*)'
                                      =',LENDIV*0.3048,' (m)'
          WRITE(13,*)'DIVISION AREA =', AREA1,' (ft.^2)'
          WRITE(13,*)'
                                     =',AREA,' (m^2)'
```

```
WRITE(13,*)' '
          WRITE (13,*)'DIVISON 1 IS THE FIRST ',LENDIV,' (ft.)OF
     +
                        THE BRIDGE DECK'
          WRITE (13,*)'DIVISON 2 IS THE LAST ', LENDIV,' (ft.)OF THE
                       BRIDGE DECK'
     +
          WRITE(13,*)' '
*
          CALL OUTPUT (NCPG, TLPG, DENS, TCHECK, AREA, AREA1, NUMCRCKS,
                        TOTLEN, TOTDENS, OUTFILE)
     +
          Cracks between -5 and 5 degrees are considered transverse
          DIVTRC(I) = NCPG(1)
          DIVTRL(I) = TLPG(1)
          DIVTRD(I) = DENS(1)
          DIVTOTC(I) = TCHECK
          DIVTOTL(I) = TOTLEN
          DIVTOTD(I) = TOTDENS
*
          Set YLOCATOR to a distance LENDIV or LDPIX from the far
          end of the bridge
          RTEMP = (LENBRG - LENDIV) * 10
          ITEMP = NINT(RTEMP)
          YLOCATOR = YSTART + ITEMP
2742
        CONTINUE
        DO 2747 J = 1,2
          IF (J .EQ. 1) THEN
            JOUT = 6
          ELSE
            JOUT = 13
          ENDIF
          WRITE (JOUT, *) OUTFILE
          WRITE(JOUT,*) ''
          WRITE (JOUT,*) 'OPTION 5: FIRST AND LAST DIVISION'
          WRITE(JOUT,*)
          WRITE(JOUT,*)'DIVISION LENGTH =',LENDIV,' (ft.)'
          WRITE(JOUT,*)'
                                             =',LENDIV*0.3048,' (m)'
          WRITE(JOUT, *)'DIVISION AREA =', AREA1, ' (ft.^2)'
          WRITE(JOUT, *) '
                                       =',AREA,' (m^2)'
          WRITE(JOUT, *) ' '
          WRITE (JOUT, *)'DIVISON 1 IS THE FIRST ', LENDIV, ' (ft.)OF
     +
                        THE BRIDGE DECK'
          WRITE (JOUT, *)'DIVISON 2 IS THE LAST ', LENDIV, ' (ft.)OF
                        THE BRIDGE DECK'
     +
          WRITE(JOUT,*)' '
          WRITE (JOUT, 3730)
          WRITE (JOUT, 3732)
          WRITE (JOUT, 3734)
          WRITE (JOUT, 3736)
          DO 2745 I = 1,2
            WRITE(JOUT, 3745)I, DIVTRC(I), DIVTRL(I), DIVTRD(I),
                  DIVTOTC(I), DIVTOTL(I), DIVTOTD(I)
2745
          CONTINUE
2747
        CONTINUE
          WRITE(JOUT,*) ''
3730 FORMAT (7X, '----TRANSVERSE-----', 2X,
```

```
307
```

```
'-----')
3732 FORMAT ('DIV.', 3X, '#CRACKS', 2X, 'LENGTH', 2X, 'DENSITY', 2X,
    +
           '#CRACKS',2X,'LENGTH',2X,'DENSITY')
3734 FORMAT (18X, '(m)', 3X, '(m/m<sup>2</sup>)', 13X, '(m)', 3X, '(m/m<sup>2</sup>)')
3736 FORMAT ('----', 3X, '-----', 1X, '-----', 1X, '-----', 2X,
                    '-----',1X,'-----',1X,'------')
   +
3745 FORMAT(2X, 12, 5X, 13, 4X, F6.2, 3X, F5.3, 5X, 13, 4X, F6.2, 3X, F5.3)
      CLOSE(13)
      GO TO 701
*
CCC=>Option 6 -- Quit.
*
     ELSE
      WRITE(6,*) 'END!'
     ENDIF
     END
*
*
  SUBROUTINE GROUP
*
  DIVIDES PIXELS INTO CRACK GROUPS
*
     NUMCRCKS = TOTAL NUMBER OF CRACKS IN SECTION CONSIDERED
*
     NUMPIX(K) = TOTAL NUMBER OF PIXELS IN A GIVEN CRACK K
*
     N = TOTAL NUMBER OF PIXELS IN THE INPUT FILE
*
     SUBROUTINE GROUP (N,X,Y,NUMCRCKS,NUMPIX,CX,CY)
     INTEGER N, X, Y, NUMCRCKS, NUMPIX, CX, CY, CHECK, H
    DIMENSION X(900000), Y(900000), NUMPIX(8000), CX(4000,4000),
               CY(4000,4000)
*
*
     DO 24 I = 1,000
      DO 23 J = 1,000
        CX(J,I) = 0
        CY(J,I) = 0
23
      CONTINUE
24
     CONTINUE
     NUMCRCKS = 0
     H = 0
     DO 50 K = 1,3000
      H=H + 1
       WRITE(6, *)'K = ',K
       WRITE(6, *)'H = ',H
       CHECK = 0
       DO 25 M = 1, N
        CHECK = CHECK + X(M)
25
       CONTINUE
       WRITE(6,*)'check = ',CHECK
       IF (CHECK .EQ. 0) THEN
        GO TO 60
       ELSE
        NUMPIX(H) = 1
        DO 5 L = 1, N
          IF (X(L) .NE. 0) THEN
            CX(1,H) = X(L)
            CY(1,H) = Y(L)
```

X(L) = 0Y(L) = 0GO TO 8 ENDIF 5 CONTINUE 8 DO 40 J = 1,3000IF (CX(J,H) .NE. 0) THEN DO 30 I = 1, NIF (X(I).NE.0) THEN IF (((X(I).EQ.CX(J,H)).OR.(X(I).EQ.(CX(J,H)+1)).OR.(X(I).EQ.(CX(J,H)-1)))+ + .AND. + ((Y(I).EQ.CY(J,H)).OR.(Y(I).EQ.(CY(J,H)+1)).OR.+ (Y(I).EQ.(CY(J,H)-1))) THEN NUMPIX(H) = NUMPIX(H) + 1CX(NUMPIX(H), H) = X(I)CY(NUMPIX(H), H) = Y(I)X(I) = 0Y(I) = 0ENDIF ENDIF 30 CONTINUE IF (NUMPIX(H).EO.1) THEN NUMCRCKS = NUMCRCKS-1 H=H-1 ENDIF ELSE GO TO 45 ENDIF 40 CONTINUE 45 CONTINUE NUMCRCKS = NUMCRCKS + 1 END IF 50 CONTINUE 60 CONTINUE WRITE(6,\*)'numcrcks = ',NUMCRCKS RETURN END \* \* SUBROUTINE CALCS \* CALCULATES LENGTH AND ANGLE OF EVERY CRACK \* K = CRACK NUMBERJ = FIXED (BASE) PIXEL FROM WHICH DISTANCES ARE MEASURED \* \* I = VARIABLE (ENDPOINT) PIXEL SUBROUTINE CALCS (NUMCRCKS, NUMPIX, ANGLE, LENGTH, CX, CY) REAL ANGLE, LENGTH, D, X1, Y1, X2, Y2 INTEGER NUMCRCKS, NUMPIX, CX, CY DIMENSION ANGLE(3000), LENGTH(3000), NUMPIX(8000), CX(4000,4000), CY(4000,4000),D(6000) \* \* DO 78 I = 1,3000ANGLE(I) = 0

```
78
     CONTINUE
     DO 90 K = 1, NUMCRCKS
       LENGTH(K) = 0
         DO 80 J = 1, NUMPIX(K)
           X1 = REAL(CX(J,K))
           Y1 = REAL(CY(J,K))
           DO 70 I = 1, NUMPIX(K)
             X2 = REAL(CX(I,K))
             Y2 = REAL(CY(I,K))
*
     D calculates the distance between two pixels
             D(K) = SQRT(((X1-X2)**2)+((Y1-Y2)**2))
             IF (D(K) .GT. LENGTH(K)) THEN
               LENGTH(K) = D(K)
               IF (X1 .EQ. X2) THEN
                 ANGLE(K) = 90
               ELSEIF (Y1 .EQ. Y2) THEN
                 ANGLE(K) = 0
               ELSE
     Angle is the angle in degrees between the first pixel in the
     crack and the last pixel in the crack.
               ANGLE(K) = (ATAN((Y1-Y2)/(X1-X2))) * (-180/3.14159265)
               ENDIF
             END IF
70
           CONTINUE
80
         CONTINUE
90
     CONTINUE
CCC=> THE FOLLOWING LINES CONVERT THE LENGTHS FROM PIXELS TO METERS.
CCC=> IF THE RESOLUTION OR DRAWING SCALE CHANGES, THE CONVERSION
CCC=> FACTOR MUST CHANGE ACCORDINGLY.
CCC=> (1 in./100 pix)*(10 feet/1 in.)*(0.3048m/foot) = 0.03048m/pix
     DO 95 K = 1, NUMCRCKS
       LENGTH(K) = LENGTH(K) * (0.03048)
95
     CONTINUE
     RETURN
     END
*
*
  SUBROUTINE OUTINFO
*
  CREATES INFORMATION FOR OUTPUT
*
     NCPG = NUMBER OF CRACKS PER GROUP
*
     TLPG = TOTAL LENGTH PER GROUP
*
     DENS = CRACK DENSITY PER GROUP (LIN. m/m<sup>2</sup>)
*
     SUBROUTINE OUTINFO (NUMCRCKS, ANGLE, LENGTH, AREA, NCPG, TLPG, TOTLEN,
           TOTDENS, TCHECK, DENS)
    +
     REAL ANGLE, LENGTH, AREA, TLPG, TOTLEN, TOTDENS, DENS
     INTEGER NUMCRCKS , NCPG, TCHECK, LOW, HIGH
     DIMENSION ANGLE(3000), LENGTH(3000), NCPG(20), TLPG(20), DENS(20)
*
     DO 110 L = 1,19
       NCPG(L) = 0
       TLPG(L) = 0
```

```
DENS(L) = 0
110
     CONTINUE
     DO 130 K = 1, NUMCRCKS
       LOW = -5
       HIGH = 5
       DO 120 L = 1,9
         IF ((ANGLE(K).GE. LOW) .AND. (ANGLE(K).LT. HIGH)) THEN
          NCPG(L) = NCPG(L) + 1
          TLPG(L) = TLPG(L) + LENGTH(K)
          GO TO 130
         ENDIF
         LOW = LOW + 10
         HIGH = HIGH + 10
120
       CONTINUE
       IF (((ANGLE(K).GE.85).AND.(ANGLE(K).LE.90)) .OR.
             ((ANGLE(K).LT.-85).AND.(ANGLE(K).GT.-90))) THEN
    +
         NCPG(10) = NCPG(10) + 1
         TLPG(10) = TLPG(10) + LENGTH(K)
       END IF
       LOW = -15
       HIGH = -5
       DO 125 L = 11, 18
         IF ((ANGLE(K) .GE. LOW) .AND. (ANGLE(K) .LT. HIGH)) THEN
          NCPG(L) = NCPG(L) + 1
          TLPG(L) = TLPG(L) + LENGTH(K)
          GO TO 130
         ENDIF
         LOW = LOW - 10
         HIGH = HIGH - 10
125
      CONTINUE
130
     CONTINUE
     DO 140 L = 1,18
       DENS(L) = TLPG(L) / AREA
140
     CONTINUE
     TOTLEN = 0
     DO 145 K = 1,NUMCRCKS
      TOTLEN = TOTLEN + LENGTH(K)
145
     CONTINUE
     TOTDENS = TOTLEN/AREA
     TCHECK = 0
     DO 147 I = 1,18
       TCHECK
               = TCHECK + NCPG(I)
147
     CONTINUE
     RETURN
     END
*
  SUBROUTINE OUTPUT
*
  WRITES RESULTS TO THE SCREEN AND TO AN OUTPUT FILE
*
     SUBROUTINE OUTPUT (NCPG, TLPG, DENS, TCHECK, AREA, AREA1, NUMCRCKS,
          TOTLEN, TOTDENS, OUTFILE)
     REAL TLPG, DENS, AREA, AREA1, TOTLEN, TOTDENS
     INTEGER NCPG, TCHECK, NUMCRCKS, LOW, HIGH
     CHARACTER OUTFILE*18
     DIMENSION NCPG(20), TLPG(20), DENS(20)
```

```
311
```

```
WRITE(6,*) ''
     WRITE(6,1012)
     WRITE(6,1014)
     WRITE(6,1016)
     WRITE(6,1018)
     LOW = -5
     HIGH = 5
1012 FORMAT(15X, '# OF', 6X, 'TOTAL', 8X, 'CRACK')
1014 FORMAT(4X, 'ANGLE', 5X, 'CRACKS', 4X, 'LENGTH', 7X, 'DENSITY')
1016 FORMAT(4X,'(deg)',17X,'(m)',6X,'(Lin. m/m<sup>2</sup>)')
1018 FORMAT('------',4X,'----',5X,'------',5X,'-------')
1020 FORMAT(1x, '(', I3, ')-(', I3, ')', 4x, I3, 3x, F8.2, 8X, F9.7)
     DO 150 I = 1,10
       WRITE(6,1020) LOW, HIGH, NCPG(I),TLPG(I),DENS(I)
       LOW = LOW + 10
       HIGH = HIGH + 10
150
     CONTINUE
     LOW = -5
     HIGH = -15
     DO 160 I = 11,18
       WRITE(6,1020) LOW, HIGH, NCPG(I),TLPG(I),DENS(I)
       LOW = LOW - 10
       HIGH = HIGH - 10
160
     CONTINUE
     WRITE(6,1030) 'TOTAL', NUMCRCKS, TOTLEN, TOTDENS
     WRITE(6, 1037) 'CHECK', TCHECK
     WRITE(6,*) ''
1030 FORMAT (4X,A5,7X,I3,3X,F8.2,8X,F9.7)
*
     WRITE(13,1012)
     WRITE(13,1014)
     WRITE(13,1016)
     WRITE(13,1018)
     LOW = -5
     HIGH = 5
     DO 170 I = 1,10
       WRITE(13,1020) LOW, HIGH, NCPG(I),TLPG(I),DENS(I)
       LOW = LOW + 10
       HIGH = HIGH + 10
170
     CONTINUE
     LOW = -5
     HIGH = -15
     DO 180 I = 11, 18
       WRITE(13,1020) LOW, HIGH, NCPG(I), TLPG(I), DENS(I)
       LOW = LOW - 10
       HIGH = HIGH - 10
180
     CONTINUE
     WRITE(13,1030) 'TOTAL', NUMCRCKS, TOTLEN, TOTDENS
     WRITE(13,1037)'CHECK', TCHECK
     WRITE(13,*)''
     WRITE(13,*)''
1037 FORMAT (4X,A5,7X,I3)
     RETURN
     END
```

\*

```
* SUBROUTINE SPECANG
*
  SPECIFIED ANGLE SECTION
     SUBROUTINE SPECANG (AREA, NUMCRCKS, ANGLE, LENGTH, SPANG,
           SPNC, SPTL, SPDENS)
     REAL AREA, ANGLE, LENGTH, SPANG, SPTL, SPDENS, RLOW, RHIGH,
          TOL
     +
     INTEGER NUMCRCKS, SPNC, NUM
     CHARACTER YESNO
     DIMENSION ANGLE(20), LENGTH(20), SPANG(10), SPNC(10), SPTL(10),
          SPDENS (10)
    +
     WRITE(6, 1050)
1050 FORMAT(//,//,' DO YOU WISH TO SEE INFORMATION FOR ANGLES
            OTHER')
     +
     WRITE(6,*)'THAN THOSE LISTED?'
1051 FORMAT (A1)
     READ(5,1051) YESNO
     IF (YESNO .EQ. 'Y' .OR. YESNO .EQ. 'y') THEN
       WRITE(6,*)'ENTER THE NO. OF ADDITIONAL ANGLES DESIRED.'
       READ(5, *)NUM
       WRITE(6,*)'ENTER TOLERANCE FOR EACH ANGLE (+/- ____deg.).'
       READ(5,*) TOL
       DO 190 I = 1, NUM
         WRITE(6,*)'ENTER ANGLE', I, '(deq.).'
         READ(5,*) SPANG(I)
190
       CONTINUE
       DO 195 I = 1,10
         SPNC(I) = 0
         SPTL(I) = 0
         SPDENS(I) = 0
195
       CONTINUE
       DO 200 K = 1, NUMCRCKS
         DO 198 I = 1, NUM
           IF((ANGLE(K).GT.(SPANG(I)-TOL)) .AND.
                (ANGLE(K).LT.(SPANG(I)+TOL))) THEN
    +
             SPNC(I) = SPNC(I) + 1
             SPTL(I) = SPTL(I) + LENGTH(K)
           ENDIF
198
        CONTINUE
200
       CONTINUE
       DO 210 I = 1, NUM
         SPDENS(I) = SPTL(I) / AREA
210
       CONTINUE
       WRITE(6, 1052)
1052
       FORMAT(//, 'SPECIFIED ANGLES:')
*
       See the end of the Subroutine for the format statements
       WRITE(6,*)' '
       WRITE(6,1062)
       WRITE(6,1064)
       WRITE(6,1066)
       WRITE(6,1068)
       WRITE(13, 1052)
       WRITE(13,*)' '
       WRITE(13,1062)
       WRITE(13,1064)
```

```
WRITE(13,1066)
       WRITE(13,1068)
       DO 220 I = 1, NUM
         RLOW = SPANG(I) - TOL
         RHIGH = SPANG(I) + TOL
         WRITE(6,1060)RLOW, RHIGH, SPNC(I), SPTL(I), SPDENS(I)
         WRITE(13,1060)RLOW, RHIGH, SPNC(I),SPTL(I),SPDENS(I)
220
       CONTINUE
     END TF
1060 FORMAT(1X,'(',F5.1')-(',F5.1,')',4X,I3,3X,F6.2,8X,F9.7)
1062 FORMAT(19X, '# OF', 4X, 'TOTAL', 8X, 'CRACK')
1064 FORMAT(6X, 'ANGLE', 7X, 'CRACKS', 2X, 'LENGTH', 7X, 'DENSITY')
1066 FORMAT(6X,'(deg)',17X,'(m)',6X,'(Lin. m/m<sup>2</sup>)')
1068 FORMAT('-----',4x,'---',3x,'-----',5x,'------
         -')
    +
     WRITE(13,*)''
     WRITE(13,*)''
     RETURN
     END
*
*
     SUBROUTINE COORDS
*
     SELECTS ALL "DARK" PIXELS FROM ASCII FILE AND WRITES THEIR
     COORDINATES TO FILE coords.dat
*
     SUBROUTINE COORDS (INFILE, XPERM, YPERM, LOWER, UPPER, N, XSTART,
          YSTART)
    +
     INTEGER LEVEL, XCOUNT, YCOUNT, XPERM, YPERM, LOWER, UPPER, N,
           XSIZE, YSIZE, CHOICE, JUMP, XEDGE, XSTART, YSTART
     INTEGER SHIFT, CHECK
     CHARACTER INFILE*14
     DIMENSION LEVEL(20), XPERM(900000), YPERM(900000)
*
     XSIZE = 600
     YSIZE = 4200
     WRITE(6,*)'DEFAULT IMAGE SIZE:
                                      ',XSIZE,' x ',YSIZE
     WRITE(6,*)' (1) USE DEFAULT'
     WRITE(6,*)' (2) SPECIFY NEW SIZE'
     WRITE(6,*)' '
     WRITE(6,*) 'ENTER CHOICE'
600
     READ(5, *)CHOICE
     IF ((CHOICE .NE. 1) .AND. (CHOICE .NE. 2)) THEN
       WRITE(6,*)'ENTER 1 OR 2.'
       GO TO 600
     ENDIF
     IF (CHOICE .EQ. 2) THEN
       WRITE(6,*)
       WRITE(6,*)
       WRITE(6,*)'BOTH X AND Y DIMENSIONS MUST BE MULTIPLES OF 20'
       WRITE(6,*)'FOR THE PROGRAM TO FUNCTION CORRECTLY!!!'
       WRITE(6,*)
       WRITE(6,*)
601
       WRITE(6,*)'ENTER X-DIMENSION.'
       READ(5,*)XSIZE
       WRITE(6,*) 'ENTER Y-DIMENSION.'
       READ(5, *)YSIZE
```

```
WRITE(6,*)'NEW IMAGE SIZE: ',XSIZE,' x',YSIZE
       WRITE(6,*)' (1) ACCEPT'
       WRITE(6,*)' (2) MODIFY'
       WRITE(6,*)' '
       WRITE(6,*) 'ENTER CHOICE'
602
       READ(5, *)CHOICE
       IF ((CHOICE .NE. 1) .AND. (CHOICE .NE. 2)) THEN
         WRITE(6,*)'ENTER 1 OR 2.'
         GO TO 602
       END IF
       IF (CHOICE .EQ. 2) THEN
         GO TO 601
       ENDIF
     ENDIF
*
     20 is the number of columns of data in the ASCII file.
*
     JUMP is the number of rows of the ASCII file that make up one
     row of the TIFF image.
     JUMP = XSIZE/20
     WRITE(6,*)'SCANNING ASCII FILE . . .'
1002 FORMAT (20(I3,1X))
*
     This group of lines opens the data file and reads in the first
*
     lines so that the program can determine in which column the
*
     data starts. SHIFT represents the number of empty columns
*
     before the first data point.
*
     REWIND should tell the program to go back to the beginning of
*
     the data file.
     SHIFT = 0
     CHECK = 0
     OPEN (11, FILE=INFILE, STATUS='OLD')
     READ (11,1002) (LEVEL(I), I=1,20)
     DO 300 I = 1,20
       IF (LEVEL(I).NE.0) THEN
         CHECK = 1
       ENDIF
       IF ((LEVEL(I).EQ.0).AND.(CHECK.EQ.0)) THEN
         SHIFT = SHIFT + 1
       ENDIF
300 CONTINUE
     REWIND (11)
*
*
     The first row requires and additional if then so that XCOUNT
*
     starts at 1 in the correct column.
     N = 0
     YCOUNT = 1
     XCOUNT=0
     IF (SHIFT.EQ.0) THEN
       GO TO 320
     ENDIF
     READ (11,1002) (LEVEL(I), I=1,SHIFT)
     DO 310 I = 1,20
       IF (I.GT.SHIFT) THEN
         XCOUNT = XCOUNT + 1
         IF ((LEVEL(I).GE.LOWER).AND.(LEVEL(I).LE.UPPER)) THEN
```

```
315
```

```
N = N + 1
           XPERM(N) = XCOUNT
           YPERM(N) = YCOUNT
         END IF
       ENDIF
310
     CONTINUE
*
*
     The following lines examine the remaining rows
     This is where the program begins if SHIFT = 0
320 DO 3 K = 1, YSIZE
       DO 2 J = 1, JUMP
         READ (11,1002) (LEVEL(I), I=1,20)
         DO 1 I = 1,20
*
     If XCOUNT = XSIZE then the end of a row has been reached and
*
     the next row needs to be started.
             IF ((XCOUNT.EQ.XSIZE).AND.(YCOUNT.EQ.YSIZE))THEN
             GO TO 330
           ENDIF
             IF (XCOUNT.EQ.XSIZE)THEN
             XCOUNT = 0
             YCOUNT = YCOUNT + 1
           ENDIF
           XCOUNT = XCOUNT + 1
           IF ((LEVEL(I).GE.LOWER).AND.(LEVEL(I).LE.UPPER)) THEN
             N = N + 1
             XPERM(N) = XCOUNT
             YPERM(N) = YCOUNT
           END IF
1
         CONTINUE
2
       CONTINUE
3
     CONTINUE
*
330
     CLOSE (11)
CCC=>The following lines locate the starting point pixel.
     IF (YPERM(1).NE.1) THEN
       WRITE(6,*)'ERROR!! CHECK TIFF FILE.'
       STOP
     ENDIF
     XEDGE = XPERM(1)
     J= 1
     DO 610 I = 1, N
       IF ((XPERM(I).EQ. XEDGE) .AND. (YPERM(I).EQ. J)) THEN
         XSTART = XPERM(I)
         YSTART = YPERM(I)
         J=J+1
         XPERM(I) = 0
         YPERM(I) = 0
       END IF
610
     CONTINUE
CCC=>
     OPEN (12, FILE='coords.dat', STATUS='UNKNOWN')
*
     WRITE (12,*) 'SHIFT:',SHIFT,'
                                    CHECK: ', CHECK
     WRITE (12,*) 'XSIZE:',XSIZE,' YSIZE:',YSIZE
```

```
1003 FORMAT (3X,I3,4X,I4)
    DO 4 I = 1,N
        IF (XPERM(I).NE.0) THEN
        WRITE (12,1003) XPERM(I),YPERM(I)
        ENDIF
4 CONTINUE
        CLOSE (12)
*
        WRITE(6,*)'TOTAL NUMBER OF "DARK" PIXELS =',N,'.'
        RETURN
        END
```

#### **APPENDIX D**

#### **BRIDGE DECK CHLORIDE CONTENTS AND DIFFUSION DATA**

| Bridge:                                                                                                    |                                                                                                                                                                                                           | 30-93                                                                                        |                                                                                                                           | Bridge:                                                                                       |                                                                                                                                   | 40-92                                                                                        |                                                                                                                           |                                                                                                                            |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement                                                                                     |                                                                                                                                                                                                           | Deck<br>08/04/01                                                                             |                                                                                                                           | Placement<br>Placement                                                                        |                                                                                                                                   | Deck<br>10/26/01                                                                             |                                                                                                                           |                                                                                                                            |
| Survey Da                                                                                                  | ate:                                                                                                                                                                                                      | 08/15/03                                                                                     |                                                                                                                           | Survey Da                                                                                     | ite:                                                                                                                              | 06/12/03                                                                                     |                                                                                                                           |                                                                                                                            |
| Off C                                                                                                      | rack                                                                                                                                                                                                      | On C                                                                                         | rack                                                                                                                      | Off C                                                                                         | rack                                                                                                                              | <b>On C</b>                                                                                  | rack                                                                                                                      | Mean<br>Depth                                                                                                              |
| Sample                                                                                                     | kg/m <sup>3</sup>                                                                                                                                                                                         | Sample                                                                                       | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                        | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                       | kg/m <sup>3</sup>                                                                                                         | (mm)                                                                                                                       |
| 2A                                                                                                         | 1.06                                                                                                                                                                                                      | 1A                                                                                           | 1.97                                                                                                                      | 2A                                                                                            | 1.76                                                                                                                              | 1A                                                                                           | 3.73                                                                                                                      | 9.5                                                                                                                        |
| 2B                                                                                                         | 0.24                                                                                                                                                                                                      | 1B                                                                                           | 1.31                                                                                                                      | 2B                                                                                            | 0.00                                                                                                                              | 1B                                                                                           | 1.06                                                                                                                      | 28.6                                                                                                                       |
| 2C                                                                                                         | 0.21                                                                                                                                                                                                      | 1C                                                                                           | 1.04                                                                                                                      | 2C                                                                                            | 0.00                                                                                                                              | 1C                                                                                           | 1.01                                                                                                                      | 47.6                                                                                                                       |
| 2D                                                                                                         | 0.20                                                                                                                                                                                                      | 1D                                                                                           | 0.78                                                                                                                      | 2D                                                                                            | 0.00                                                                                                                              | 1D                                                                                           | 1.11                                                                                                                      | 66.7                                                                                                                       |
| 2E                                                                                                         | 0.21                                                                                                                                                                                                      | 1E                                                                                           | 0.82                                                                                                                      | 2E                                                                                            | 0.00                                                                                                                              | 1E                                                                                           | 1.18                                                                                                                      | 85.7                                                                                                                       |
| 4A                                                                                                         | 2.08                                                                                                                                                                                                      | 3A                                                                                           | 1.40                                                                                                                      | 4A                                                                                            | 3.44                                                                                                                              | 3A                                                                                           | 4.24                                                                                                                      | 9.5                                                                                                                        |
| 4B                                                                                                         | 0.22                                                                                                                                                                                                      | 3B                                                                                           | 0.22                                                                                                                      | 4B                                                                                            | 0.14                                                                                                                              | 3B                                                                                           | 1.39                                                                                                                      | 28.6                                                                                                                       |
| 4C                                                                                                         | 0.23                                                                                                                                                                                                      | 3C                                                                                           | 0.24                                                                                                                      | 4C                                                                                            | 0.00                                                                                                                              | 3C                                                                                           | 1.10                                                                                                                      | 47.6                                                                                                                       |
| 4D                                                                                                         | 0.26                                                                                                                                                                                                      | 3D                                                                                           | 0.30                                                                                                                      | 4D                                                                                            | 0.00                                                                                                                              | 3D                                                                                           | 1.50                                                                                                                      | 66.7                                                                                                                       |
| 4E                                                                                                         | 0.27                                                                                                                                                                                                      | 3E                                                                                           | 0.29                                                                                                                      | 4E                                                                                            | 0.00                                                                                                                              | 3E                                                                                           | 1.41                                                                                                                      | 85.7                                                                                                                       |
| 6A                                                                                                         | 0.12                                                                                                                                                                                                      | 5A                                                                                           | 1.66                                                                                                                      | 6A                                                                                            | 2.17                                                                                                                              | 5A                                                                                           | 2.35                                                                                                                      | 9.5                                                                                                                        |
| 6B                                                                                                         | 0.25                                                                                                                                                                                                      | 5B                                                                                           | 0.19                                                                                                                      | 6B                                                                                            | 0.13                                                                                                                              | 5B                                                                                           | 0.78                                                                                                                      | 28.6                                                                                                                       |
| 6C                                                                                                         | 0.27                                                                                                                                                                                                      | 5C                                                                                           | 0.16                                                                                                                      | 6C                                                                                            | 0.11                                                                                                                              | 5C                                                                                           | 1.09                                                                                                                      | 47.6                                                                                                                       |
| 6D                                                                                                         | 0.24                                                                                                                                                                                                      | 5D                                                                                           | 0.18                                                                                                                      | 6D                                                                                            | 0.00                                                                                                                              | 5D                                                                                           | 1.40                                                                                                                      | 66.7                                                                                                                       |
| 6E                                                                                                         | 0.21                                                                                                                                                                                                      | 5E                                                                                           | 0.20                                                                                                                      | 6E                                                                                            | 0.00                                                                                                                              | 5E                                                                                           | 1.40                                                                                                                      | 85.7                                                                                                                       |
| Bridge:                                                                                                    |                                                                                                                                                                                                           | 40-93                                                                                        |                                                                                                                           | Bridge:                                                                                       |                                                                                                                                   | 46-332                                                                                       |                                                                                                                           |                                                                                                                            |
| Placement                                                                                                  | t:                                                                                                                                                                                                        | Deck                                                                                         |                                                                                                                           | Placement                                                                                     | :                                                                                                                                 | Deck                                                                                         |                                                                                                                           |                                                                                                                            |
| Placement                                                                                                  | t Date:                                                                                                                                                                                                   | 10/16/01                                                                                     |                                                                                                                           | Placement                                                                                     | Date:                                                                                                                             | 05/15/02                                                                                     |                                                                                                                           |                                                                                                                            |
| 1 lacement                                                                                                 |                                                                                                                                                                                                           |                                                                                              |                                                                                                                           |                                                                                               |                                                                                                                                   |                                                                                              |                                                                                                                           |                                                                                                                            |
|                                                                                                            |                                                                                                                                                                                                           | 06/11/03                                                                                     |                                                                                                                           | Survey Da                                                                                     | ite:                                                                                                                              | 07/02/03                                                                                     |                                                                                                                           |                                                                                                                            |
| Survey Da                                                                                                  | ate:                                                                                                                                                                                                      |                                                                                              |                                                                                                                           | ·                                                                                             |                                                                                                                                   |                                                                                              |                                                                                                                           | Mean                                                                                                                       |
|                                                                                                            | ate:<br>rack                                                                                                                                                                                              | 06/11/03<br>On C                                                                             |                                                                                                                           | Survey Da<br>Off C                                                                            | rack                                                                                                                              | 07/02/03<br>On C                                                                             |                                                                                                                           | Mean<br>Depth                                                                                                              |
| Survey Da<br>Off C<br>Sample                                                                               | ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                         | On C<br>Sample                                                                               | kg/m <sup>3</sup>                                                                                                         | Off C<br>Sample                                                                               | rack<br>kg/m <sup>3</sup>                                                                                                         | On Ca<br>Sample                                                                              | kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                                              |
| Survey Da<br>Off C<br>Sample<br>2A                                                                         | nte:<br>rack<br>kg/m <sup>3</sup><br>3.53                                                                                                                                                                 | On C<br>Sample                                                                               | <b>kg/m<sup>3</sup></b> 5.72                                                                                              | Off C<br>Sample<br>2A                                                                         | rack<br>kg/m <sup>3</sup><br>0.81                                                                                                 | On Ca<br>Sample                                                                              | <b>kg/m<sup>3</sup></b><br>0.16                                                                                           | <b>Depth</b><br>(mm)<br>9.5                                                                                                |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | rack<br>kg/m <sup>3</sup><br>3.53<br>0.25                                                                                                                                                                 | On C<br>Sample<br>1A<br>1B                                                                   | <b>kg/m<sup>3</sup></b><br>5.72<br>1.17                                                                                   | Off C<br>Sample<br>2A<br>2B                                                                   | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15                                                                                         | On Ca<br>Sample<br>1A<br>1B                                                                  | <b>kg/m<sup>3</sup></b><br>0.16<br>0.49                                                                                   | Depth<br>(mm)<br>9.5<br>28.6                                                                                               |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | ate:<br>rack<br>kg/m <sup>3</sup><br>3.53<br>0.25<br>0.00                                                                                                                                                 | On C<br>Sample<br>1A<br>1B<br>1C                                                             | <b>kg/m<sup>3</sup></b><br>5.72<br>1.17<br>1.19                                                                           | Off C<br>Sample<br>2A<br>2B<br>2C                                                             | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14                                                                                 | <b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C                                               | <b>kg/m<sup>3</sup></b><br>0.16<br>0.49<br>0.53                                                                           | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                       | ate:<br>rack<br>kg/m <sup>3</sup><br>3.53<br>0.25<br>0.00<br>0.11                                                                                                                                         | <b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D                                         | <b>kg/m<sup>3</sup></b><br>5.72<br>1.17<br>1.19<br>1.46                                                                   | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                       | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16                                                                         | On C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                       | <b>kg/m<sup>3</sup></b><br>0.16<br>0.49<br>0.53<br>0.18                                                                   | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                               |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | rack<br>kg/m <sup>3</sup><br>3.53<br>0.25<br>0.00<br>0.11<br>0.00                                                                                                                                         | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                 | <b>kg/m<sup>3</sup></b><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34                                                           | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00                                                                 | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                 | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | rack<br>kg/m <sup>3</sup><br>3.53<br>0.25<br>0.00<br>0.11<br>0.00<br>3.12                                                                                                                                 | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | <b>kg/m<sup>3</sup></b><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56                                                   | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25                                                         | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43                                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | kg/m³           3.53           0.25           0.00           0.11           0.00           3.12           0.66                                                                                            | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | kg/m <sup>3</sup><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56<br>0.97                                                 | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25<br>0.40                                                 | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43<br>0.18                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                        |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | kg/m³           3.53           0.25           0.00           0.11           0.00           3.12           0.66           0.14                                                                             | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | kg/m <sup>3</sup><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56<br>0.97<br>1.00                                         | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25<br>0.40<br>1.16                                         | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43<br>0.18<br>0.36                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | kg/m³           3.53           0.25           0.00           0.11           0.00           3.12           0.66           0.14           0.00                                                              | On C<br><u>Sample</u><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                  | kg/m <sup>3</sup><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56<br>0.97<br>1.00<br>1.03                                 | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25<br>0.40<br>1.16<br>0.13                                 | On C<br><u>Sample</u><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                  | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43<br>0.18<br>0.36<br>0.10                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                        |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | kg/m³           3.53           0.25           0.00           0.11           0.00           3.12           0.66           0.14           0.00           0.00                                               | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | kg/m <sup>3</sup><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56<br>0.97<br>1.00<br>1.03<br>0.97                         | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25<br>0.40<br>1.16<br>0.13<br>0.23                         | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43<br>0.18<br>0.36<br>0.10<br>0.86                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | kg/m³           xack           kg/m³           3.53           0.25           0.00           0.11           0.00           3.12           0.66           0.14           0.00           2.12                | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A             | kg/m <sup>3</sup><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56<br>0.97<br>1.00<br>1.03<br>0.97<br>2.16                 | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25<br>0.40<br>1.16<br>0.13<br>0.23<br>0.52                 | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A             | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43<br>0.18<br>0.36<br>0.10<br>0.86<br>0.19                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                         |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | kg/m³           kg/m³           3.53           0.25           0.00           0.11           0.00           3.12           0.66           0.14           0.00           2.12           2.10                | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56<br>0.97<br>1.00<br>1.03<br>0.97<br>2.16<br>1.15         | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25<br>0.40<br>1.16<br>0.13<br>0.23<br>0.52<br>0.21         | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43<br>0.18<br>0.36<br>0.10<br>0.86<br>0.19<br>0.40         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                 |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | kg/m³           kg/m³           3.53           0.25           0.00           0.11           0.00           3.12           0.66           0.14           0.00           2.12           2.10           0.15 | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | kg/m <sup>3</sup><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56<br>0.97<br>1.00<br>1.03<br>0.97<br>2.16<br>1.15<br>1.09 | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25<br>0.40<br>1.16<br>0.13<br>0.23<br>0.52<br>0.21<br>0.85 | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43<br>0.18<br>0.36<br>0.10<br>0.86<br>0.19<br>0.40<br>0.40 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>64.7 |
| Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | kg/m³           kg/m³           3.53           0.25           0.00           0.11           0.00           3.12           0.66           0.14           0.00           2.12           2.10                | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>5.72<br>1.17<br>1.19<br>1.46<br>1.34<br>2.56<br>0.97<br>1.00<br>1.03<br>0.97<br>2.16<br>1.15         | Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | rack<br>kg/m <sup>3</sup><br>0.81<br>0.15<br>0.14<br>0.16<br>0.00<br>0.25<br>0.40<br>1.16<br>0.13<br>0.23<br>0.52<br>0.21         | On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>0.16<br>0.49<br>0.53<br>0.18<br>1.05<br>0.43<br>0.18<br>0.36<br>0.10<br>0.86<br>0.19<br>0.40         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                 |

| Bridge:                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81-53                                                                                                                  |                                                                                                                                                                            | Bridge:                |                   | 85-148                 |                   |                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deck<br>02/21/00                                                                                                       |                                                                                                                                                                            | Placement<br>Placement |                   | West 32 ft<br>10/30/01 |                   |                                                                                                                    |
| Survey Da                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06/05/03                                                                                                               |                                                                                                                                                                            | Survey Da              |                   | 06/03/03               |                   |                                                                                                                    |
| · ·                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |                                                                                                                                                                            | •                      |                   |                        |                   | Mean                                                                                                               |
| Off C                                                                                                                                     | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | On C                                                                                                                   | rack                                                                                                                                                                       | Off C                  | rack              | <b>On C</b>            | rack              | Depth                                                                                                              |
| Sample                                                                                                                                    | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample                                                                                                                 | kg/m <sup>3</sup>                                                                                                                                                          | Sample                 | kg/m <sup>3</sup> | Sample                 | kg/m <sup>3</sup> | (mm)                                                                                                               |
| 2A                                                                                                                                        | 5.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1A                                                                                                                     | 5.77                                                                                                                                                                       | 2A                     | 6.64              | 1A                     | 7.43              | 9.5                                                                                                                |
| 2B                                                                                                                                        | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1B                                                                                                                     | 2.81                                                                                                                                                                       | 2B                     | 2.45              | 1B                     | 1.65              | 28.6                                                                                                               |
| 2C                                                                                                                                        | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1C                                                                                                                     | 2.63                                                                                                                                                                       | 2C                     | 0.25              | 1C                     | 1.42              | 47.6                                                                                                               |
| 2D                                                                                                                                        | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1D                                                                                                                     | 2.25                                                                                                                                                                       | 2D                     | 0.16              | 1D                     | 1.09              | 66.7                                                                                                               |
| 2E                                                                                                                                        | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1E                                                                                                                     | 1.36                                                                                                                                                                       | 2E                     | 0.21              | 1E                     | 0.79              | 85.7                                                                                                               |
| 3A                                                                                                                                        | 3.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4A                                                                                                                     | 7.18                                                                                                                                                                       | 4A                     | 7.96              | 3A                     | 7.78              | 9.5                                                                                                                |
| 3B                                                                                                                                        | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4B                                                                                                                     | 2.48                                                                                                                                                                       | 4B                     | 2.18              | 3B                     | 2.00              | 28.6                                                                                                               |
| 3C                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4C                                                                                                                     | 2.50                                                                                                                                                                       | 4C                     | 0.26              | 3C                     | 2.21              | 47.6                                                                                                               |
| 3D                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4D                                                                                                                     | 2.02                                                                                                                                                                       | 4D                     | 0.10              | 3D                     | 2.22              | 66.7                                                                                                               |
| 3E                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4E                                                                                                                     | 1.22                                                                                                                                                                       | 4E                     | 0.15              | 3E                     | 2.11              | 85.7                                                                                                               |
| 5A                                                                                                                                        | 5.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                            | 6A                     | 6.19              | 5A                     | 4.98              | 9.5                                                                                                                |
| 5B                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                            | 6B                     | 0.43              | 5B                     | 1.19              | 28.6                                                                                                               |
| 5C                                                                                                                                        | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                            | 6C                     | 0.15              | 5C                     | 1.32              | 47.6                                                                                                               |
| 5D                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                            | 6D                     | 0.00              | 5D                     | 1.21              | 66.7                                                                                                               |
| 02                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |                                                                                                                                                                            |                        |                   |                        |                   |                                                                                                                    |
| 5E                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                            | 6E                     | 0.00              | 5E                     | 0.93              | 85.7                                                                                                               |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85-149                                                                                                                 |                                                                                                                                                                            |                        |                   |                        |                   | 85.7                                                                                                               |
| Bridge:<br>Placement<br>Placement                                                                                                         | 0.00<br>t:<br>t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deck<br>09/26/02                                                                                                       |                                                                                                                                                                            |                        |                   |                        |                   | 85.7                                                                                                               |
| Bridge:<br>Placement<br>Placement                                                                                                         | 0.00<br>t:<br>t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deck                                                                                                                   |                                                                                                                                                                            |                        |                   |                        |                   | 85.7<br>Mean                                                                                                       |
| 5E<br>Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C                                                                             | 0.00<br>t:<br>t Date:<br>ate:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deck<br>09/26/02                                                                                                       | rack                                                                                                                                                                       |                        |                   |                        |                   |                                                                                                                    |
| Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                            | 0.00<br>t:<br>t Date:<br>ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deck<br>09/26/02<br>06/04/03                                                                                           | rack<br>kg/m <sup>3</sup>                                                                                                                                                  |                        |                   |                        |                   | Mean                                                                                                               |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C                                                                                   | 0.00<br>t:<br>t Date:<br>ate:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deck<br>09/26/02<br>06/04/03<br>On C                                                                                   |                                                                                                                                                                            |                        |                   |                        |                   | Mean<br>Depth                                                                                                      |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                         | 0.00<br>t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deck<br>09/26/02<br>06/04/03<br>On Ca<br>Sample                                                                        | kg/m <sup>3</sup>                                                                                                                                                          |                        |                   |                        |                   | Mean<br>Depth<br>(mm)                                                                                              |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                   | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deck<br>09/26/02<br>06/04/03<br>On Ca<br>Sample<br>1A                                                                  | <b>kg/m<sup>3</sup></b><br>3.01                                                                                                                                            |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5                                                                                       |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                             | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deck<br>09/26/02<br>06/04/03<br>On Ca<br>Sample<br>1A<br>1B                                                            | <b>kg/m<sup>3</sup></b><br>3.01<br>0.23                                                                                                                                    |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6                                                                               |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                       | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deck<br>09/26/02<br>06/04/03<br>On Cr<br>Sample<br>1A<br>1B<br>1C                                                      | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18                                                                                                                                  |                        |                   |                        |                   | <b>Mean</b><br><b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                         |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                 | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deck<br>09/26/02<br>06/04/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D                                                | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18<br>0.20                                                                                                                          |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                               |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                           | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deck<br>09/26/02<br>06/04/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1C<br>1D<br>1E                              | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18<br>0.20<br>0.15                                                                                                                  |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                       |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                     | 0.00<br>t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00<br>0.00<br>0.00<br>3.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deck<br>09/26/02<br>06/04/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                     | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18<br>0.20<br>0.15<br>5.27                                                                                                          |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                               | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00<br>0.00<br>0.00<br>3.91<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deck<br>09/26/02<br>06/04/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                              | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18<br>0.20<br>0.15<br>5.27<br>1.49                                                                                                  |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                        |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                         | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deck<br>09/26/02<br>06/04/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                         | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18<br>0.20<br>0.15<br>5.27<br>1.49<br>1.40                                                                                          |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                   | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deck<br>09/26/02<br>06/04/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                   | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18<br>0.20<br>0.15<br>5.27<br>1.49<br>1.40<br>1.01                                                                                  |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                        |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E             | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deck<br>09/26/02<br>06/04/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E             | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18<br>0.20<br>0.15<br>5.27<br>1.49<br>1.40<br>1.01<br>0.67                                                                          |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A       | 0.00<br>t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deck<br>09/26/02<br>06/04/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A       | kg/m³           3.01           0.23           0.18           0.20           0.15           5.27           1.49           1.40           1.01           0.67           3.03 |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5         |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B | 0.00<br>t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.13<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Deck<br>09/26/02<br>06/04/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B | kg/m <sup>3</sup><br>3.01<br>0.23<br>0.18<br>0.20<br>0.15<br>5.27<br>1.49<br>1.40<br>1.01<br>0.67<br>3.03<br>0.82                                                          |                        |                   |                        |                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6 |

Table D.1 (con't) – Chloride Concentration Data

| Bridge:                                                                                                                              |                                                                                                                                                                       | 89-269                                                                                                                             |                                                                                                                                   | Bridge:                                                                                                                              |                                                                                                                                                               | 89-269                                                                                                                                           |                                                                                                                                   |                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement                                                                                                               | t Date:                                                                                                                                                               | West 1/2 S<br>08/04/01                                                                                                             | FO                                                                                                                                | Placement<br>Placement                                                                                                               | t Date:                                                                                                                                                       | East 1/2 SI<br>10/26/01                                                                                                                          | FO                                                                                                                                |                                                                                                                            |
| Survey Da                                                                                                                            | ite:                                                                                                                                                                  | 08/15/03                                                                                                                           |                                                                                                                                   | Survey Da                                                                                                                            | ate:                                                                                                                                                          | 06/12/03                                                                                                                                         |                                                                                                                                   |                                                                                                                            |
| Off C                                                                                                                                | rack                                                                                                                                                                  | <b>On C</b>                                                                                                                        | rack                                                                                                                              | Off C                                                                                                                                | rack                                                                                                                                                          | <b>On C</b>                                                                                                                                      | rack                                                                                                                              | Mean<br>Depth                                                                                                              |
| Sample                                                                                                                               | kg/m <sup>3</sup>                                                                                                                                                     | Sample                                                                                                                             | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                                               | kg/m <sup>3</sup>                                                                                                                                             | Sample                                                                                                                                           | kg/m <sup>3</sup>                                                                                                                 | (mm)                                                                                                                       |
| 1A                                                                                                                                   | 4.51                                                                                                                                                                  | 4A                                                                                                                                 | 2.44                                                                                                                              | 7A                                                                                                                                   | 4.41                                                                                                                                                          | 8A                                                                                                                                               | 2.58                                                                                                                              | 9.5                                                                                                                        |
| 1B                                                                                                                                   | 0.35                                                                                                                                                                  | 4B                                                                                                                                 | 1.49                                                                                                                              | 7B                                                                                                                                   | 1.23                                                                                                                                                          | 8B                                                                                                                                               | 1.17                                                                                                                              | 28.6                                                                                                                       |
| 1C                                                                                                                                   | 0.17                                                                                                                                                                  | 4C                                                                                                                                 | 1.31                                                                                                                              | 7C                                                                                                                                   | 0.19                                                                                                                                                          | 8C                                                                                                                                               | 0.29                                                                                                                              | 47.6                                                                                                                       |
| 1D                                                                                                                                   | 0.18                                                                                                                                                                  | 4D                                                                                                                                 | 0.72                                                                                                                              | 7D                                                                                                                                   | 0.14                                                                                                                                                          | 8D                                                                                                                                               | 0.22                                                                                                                              | 66.7                                                                                                                       |
| 1E                                                                                                                                   | 0.00                                                                                                                                                                  | 4E                                                                                                                                 | 0.50                                                                                                                              | 7E                                                                                                                                   | 0.14                                                                                                                                                          | 8E                                                                                                                                               | 0.69                                                                                                                              | 85.7                                                                                                                       |
| 2A                                                                                                                                   | 4.20                                                                                                                                                                  | 5A                                                                                                                                 | 2.90                                                                                                                              | 9A                                                                                                                                   | 1.96                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 9.5                                                                                                                        |
| 2B                                                                                                                                   | 0.48                                                                                                                                                                  | 5B                                                                                                                                 | 1.76                                                                                                                              | 9B                                                                                                                                   | 0.15                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 28.6                                                                                                                       |
| 2C                                                                                                                                   | 0.14                                                                                                                                                                  | 5C                                                                                                                                 | 1.32                                                                                                                              | 9C                                                                                                                                   | 0.17                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 47.6                                                                                                                       |
| 2D                                                                                                                                   | 0.17                                                                                                                                                                  | 5D                                                                                                                                 | 1.38                                                                                                                              | 9D                                                                                                                                   | 0.15                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 66.7                                                                                                                       |
| 2E                                                                                                                                   | 0.17                                                                                                                                                                  | 5E                                                                                                                                 | 1.43                                                                                                                              | 9E                                                                                                                                   | 0.27                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 85.7                                                                                                                       |
| 3A                                                                                                                                   | 2.02                                                                                                                                                                  | 6A                                                                                                                                 | 5.29                                                                                                                              | 10A                                                                                                                                  | 2.52                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 9.5                                                                                                                        |
| 3B                                                                                                                                   | 0.15                                                                                                                                                                  | 6B                                                                                                                                 | 4.08                                                                                                                              | 10B                                                                                                                                  | 0.26                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 28.6                                                                                                                       |
| 3C                                                                                                                                   | 0.19                                                                                                                                                                  | 6C                                                                                                                                 | 0.90                                                                                                                              | 10C                                                                                                                                  | 0.14                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 47.6                                                                                                                       |
| 3D                                                                                                                                   | 0.00                                                                                                                                                                  | 6D                                                                                                                                 | 1.10                                                                                                                              | 10D                                                                                                                                  | 0.14                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 66.7                                                                                                                       |
| 3E                                                                                                                                   | 0.13                                                                                                                                                                  | 6E                                                                                                                                 | 0.46                                                                                                                              | 10E                                                                                                                                  | 0.12                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                   | 85.7                                                                                                                       |
| Bridge:                                                                                                                              |                                                                                                                                                                       | 89-272                                                                                                                             |                                                                                                                                   | Bridge:                                                                                                                              |                                                                                                                                                               | 89-272                                                                                                                                           |                                                                                                                                   |                                                                                                                            |
| Dilugei                                                                                                                              |                                                                                                                                                                       | 0)-212                                                                                                                             |                                                                                                                                   | Driuge.                                                                                                                              |                                                                                                                                                               | 0)-272                                                                                                                                           |                                                                                                                                   |                                                                                                                            |
| _                                                                                                                                    | t:                                                                                                                                                                    | West 1/2 S                                                                                                                         | FO                                                                                                                                | Placement                                                                                                                            | t:                                                                                                                                                            | East 1/2 SI                                                                                                                                      | FO                                                                                                                                |                                                                                                                            |
| Placement                                                                                                                            |                                                                                                                                                                       |                                                                                                                                    | SFO                                                                                                                               | -                                                                                                                                    |                                                                                                                                                               |                                                                                                                                                  | FO                                                                                                                                |                                                                                                                            |
| Placement<br>Placement                                                                                                               | t Date:                                                                                                                                                               | West 1/2 S                                                                                                                         | FO                                                                                                                                | Placement                                                                                                                            | t Date:                                                                                                                                                       | East 1/2 SI                                                                                                                                      | FO                                                                                                                                |                                                                                                                            |
| Placement<br>Placement<br>Survey Da                                                                                                  | t Date:<br>nte:                                                                                                                                                       | West 1/2 S<br>04/04/02<br>05/16/03                                                                                                 |                                                                                                                                   | Placement<br>Placement<br>Survey Da                                                                                                  | t Date:<br>ate:                                                                                                                                               | East 1/2 SI<br>04/10/02<br>05/16/03                                                                                                              |                                                                                                                                   |                                                                                                                            |
| Placement<br>Placement<br>Survey Da<br>Off C                                                                                         | t Date:<br>hte:<br>rack                                                                                                                                               | West 1/2 S<br>04/04/02<br>05/16/03<br>On C                                                                                         | rack                                                                                                                              | Placement<br>Placement<br>Survey Da<br>Off C                                                                                         | t Date:<br>ate:<br>rack                                                                                                                                       | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ci                                                                                                     | rack                                                                                                                              | Depth                                                                                                                      |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                          | West 1/2 S<br>04/04/02<br>05/16/03<br>On Ca<br>Sample                                                                              | rack<br>kg/m <sup>3</sup>                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                  | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ca<br>Sample                                                                                           | rack<br>kg/m <sup>3</sup>                                                                                                         | Mean<br>Depth<br>(mm)                                                                                                      |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>1.31                                                                                                                  | West 1/2 S<br>04/04/02<br>05/16/03<br>On Ca<br>Sample<br>7A                                                                        | rack<br>kg/m <sup>3</sup><br>2.91                                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.05                                                                                                          | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ca<br>Sample<br>10A                                                                                    | rack<br>kg/m <sup>3</sup><br>1.88                                                                                                 | <b>Depth</b><br>(mm)<br>9.5                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B                                                                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00                                                                                                         | West 1/2 S<br>04/04/02<br>05/16/03<br>On Ca<br>Sample<br>7A<br>7B                                                                  | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>2.91<br>0.65                                                                            | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23                                                                                                  | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ca<br>Sample<br>10A<br>10B                                                                             | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>1.88<br>0.91                                                                            | Depth<br>(mm)<br>9.5<br>28.6                                                                                               |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C                                                             | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18                                                                                                 | West 1/2 S<br>04/04/02<br>05/16/03<br>On Ca<br>Sample<br>7A<br>7B<br>7C                                                            | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22                                                                                          | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Cr<br>Sample<br>10A<br>10B<br>10C                                                                      | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95                                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B                                                                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13                                                                                         | West 1/2 S<br>04/04/02<br>05/16/03<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D                                                      | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.38                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D                                                       | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00                                                                                  | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ca<br>Sample<br>10A<br>10B<br>10C<br>10D                                                               | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                        |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                 | t Date:<br>http://mackkg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13<br>0.14                                                                                       | West 1/2 S<br>04/04/02<br>05/16/03<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E                                                | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.38<br>0.24                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E                                                 | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15                                                                          | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ca<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E                                                        | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A                                           | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13<br>0.14<br>1.66                                                                          | West 1/2 S<br>04/04/02<br>05/16/03<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>8A                                          | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.38<br>0.24<br>3.01                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A                                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20                                                                  | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ca<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A                                                 | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                         |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A<br>2B                                     | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13<br>0.14<br>1.66<br>0.26                                                                 | West 1/2 S<br>04/04/02<br>05/16/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>8A<br>8B                                     | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.24<br>3.01<br>0.47                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20<br>0.18                                                          | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ca<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A<br>11B                                          | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08<br>0.57                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A<br>2B<br>2C                               | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13<br>0.14<br>1.66<br>0.26<br>0.00                                                         | West 1/2 S<br>04/04/02<br>05/16/03<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>8A<br>8B<br>8B<br>8C                        | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.38<br>0.24<br>3.01<br>0.47<br>0.18                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B<br>5C                               | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20<br>0.18<br>0.17                                                  | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Ca<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A<br>11B<br>11C                                   | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08<br>0.57<br>0.31                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A<br>2B<br>2C<br>2D                         | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13<br>0.14<br>1.66<br>0.26<br>0.00<br>0.00<br>0.00                                         | West 1/2 S<br>04/04/02<br>05/16/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>8A<br>8B<br>8C<br>8D                         | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.38<br>0.24<br>3.01<br>0.47<br>0.18<br>0.25                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B<br>5C<br>5D                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20<br>0.18<br>0.17<br>0.16                                          | East 1/2 SI<br>04/10/02<br>05/16/03<br>On C<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A<br>11B<br>11C<br>11D                             | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08<br>0.57<br>0.31<br>0.25                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                        |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A<br>2B<br>2C<br>2D<br>2E                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13<br>0.14<br>1.66<br>0.26<br>0.00<br>0.00<br>0.00<br>0.14                                 | West 1/2 S<br>04/04/02<br>05/16/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>8A<br>8B<br>8C<br>8D<br>8E       | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.24<br>3.01<br>0.47<br>0.18<br>0.25<br>0.19                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B<br>5C<br>5D<br>5C<br>5D<br>5E       | t Date:<br>http://www.mail.com/<br>track<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20<br>0.18<br>0.17<br>0.16<br>0.16                 | East 1/2 SI<br>04/10/02<br>05/16/03<br>On C<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A<br>11B<br>11C<br>11D<br>11E                      | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08<br>0.57<br>0.31<br>0.25<br>0.20                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A             | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13<br>0.14<br>1.66<br>0.26<br>0.00<br>0.00<br>0.14<br>3.99                                 | West 1/2 S<br>04/04/02<br>05/16/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A             | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.24<br>3.01<br>0.47<br>0.18<br>0.25<br>0.19<br>0.60                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B<br>5C<br>5D<br>5E<br>6A             | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20<br>0.18<br>0.17<br>0.16<br>0.16<br>0.16<br>2.19                  | East 1/2 SI<br>04/10/02<br>05/16/03<br>On C<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A<br>11B<br>11C<br>11D<br>11E<br>12A               | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08<br>0.57<br>0.31<br>0.25<br>0.20<br>0.41                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                         |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B       | t Date:<br>http://www.net.inter-<br>rack kg/m <sup>3</sup> 1.31 0.00 0.18 0.13 0.14 1.66 0.26 0.00 0.00 0.14 3.99 0.73                                                | West 1/2 S<br>04/04/02<br>05/16/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B       | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.24<br>3.01<br>0.47<br>0.18<br>0.25<br>0.19<br>0.60<br>0.52                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B<br>5C<br>5D<br>5E<br>6A<br>6B       | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20<br>0.18<br>0.17<br>0.16<br>0.16<br>0.16<br>2.19<br>0.20          | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Cr<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A<br>11B<br>11C<br>11D<br>11E<br>12A<br>12B       | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08<br>0.57<br>0.31<br>0.25<br>0.20<br>0.41<br>1.58         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>1.31<br>0.00<br>0.18<br>0.13<br>0.14<br>1.66<br>0.26<br>0.00<br>0.00<br>0.00<br>0.00<br>0.14<br>3.99<br>0.73<br>0.19 | West 1/2 S<br>04/04/02<br>05/16/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B<br>9C | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.38<br>0.24<br>3.01<br>0.47<br>0.18<br>0.25<br>0.19<br>0.60<br>0.52<br>0.47 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B<br>5C<br>5D<br>5E<br>6A<br>6B<br>6C | t Date:<br>http:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20<br>0.18<br>0.17<br>0.16<br>0.16<br>0.16<br>2.19<br>0.20<br>0.25 | East 1/2 SI<br>04/10/02<br>05/16/03<br>On C<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A<br>11B<br>11C<br>11D<br>11E<br>12A<br>12B<br>12C | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08<br>0.57<br>0.31<br>0.25<br>0.20<br>0.41<br>1.58<br>1.41 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>47.6 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B       | t Date:<br>http://www.net.inter-<br>rack kg/m <sup>3</sup> 1.31 0.00 0.18 0.13 0.14 1.66 0.26 0.00 0.00 0.14 3.99 0.73                                                | West 1/2 S<br>04/04/02<br>05/16/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B       | rack<br>kg/m <sup>3</sup><br>2.91<br>0.65<br>0.38<br>0.24<br>3.01<br>0.47<br>0.18<br>0.25<br>0.19<br>0.60<br>0.52                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B<br>5C<br>5D<br>5E<br>6A<br>6B       | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>2.05<br>0.23<br>0.22<br>0.00<br>0.15<br>2.20<br>0.18<br>0.17<br>0.16<br>0.16<br>0.16<br>2.19<br>0.20          | East 1/2 SI<br>04/10/02<br>05/16/03<br>On Cr<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A<br>11B<br>11C<br>11D<br>11E<br>12A<br>12B       | rack<br>kg/m <sup>3</sup><br>1.88<br>0.91<br>0.95<br>0.42<br>0.25<br>5.08<br>0.57<br>0.31<br>0.25<br>0.20<br>0.41<br>1.58         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                 |

| Bridge:                                                                                                                                       |                                                                                                                                                      | 103-56                                                                                                                                          |                                                                                                                                   | Bridge:                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103-56                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement                                                                                                                        | t Date:                                                                                                                                              | South 1/2 3<br>10/12/01                                                                                                                         | SFO                                                                                                                               | Placement<br>Placement                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | North 1/2 3<br>10/17/01                                                                                              | SFO                                                                                                                               |                                                                                                                                                                                                                                     |
| Survey Da                                                                                                                                     | ate:                                                                                                                                                 | 08/15/03                                                                                                                                        |                                                                                                                                   | Survey Da                                                                                                               | ite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/06/03                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                     |
| Off C                                                                                                                                         | rack                                                                                                                                                 | On C                                                                                                                                            | rack                                                                                                                              | Off C                                                                                                                   | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | On C                                                                                                                 | rack                                                                                                                              | Mean<br>Depth                                                                                                                                                                                                                       |
| Sample                                                                                                                                        | kg/m <sup>3</sup>                                                                                                                                    | Sample                                                                                                                                          | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                                  | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample                                                                                                               | kg/m <sup>3</sup>                                                                                                                 | (mm)                                                                                                                                                                                                                                |
| 8A                                                                                                                                            | 5.18                                                                                                                                                 | 7Å                                                                                                                                              | 3.69                                                                                                                              | 2A                                                                                                                      | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1A                                                                                                                   | 0.45                                                                                                                              | 9.5                                                                                                                                                                                                                                 |
| 8B                                                                                                                                            | 1.05                                                                                                                                                 | 7B                                                                                                                                              | 1.43                                                                                                                              | 2B                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1B                                                                                                                   | 1.35                                                                                                                              | 28.6                                                                                                                                                                                                                                |
| 8C                                                                                                                                            | 0.14                                                                                                                                                 | 7C                                                                                                                                              | 1.19                                                                                                                              | 2C                                                                                                                      | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1C                                                                                                                   | 1.10                                                                                                                              | 47.6                                                                                                                                                                                                                                |
| 8D                                                                                                                                            | 0.14                                                                                                                                                 | 7D                                                                                                                                              | 0.54                                                                                                                              | 2D                                                                                                                      | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1D                                                                                                                   | 0.99                                                                                                                              | 66.7                                                                                                                                                                                                                                |
| 8E                                                                                                                                            | 0.16                                                                                                                                                 | 7E                                                                                                                                              | 0.39                                                                                                                              | 2E                                                                                                                      | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1E                                                                                                                   | 1.04                                                                                                                              | 85.7                                                                                                                                                                                                                                |
| 10A                                                                                                                                           | 3.04                                                                                                                                                 | 9A                                                                                                                                              | 2.08                                                                                                                              | 4A                                                                                                                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3A                                                                                                                   | 0.27                                                                                                                              | 9.5                                                                                                                                                                                                                                 |
| 10B                                                                                                                                           | 0.35                                                                                                                                                 | 9B                                                                                                                                              | 1.01                                                                                                                              | 4B                                                                                                                      | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3B                                                                                                                   | 0.22                                                                                                                              | 28.6                                                                                                                                                                                                                                |
| 10C                                                                                                                                           | 0.17                                                                                                                                                 | 9C                                                                                                                                              | 0.71                                                                                                                              | 4C                                                                                                                      | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3C                                                                                                                   | 0.83                                                                                                                              | 47.6                                                                                                                                                                                                                                |
| 10D                                                                                                                                           | 0.12                                                                                                                                                 | 9D                                                                                                                                              | 0.52                                                                                                                              | 4D                                                                                                                      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3D                                                                                                                   | 0.35                                                                                                                              | 66.7                                                                                                                                                                                                                                |
| 10E                                                                                                                                           | 0.16                                                                                                                                                 | 9E                                                                                                                                              | 0.71                                                                                                                              | 4E                                                                                                                      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3E                                                                                                                   | 0.31                                                                                                                              | 85.7                                                                                                                                                                                                                                |
| 12A                                                                                                                                           | 0.77                                                                                                                                                 | 11A                                                                                                                                             | 2.54                                                                                                                              | 5A                                                                                                                      | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6A                                                                                                                   | 3.51                                                                                                                              | 9.5                                                                                                                                                                                                                                 |
| 12B                                                                                                                                           | 0.31                                                                                                                                                 | 11B                                                                                                                                             | 0.67                                                                                                                              | 5B                                                                                                                      | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6B                                                                                                                   | 0.28                                                                                                                              | 28.6                                                                                                                                                                                                                                |
| 12C                                                                                                                                           | 2.12                                                                                                                                                 | 11C                                                                                                                                             | 0.64                                                                                                                              | 5C                                                                                                                      | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6C                                                                                                                   | 2.53                                                                                                                              | 47.6                                                                                                                                                                                                                                |
| 12D                                                                                                                                           | 0.00                                                                                                                                                 | 11D                                                                                                                                             | 0.88                                                                                                                              | 5D                                                                                                                      | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6D                                                                                                                   | 2.02                                                                                                                              | 66.7                                                                                                                                                                                                                                |
| 12E                                                                                                                                           | 0.12                                                                                                                                                 | 11E                                                                                                                                             | 0.14                                                                                                                              | 5E                                                                                                                      | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6E                                                                                                                   | 1.82                                                                                                                              | 85.7                                                                                                                                                                                                                                |
| Bridge:                                                                                                                                       |                                                                                                                                                      | 23-85                                                                                                                                           |                                                                                                                                   | Bridge:                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23-85                                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                     |
|                                                                                                                                               |                                                                                                                                                      | -                                                                                                                                               |                                                                                                                                   | Diagoment                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | West 1/2 S                                                                                                           | SFO                                                                                                                               |                                                                                                                                                                                                                                     |
| Placement                                                                                                                                     | t:                                                                                                                                                   | East 1/2 SI                                                                                                                                     | 50                                                                                                                                | Placement                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 USL 1/2 L                                                                                                         | 10                                                                                                                                |                                                                                                                                                                                                                                     |
| Placement<br>Placement                                                                                                                        |                                                                                                                                                      | East 1/2 SI<br>03/29/96                                                                                                                         | FU                                                                                                                                | Placement                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04/03/96                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                     |
|                                                                                                                                               | t Date:                                                                                                                                              |                                                                                                                                                 | rU                                                                                                                                |                                                                                                                         | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                     |
| Placement                                                                                                                                     | t Date:                                                                                                                                              | 03/29/96                                                                                                                                        | 10                                                                                                                                | Placement                                                                                                               | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04/03/96                                                                                                             |                                                                                                                                   | Mean                                                                                                                                                                                                                                |
| Placement                                                                                                                                     | t Date:<br>ate:                                                                                                                                      | 03/29/96                                                                                                                                        |                                                                                                                                   | Placement                                                                                                               | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04/03/96                                                                                                             |                                                                                                                                   | Mean<br>Depth                                                                                                                                                                                                                       |
| Placement<br>Survey Da                                                                                                                        | t Date:<br>ate:                                                                                                                                      | 03/29/96<br>07/31/02                                                                                                                            |                                                                                                                                   | Placement<br>Survey Da                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04/03/96<br>07/31/02                                                                                                 |                                                                                                                                   |                                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                               | t Date:<br>ate:<br>rack                                                                                                                              | 03/29/96<br>07/31/02<br>On C                                                                                                                    | rack                                                                                                                              | Placement<br>Survey Da<br>Off Ci                                                                                        | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04/03/96<br>07/31/02<br>On C                                                                                         | rack                                                                                                                              | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30                                                                                         | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B                                                                                              | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32                                                                                         | Placement<br>Survey Da<br>Off Ca<br>Sample<br>2A<br>2B                                                                  | <b>t</b> Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>2.96<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B                                                                   | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.14<br>3.55                                                                            | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17                                                                                 | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                                        | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92                                                                                 | Placement<br>Survey Da<br>Off Ca<br>Sample<br>2A<br>2B<br>2C                                                            | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>2.96<br>0.27<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A                                                                         | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73                                                                                 | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30                                                                                         | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B                                                                                              | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32                                                                                         | Placement<br>Survey Da<br>Off Ca<br>Sample<br>2A<br>2B                                                                  | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>2.96<br>0.27<br>0.00<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B                                                                   | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.14<br>3.55                                                                            | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17                                                                                 | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                                        | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92                                                                                 | Placement<br>Survey Da<br>Off Ca<br>Sample<br>2A<br>2B<br>2C                                                            | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>2.96<br>0.27<br>0.00<br>0.13<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C                                                             | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                                | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35                                                                         | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                                          | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | <b>bate:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b> | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43                                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35<br>0.31<br>4.71<br>0.79                                                 | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                                                | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92<br>2.80                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>2.96<br>0.27<br>0.00<br>0.13<br>0.00<br>3.57<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43<br>2.86                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                                                                                                                                 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                  | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35<br>0.31<br>4.71<br>0.79<br>0.18                                         | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                              | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92<br>2.80<br>2.58                                         | Placement<br>Survey Da<br>Off Ca<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                              | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>2.96<br>0.27<br>0.00<br>0.13<br>0.00<br>3.57<br>0.49<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43<br>2.86<br>2.75                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35<br>0.31<br>4.71<br>0.79<br>0.18<br>0.00                                 | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                        | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92<br>2.80<br>2.58<br>2.51                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>2.96<br>0.27<br>0.00<br>0.13<br>0.00<br>3.57<br>0.49<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43<br>2.86<br>2.75<br>2.08                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                                    | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35<br>0.31<br>4.71<br>0.79<br>0.18<br>0.00<br>0.00                         | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                                  | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92<br>2.80<br>2.58<br>2.51<br>1.88                         | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>2.96<br>0.27<br>0.00<br>0.13<br>0.00<br>3.57<br>0.49<br>0.00<br>0.00<br>0.00<br>0.00<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43<br>2.86<br>2.75<br>2.08<br>1.12                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35<br>0.31<br>4.71<br>0.79<br>0.18<br>0.00<br>0.00<br>3.66                 | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A               | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92<br>2.80<br>2.58<br>2.51<br>1.88<br>5.01                 | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>2.96<br>0.27<br>0.00<br>0.13<br>0.00<br>3.57<br>0.49<br>0.00<br>0.00<br>0.11<br>3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A             | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43<br>2.86<br>2.75<br>2.08<br>1.12<br>7.14                 | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35<br>0.31<br>4.71<br>0.79<br>0.18<br>0.00<br>0.00<br>3.66<br>0.54         | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B        | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92<br>2.80<br>2.58<br>2.51<br>1.88<br>5.01<br>2.81         | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | <b>a</b> Date:<br>htte:<br><b>b b c c c c c c c c c c</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43<br>2.86<br>2.75<br>2.08<br>1.12<br>7.14<br>2.83         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                                                                                          |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35<br>0.31<br>4.71<br>0.79<br>0.18<br>0.00<br>0.00<br>3.66<br>0.54<br>0.09 | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92<br>2.80<br>2.58<br>2.51<br>1.88<br>5.01<br>2.81<br>2.69 | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>2.96<br>0.27<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.49<br>0.00<br>0.00<br>0.00<br>0.11<br>3.96<br>1.62<br>0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43<br>2.86<br>2.75<br>2.08<br>1.12<br>7.14<br>2.83<br>2.24 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                  |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.71<br>1.30<br>0.17<br>0.35<br>0.31<br>4.71<br>0.79<br>0.18<br>0.00<br>0.00<br>3.66<br>0.54         | 03/29/96<br>07/31/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B        | rack<br>kg/m <sup>3</sup><br>6.93<br>3.32<br>2.92<br>2.00<br>0.49<br>4.92<br>2.80<br>2.58<br>2.51<br>1.88<br>5.01<br>2.81         | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>2.96<br>0.27<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.13<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.12<br>0.00<br>0.12<br>0.00<br>0.13<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>0.00<br>0.11<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04/03/96<br>07/31/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>6.14<br>3.55<br>3.73<br>2.91<br>2.01<br>4.43<br>2.86<br>2.75<br>2.08<br>1.12<br>7.14<br>2.83         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                                                                                          |

| Bridge:                                                                                                 |                                                                                                                                                              | 46-302                                                                                                         |                                                                                                                           | Bridge:                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46-302                                                                                                                |                                                                                                                                                                                           |                                                                                                    |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Placement                                                                                               |                                                                                                                                                              | Lt. 1/2 SF0                                                                                                    | С                                                                                                                         | Placement                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rt. 1/2 SF                                                                                                            | С                                                                                                                                                                                         |                                                                                                    |
| Placement                                                                                               |                                                                                                                                                              | 04/09/96                                                                                                       |                                                                                                                           | Placement                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04/11/96                                                                                                              |                                                                                                                                                                                           |                                                                                                    |
| Survey Da                                                                                               | ate:                                                                                                                                                         | 07/11/02                                                                                                       |                                                                                                                           | Survey Da                                                                                                                                                                                                                         | ite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07/11/02                                                                                                              |                                                                                                                                                                                           |                                                                                                    |
| Off C                                                                                                   | rack                                                                                                                                                         | On C                                                                                                           | rack                                                                                                                      | Off C                                                                                                                                                                                                                             | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | On C                                                                                                                  | rack                                                                                                                                                                                      | Mean<br>Depth                                                                                      |
| Sample                                                                                                  | kg/m <sup>3</sup>                                                                                                                                            | Sample                                                                                                         | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                                                                                                                                                            | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample                                                                                                                | kg/m <sup>3</sup>                                                                                                                                                                         | (mm)                                                                                               |
| 8A                                                                                                      | 0.93                                                                                                                                                         | 7A                                                                                                             | 4.64                                                                                                                      | 2A                                                                                                                                                                                                                                | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1A                                                                                                                    | 2.44                                                                                                                                                                                      | 9.5                                                                                                |
| 8B                                                                                                      | 0.24                                                                                                                                                         | 7B                                                                                                             | 2.18                                                                                                                      | 2B                                                                                                                                                                                                                                | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1B                                                                                                                    | 1.83                                                                                                                                                                                      | 28.6                                                                                               |
| 8C                                                                                                      | 0.08                                                                                                                                                         | 7C                                                                                                             | 2.29                                                                                                                      | 2C                                                                                                                                                                                                                                | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1C                                                                                                                    | 5.90                                                                                                                                                                                      | 47.6                                                                                               |
| 8D                                                                                                      | 0.00                                                                                                                                                         | 7D                                                                                                             | 2.15                                                                                                                      | 2D                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1D                                                                                                                    | 2.74                                                                                                                                                                                      | 66.7                                                                                               |
| 8E                                                                                                      | 0.00                                                                                                                                                         | 7E                                                                                                             | 1.56                                                                                                                      | 2E                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1E                                                                                                                    | 3.00                                                                                                                                                                                      | 85.7                                                                                               |
| 10A                                                                                                     | 1.31                                                                                                                                                         | 9A                                                                                                             | 2.02                                                                                                                      | 4A                                                                                                                                                                                                                                | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3A                                                                                                                    | 2.12                                                                                                                                                                                      | 9.5                                                                                                |
| 10B                                                                                                     | 0.16                                                                                                                                                         | 9B                                                                                                             | 1.77                                                                                                                      | 4B                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3B                                                                                                                    | 2.09                                                                                                                                                                                      | 28.6                                                                                               |
| 10C                                                                                                     | 0.00                                                                                                                                                         | 9C                                                                                                             | 1.93                                                                                                                      | 4C                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3C                                                                                                                    | 2.99                                                                                                                                                                                      | 47.6                                                                                               |
| 10D                                                                                                     | 0.00                                                                                                                                                         | 9D                                                                                                             | 2.08                                                                                                                      | 4D                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3D                                                                                                                    | 3.18                                                                                                                                                                                      | 66.7                                                                                               |
| 10E                                                                                                     | 0.00                                                                                                                                                         | 9E                                                                                                             | 1.82                                                                                                                      | 4E                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3E                                                                                                                    | 1.03                                                                                                                                                                                      | 85.7                                                                                               |
| 12A                                                                                                     | 1.04                                                                                                                                                         | 11A                                                                                                            | 2.56                                                                                                                      | 5A                                                                                                                                                                                                                                | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5A                                                                                                                    | 2.94                                                                                                                                                                                      | 9.5                                                                                                |
| 12B                                                                                                     | 0.28                                                                                                                                                         | 11B                                                                                                            | 2.00                                                                                                                      | 5B                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5B                                                                                                                    | 0.96                                                                                                                                                                                      | 28.6                                                                                               |
| 12C                                                                                                     | 0.00                                                                                                                                                         | 11C                                                                                                            | 2.17                                                                                                                      | 5C                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5C                                                                                                                    | 3.05                                                                                                                                                                                      | 47.6                                                                                               |
| 12D                                                                                                     | 0.00                                                                                                                                                         | 11D                                                                                                            | 2.48                                                                                                                      | 5D                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5D                                                                                                                    | 4.61                                                                                                                                                                                      | 66.7                                                                                               |
| 12E                                                                                                     | 0.00                                                                                                                                                         | 11E                                                                                                            | 2.31                                                                                                                      | 5E                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5E                                                                                                                    | 2.20                                                                                                                                                                                      | 85.7                                                                                               |
| Bridge:                                                                                                 |                                                                                                                                                              | 46-309                                                                                                         |                                                                                                                           | Bridge:                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46-309                                                                                                                |                                                                                                                                                                                           |                                                                                                    |
|                                                                                                         |                                                                                                                                                              |                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                           |                                                                                                    |
| Placement                                                                                               | t:                                                                                                                                                           | Rt. 1/2 SF                                                                                                     | 0                                                                                                                         | Placement                                                                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lt. 1/2 SF0                                                                                                           | )                                                                                                                                                                                         |                                                                                                    |
|                                                                                                         |                                                                                                                                                              | Rt. 1/2 SF0<br>10/20/95                                                                                        | 0                                                                                                                         | Placement<br>Placement                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lt. 1/2 SF0<br>10/24/95                                                                                               | )                                                                                                                                                                                         |                                                                                                    |
| Placement                                                                                               | t Date:                                                                                                                                                      |                                                                                                                | 0                                                                                                                         |                                                                                                                                                                                                                                   | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       | )                                                                                                                                                                                         |                                                                                                    |
| Placement<br>Placement<br>Survey Da                                                                     | t Date:<br>ate:                                                                                                                                              | 10/20/95<br>07/10/02                                                                                           |                                                                                                                           | Placement<br>Survey Da                                                                                                                                                                                                            | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/24/95<br>07/10/02                                                                                                  |                                                                                                                                                                                           |                                                                                                    |
| Placement                                                                                               | t Date:<br>ate:<br>rack                                                                                                                                      | 10/20/95                                                                                                       | rack                                                                                                                      | Placement                                                                                                                                                                                                                         | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/24/95                                                                                                              | rack                                                                                                                                                                                      |                                                                                                    |
| Placement<br>Survey Da                                                                                  | t Date:<br>ate:                                                                                                                                              | 10/20/95<br>07/10/02                                                                                           |                                                                                                                           | Placement<br>Survey Da                                                                                                                                                                                                            | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/24/95<br>07/10/02                                                                                                  |                                                                                                                                                                                           |                                                                                                    |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90                                                                                                         | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A                                                                   | rack<br>kg/m <sup>3</sup><br>5.56                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                                                                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A                                                                          | rack<br>kg/m <sup>3</sup><br>7.18                                                                                                                                                         | <b>Depth</b><br>(mm)<br>9.5                                                                        |
| Placement<br>Survey Da<br>Off C<br>Sample                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                 | 10/20/95<br>07/10/02<br>On Ca<br>Sample                                                                        | rack<br>kg/m <sup>3</sup>                                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample                                                                                                                                                                                         | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10/24/95<br>07/10/02<br>On Ca<br>Sample                                                                               | rack<br>kg/m <sup>3</sup>                                                                                                                                                                 | Depth<br>(mm)                                                                                      |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90                                                                                                         | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A                                                                   | rack<br>kg/m <sup>3</sup><br>5.56                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                                                                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A                                                                          | rack<br>kg/m <sup>3</sup><br>7.18                                                                                                                                                         | <b>Depth</b><br>(mm)<br>9.5                                                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79                                                                                                 | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A<br>1B                                                             | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.56<br>2.63                                                                    | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                                                                                                             | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.73<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/24/95<br>07/10/02<br>On Ca<br>Sample<br>7A<br>7B                                                                   | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.18<br>2.98                                                                                                                                    | Depth<br>(mm)<br>9.5<br>28.6                                                                       |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17                                                                                         | 10/20/95<br>07/10/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C                                                      | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                                                                                                       | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>6.73<br>2.00<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/24/95<br>07/10/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C                                                             | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92                                                                                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00                                                                                 | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                     | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8C<br>8D<br>8E<br>10A                                                                                                                                        | <b>bate:</b><br>track<br>kg/m <sup>3</sup><br>6.73<br>2.00<br>0.21<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92<br>2.46<br>2.32<br>5.37                                                                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00<br>0.00<br>0.00                                                                 | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                           | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08<br>2.19                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                                                                                                           | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.73<br>2.00<br>0.21<br>0.08<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/24/95<br>07/10/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E                                                 | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92<br>2.46<br>2.32                                                                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00<br>0.00<br>0.00<br>6.58                                                         | 10/20/95<br>07/10/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                        | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08<br>2.19<br>6.09                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8C<br>8D<br>8E<br>10A                                                                                                                                        | <b>bar Date:</b><br><b>track</b><br><b>kg/m<sup>3</sup></b><br>6.73<br>2.00<br>0.21<br>0.08<br>0.00<br>7.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92<br>2.46<br>2.32<br>5.37                                                                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00<br>0.00<br>6.58<br>1.17<br>0.00<br>0.00                                         | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                   | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08<br>2.19<br>6.09<br>2.74                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                                                                                                             | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>6.73<br>2.00<br>0.21<br>0.08<br>0.00<br>7.47<br>3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D              | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92<br>2.46<br>2.32<br>5.37<br>2.16                                                                                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00<br>0.00<br>6.58<br>1.17<br>0.00                                                 | 10/20/95<br>07/10/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                        | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08<br>2.19<br>6.09<br>2.74<br>2.39                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                                                                                                      | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.73<br>2.00<br>0.21<br>0.08<br>0.00<br>7.47<br>3.36<br>0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                    | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92<br>2.46<br>2.32<br>5.37<br>2.16<br>2.22                                                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00<br>0.00<br>6.58<br>1.17<br>0.00<br>0.00                                         | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                   | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08<br>2.19<br>6.09<br>2.74<br>2.39<br>2.36                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                                                                                                               | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.73<br>2.00<br>0.21<br>0.08<br>0.00<br>7.47<br>3.36<br>0.57<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D              | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92<br>2.46<br>2.32<br>5.37<br>2.16<br>2.22<br>1.55                                                                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00<br>0.00<br>6.58<br>1.17<br>0.00<br>0.00<br>0.00<br>0.00                         | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E             | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08<br>2.19<br>6.09<br>2.74<br>2.39<br>2.36<br>1.89                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C                                                                                                                        | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.73<br>2.00<br>0.21<br>0.08<br>0.00<br>7.47<br>3.36<br>0.57<br>0.15<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E        | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92<br>2.46<br>2.32<br>5.37<br>2.16<br>2.22<br>1.55<br>0.29                                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7        |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00<br>0.00<br>6.58<br>1.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>5.13         | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A       | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08<br>2.19<br>6.09<br>2.74<br>2.39<br>2.36<br>1.89<br>5.57         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A                                                                                                   | <b>bate:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b> | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A | rack<br>kg/m <sup>3</sup><br>7.18<br>2.98<br>2.92<br>2.46<br>2.32<br>5.37<br>2.16<br>2.22<br>1.55<br>0.29<br>4.22                                                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5 |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.90<br>1.79<br>0.17<br>0.00<br>0.00<br>6.58<br>1.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>5.13<br>1.39 | 10/20/95<br>07/10/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B | rack<br>kg/m <sup>3</sup><br>5.56<br>2.63<br>2.16<br>2.08<br>2.19<br>6.09<br>2.74<br>2.39<br>2.36<br>1.89<br>5.57<br>2.86 | Placement           Survey Da           Off C           Sample           8A           8B           8C           8D           8E           10A           10B           10C           10D           10E           12A           12B | <b>Tack</b><br><b>kg/m<sup>3</sup></b><br>6.73<br>2.00<br>0.21<br>0.08<br>0.00<br>7.47<br>3.36<br>0.57<br>0.15<br>0.12<br>8.71<br>3.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/24/95<br>07/10/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B      | kg/m³           7.18           2.98           2.92           2.46           2.32           5.37           2.16           2.22           1.55           0.29           4.22           2.25 | 9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6          |

| Table D.1 (con't) | – Chloride Concentration I | Data |
|-------------------|----------------------------|------|
|-------------------|----------------------------|------|

| Bridge:                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46-317                                                                                                         |                                                                                                                   | Bridge:                                                                                                |                                                                                                                                   | 46-317                                                                                                                 |                                                                                                                   |                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement                                                                                            | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | North 12 f<br>06/28/96                                                                                         | t                                                                                                                 | Placement<br>Placement                                                                                 | Date:                                                                                                                             | South 16 f<br>07/01/96                                                                                                 | t                                                                                                                 |                                                                                                            |
| Survey Da                                                                                                         | ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07/15/02                                                                                                       |                                                                                                                   | Survey Da                                                                                              | ite:                                                                                                                              | 07/15/02                                                                                                               |                                                                                                                   |                                                                                                            |
| Off C                                                                                                             | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>On C</b>                                                                                                    | rack                                                                                                              | Off C                                                                                                  | rack                                                                                                                              | On C                                                                                                                   | rack                                                                                                              | Mean<br>Depth                                                                                              |
| Sample                                                                                                            | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                         | kg/m <sup>3</sup>                                                                                                 | Sample                                                                                                 | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                                 | kg/m <sup>3</sup>                                                                                                 | (mm)                                                                                                       |
| 8A                                                                                                                | 2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7A                                                                                                             | 3.98                                                                                                              | 2A                                                                                                     | 4.52                                                                                                                              | 1A                                                                                                                     | 4.86                                                                                                              | 9.5                                                                                                        |
| 8B                                                                                                                | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7B                                                                                                             | 2.58                                                                                                              | 2B                                                                                                     | 0.17                                                                                                                              | 1B                                                                                                                     | 3.04                                                                                                              | 28.6                                                                                                       |
| 8C                                                                                                                | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7C                                                                                                             | 2.61                                                                                                              | 2C                                                                                                     | 0.00                                                                                                                              | 1C                                                                                                                     | 1.96                                                                                                              | 47.6                                                                                                       |
| 8D                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7D                                                                                                             | 2.19                                                                                                              | 2D                                                                                                     | 0.00                                                                                                                              | 1D                                                                                                                     | 1.08                                                                                                              | 66.7                                                                                                       |
| 8E                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7E                                                                                                             | 1.69                                                                                                              | 2E                                                                                                     | 0.00                                                                                                                              | 1E                                                                                                                     | 0.46                                                                                                              | 85.7                                                                                                       |
| 10A                                                                                                               | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9A                                                                                                             | 5.44                                                                                                              | 4A                                                                                                     | 4.05                                                                                                                              | 3A                                                                                                                     | 4.75                                                                                                              | 9.5                                                                                                        |
| 10B                                                                                                               | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9B                                                                                                             | 3.41                                                                                                              | 4B                                                                                                     | 0.75                                                                                                                              | 3B                                                                                                                     | 2.87                                                                                                              | 28.6                                                                                                       |
| 10C                                                                                                               | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9C                                                                                                             | 2.81                                                                                                              | 4C                                                                                                     | 0.11                                                                                                                              | 3C                                                                                                                     | 2.99                                                                                                              | 47.6                                                                                                       |
| 10D                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9D                                                                                                             | 2.82                                                                                                              | 4D                                                                                                     | 0.00                                                                                                                              | 3D                                                                                                                     | 2.33                                                                                                              | 66.7                                                                                                       |
| 10E                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E                                                                                                             | 2.29                                                                                                              | 4E                                                                                                     | 0.00                                                                                                                              | 3E                                                                                                                     | 2.28                                                                                                              | 85.7                                                                                                       |
| 12A                                                                                                               | 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11A                                                                                                            | 4.40                                                                                                              | 5A                                                                                                     | 3.23                                                                                                                              | 5A                                                                                                                     | 4.94                                                                                                              | 9.5                                                                                                        |
| 12B                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11B                                                                                                            | 2.96                                                                                                              | 5B                                                                                                     | 0.24                                                                                                                              | 5B                                                                                                                     | 2.98                                                                                                              | 28.6                                                                                                       |
| 12C                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11C                                                                                                            | 2.77                                                                                                              | 5C                                                                                                     | 0.00                                                                                                                              | 5C                                                                                                                     | 3.61                                                                                                              | 47.6                                                                                                       |
| 12D                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11D                                                                                                            | 1.35                                                                                                              | 5D                                                                                                     | 0.00                                                                                                                              | 5D                                                                                                                     | 2.75                                                                                                              | 66.7                                                                                                       |
| 12E                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11E                                                                                                            | 0.54                                                                                                              | 5E                                                                                                     | 0.00                                                                                                                              | 5E                                                                                                                     | 2.99                                                                                                              | 85.7                                                                                                       |
| Bridge:                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81-50                                                                                                          |                                                                                                                   | Bridge:                                                                                                |                                                                                                                                   | 81-50                                                                                                                  |                                                                                                                   |                                                                                                            |
| DI                                                                                                                | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SFO Rt. U                                                                                                      | nit 2                                                                                                             | Placement                                                                                              | :                                                                                                                                 | SFO Lt. U                                                                                                              | nit 2                                                                                                             |                                                                                                            |
| Placement                                                                                                         | l:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51 0 1                                                                                                         |                                                                                                                   |                                                                                                        |                                                                                                                                   |                                                                                                                        |                                                                                                                   |                                                                                                            |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/21/95                                                                                                       |                                                                                                                   | Placement                                                                                              | Date:                                                                                                                             | 11/30/95                                                                                                               |                                                                                                                   |                                                                                                            |
| Placement                                                                                                         | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                                                   | Placement<br>Survey Da                                                                                 |                                                                                                                                   | 11/30/95<br>08/19/02                                                                                                   |                                                                                                                   |                                                                                                            |
| Placement<br>Survey Da                                                                                            | t Date:<br>ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/21/95<br>08/19/02                                                                                           |                                                                                                                   | Survey Da                                                                                              | ite:                                                                                                                              | 08/19/02                                                                                                               |                                                                                                                   | Mean                                                                                                       |
| Placement<br>Placement<br>Survey Da<br>Off C                                                                      | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/21/95                                                                                                       |                                                                                                                   |                                                                                                        | ite:<br>rack                                                                                                                      |                                                                                                                        |                                                                                                                   | Mean<br>Depth                                                                                              |
| Placement<br>Survey Da                                                                                            | t Date:<br>ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/21/95<br>08/19/02                                                                                           | rack<br>kg/m <sup>3</sup>                                                                                         | Survey Da                                                                                              | ite:                                                                                                                              | 08/19/02                                                                                                               | rack<br>kg/m <sup>3</sup>                                                                                         |                                                                                                            |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A                                                                   | <b>kg/m<sup>3</sup></b><br>7.39                                                                                   | Survey Da<br>Off C<br>Sample<br>8A                                                                     | nte:<br>rack<br>kg/m <sup>3</sup><br>3.20                                                                                         | 08/19/02<br>On C<br>Sample<br>7A                                                                                       | <b>kg/m<sup>3</sup></b><br>4.76                                                                                   | <b>Depth</b><br>(mm)<br>9.5                                                                                |
| Placement<br>Survey Da<br>Off C<br>Sample                                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/21/95<br>08/19/02<br>On Ca<br>Sample                                                                        | kg/m <sup>3</sup>                                                                                                 | Survey Da<br>Off C<br>Sample                                                                           | nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                 | 08/19/02<br>On C<br>Sample                                                                                             | kg/m <sup>3</sup>                                                                                                 | Depth<br>(mm)                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A                                                                   | <b>kg/m<sup>3</sup></b><br>7.39                                                                                   | Survey Da<br>Off C<br>Sample<br>8A                                                                     | nte:<br>rack<br>kg/m <sup>3</sup><br>3.20                                                                                         | 08/19/02<br>On C<br>Sample<br>7A                                                                                       | <b>kg/m<sup>3</sup></b><br>4.76                                                                                   | <b>Depth</b><br>(mm)<br>9.5                                                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/21/95<br>08/19/02<br>On Ca<br>Sample<br>1A<br>1B                                                            | <b>kg/m<sup>3</sup></b><br>7.39<br>2.67                                                                           | Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                               | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20                                                                                         | 08/19/02<br>On C<br>Sample<br>7A<br>7B                                                                                 | <b>kg/m<sup>3</sup></b><br>4.76<br>2.40                                                                           | Depth<br>(mm)<br>9.5<br>28.6                                                                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                       | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/21/95<br>08/19/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C                                                      | <b>kg/m<sup>3</sup></b><br>7.39<br>2.67<br>1.64                                                                   | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                         | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00                                                                                 | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                           | <b>kg/m<sup>3</sup></b><br>4.76<br>2.40<br>3.61                                                                   | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                     | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00<br>0.11<br>0.00<br>6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                     | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54                                                 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A                                       | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00                                                                         | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A                                            | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                               | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00<br>0.11<br>0.00<br>6.85<br>1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                               | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54<br>2.83                                         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B                                 | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00<br>0.00<br>4.07<br>0.16                                                 | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>10A<br>10B                                                 | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77<br>2.86                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00<br>0.11<br>0.00<br>6.85<br>1.72<br>0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/21/95<br>08/19/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                        | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54<br>2.83<br>3.46                                 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A                                       | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00<br>0.00<br>0.00<br>4.07<br>0.16<br>0.00                                 | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A<br>10B<br>10C                              | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77<br>2.86<br>4.01                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>6.85<br>1.72<br>0.46<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                   | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54<br>2.83<br>3.46<br>3.59                         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B                                 | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00<br>0.00<br>0.00<br>4.07<br>0.16<br>0.00<br>0.00                         | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A<br>10B<br>10C<br>10D                       | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77<br>2.86<br>4.01<br>3.87                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00<br>0.11<br>0.00<br>6.85<br>1.72<br>0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/21/95<br>08/19/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                        | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54<br>2.83<br>3.46                                 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B<br>9C                           | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00<br>0.00<br>0.00<br>4.07<br>0.16<br>0.00                                 | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A<br>10B<br>10C                              | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77<br>2.86<br>4.01                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00<br>0.11<br>0.00<br>0.11<br>0.00<br>6.85<br>1.72<br>0.46<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                   | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54<br>2.83<br>3.46<br>3.59                         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B<br>9C<br>9D                     | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00<br>0.00<br>0.00<br>4.07<br>0.16<br>0.00<br>0.00                         | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A<br>10B<br>10C<br>10D                       | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77<br>2.86<br>4.01<br>3.87                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00<br>0.11<br>0.00<br>6.85<br>1.72<br>0.46<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E             | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54<br>2.83<br>3.46<br>3.59<br>2.36                 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B<br>9C<br>9D<br>9E               | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00<br>0.00<br>4.07<br>0.16<br>0.00<br>0.00<br>0.00<br>0.00                 | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>10A<br>10B<br>10C<br>10D<br>10E                            | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77<br>2.86<br>4.01<br>3.87<br>3.23                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.49<br>0.32<br>0.00<br>0.11<br>0.00<br>6.85<br>1.72<br>0.46<br>0.00<br>0.00<br>6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A       | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54<br>2.83<br>3.46<br>3.59<br>2.36<br>7.06         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A        | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00<br>0.00<br>4.07<br>0.16<br>0.00<br>0.00<br>0.00<br>0.00<br>8.71         | 08/19/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A         | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77<br>2.86<br>4.01<br>3.87<br>3.23<br>8.85         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B | t Date:<br>http://docs.org/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/scien | 11/21/95<br>08/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B | kg/m <sup>3</sup><br>7.39<br>2.67<br>1.64<br>0.34<br>0.00<br>6.54<br>2.83<br>3.46<br>3.59<br>2.36<br>7.06<br>3.22 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B | rack<br>kg/m <sup>3</sup><br>3.20<br>0.20<br>0.00<br>0.00<br>0.00<br>4.07<br>0.16<br>0.00<br>0.00<br>0.00<br>0.00<br>8.71<br>1.43 | 08/19/02<br>Con C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B | kg/m <sup>3</sup><br>4.76<br>2.40<br>3.61<br>3.35<br>2.18<br>5.77<br>2.86<br>4.01<br>3.87<br>3.23<br>8.85<br>4.05 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6 |

| Bridge:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87-453                                                                                                                             |                                                                                                                                   | Bridge:                                                                                                                                                    |                                                                                                                                                            | 87-453                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                  | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | North 22 ff<br>06/30/97<br>08/15/02                                                                                                | t                                                                                                                                 | Placement<br>Placement<br>Survey Da                                                                                                                        | Date:                                                                                                                                                      | South 18 f<br>07/03/97<br>08/15/02                                                                                                                            | t                                                                                                                            |                                                                                                                                                                                                                                                                                                              |
| Off C                                                                                                                                | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | On C                                                                                                                               | rack                                                                                                                              | Off C                                                                                                                                                      | raek                                                                                                                                                       | On C                                                                                                                                                          | rack                                                                                                                         | Mean<br>Depth                                                                                                                                                                                                                                                                                                |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    | kg/m <sup>3</sup>                                                                                                                 |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                               | kg/m <sup>3</sup>                                                                                                            | -                                                                                                                                                                                                                                                                                                            |
| Sample<br>2A                                                                                                                         | <b>kg/m<sup>3</sup></b><br>6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample<br>1A                                                                                                                       | 5.37                                                                                                                              | Sample<br>8A                                                                                                                                               | kg/m <sup>3</sup><br>8.32                                                                                                                                  | Sample<br>7A                                                                                                                                                  | 10.43                                                                                                                        | (mm)<br>9.5                                                                                                                                                                                                                                                                                                  |
| 2A<br>2B                                                                                                                             | 0.42<br>1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1A<br>1B                                                                                                                           | 2.80                                                                                                                              | 8A<br>8B                                                                                                                                                   | 8.52<br>3.72                                                                                                                                               | 7A<br>7B                                                                                                                                                      | 4.33                                                                                                                         | 9.3<br>28.6                                                                                                                                                                                                                                                                                                  |
| 2D<br>2C                                                                                                                             | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1D<br>1C                                                                                                                           | 1.84                                                                                                                              | 8D<br>8C                                                                                                                                                   | 0.77                                                                                                                                                       | 7D<br>7C                                                                                                                                                      | 3.25                                                                                                                         | 47.6                                                                                                                                                                                                                                                                                                         |
| 20<br>2D                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>1D                                                                                                                           | 1.85                                                                                                                              | 80<br>8D                                                                                                                                                   | 0.00                                                                                                                                                       | 7D                                                                                                                                                            | 2.84                                                                                                                         | 66.7                                                                                                                                                                                                                                                                                                         |
| 2E                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1E                                                                                                                                 | 1.84                                                                                                                              | 8E                                                                                                                                                         | 0.00                                                                                                                                                       | 7E                                                                                                                                                            | 2.51                                                                                                                         | 85.7                                                                                                                                                                                                                                                                                                         |
| 4A                                                                                                                                   | 7.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3A                                                                                                                                 | 6.47                                                                                                                              | 10A                                                                                                                                                        | 11.04                                                                                                                                                      | 9A                                                                                                                                                            | 9.52                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                          |
| 4B                                                                                                                                   | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3B                                                                                                                                 | 2.97                                                                                                                              | 10B                                                                                                                                                        | 7.23                                                                                                                                                       | 9B                                                                                                                                                            | 4.80                                                                                                                         | 28.6                                                                                                                                                                                                                                                                                                         |
| 4C                                                                                                                                   | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3C                                                                                                                                 | 2.96                                                                                                                              | 10C                                                                                                                                                        | 2.84                                                                                                                                                       | 9C                                                                                                                                                            | 3.11                                                                                                                         | 47.6                                                                                                                                                                                                                                                                                                         |
| 4D                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3D                                                                                                                                 | 2.33                                                                                                                              | 10D                                                                                                                                                        | 0.26                                                                                                                                                       | 9D                                                                                                                                                            | 242.00                                                                                                                       | 66.7                                                                                                                                                                                                                                                                                                         |
| 4E                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3E                                                                                                                                 | 1.98                                                                                                                              | 10E                                                                                                                                                        | 0.12                                                                                                                                                       | 9E                                                                                                                                                            | 1.34                                                                                                                         | 85.7                                                                                                                                                                                                                                                                                                         |
| 6A                                                                                                                                   | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5A                                                                                                                                 | 6.48                                                                                                                              | 12A                                                                                                                                                        | 9.36                                                                                                                                                       | 11A                                                                                                                                                           | 8.40                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                          |
| 6B                                                                                                                                   | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5B                                                                                                                                 | 3.80                                                                                                                              | 12B                                                                                                                                                        | 4.23                                                                                                                                                       | 11B                                                                                                                                                           | 4.35                                                                                                                         | 28.6                                                                                                                                                                                                                                                                                                         |
| 6C                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5C                                                                                                                                 | LIP                                                                                                                               | 12C                                                                                                                                                        | 1.54                                                                                                                                                       | 11C                                                                                                                                                           | 3.41                                                                                                                         | 47.6                                                                                                                                                                                                                                                                                                         |
| 6D                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5D                                                                                                                                 | 2.66                                                                                                                              | 12D                                                                                                                                                        | 0.00                                                                                                                                                       | 11D                                                                                                                                                           | 2.06                                                                                                                         | 66.7                                                                                                                                                                                                                                                                                                         |
| 6E                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5E                                                                                                                                 | 2.27                                                                                                                              | 12E                                                                                                                                                        | 0.00                                                                                                                                                       | 11E                                                                                                                                                           | 1.66                                                                                                                         | 85.7                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                                               |                                                                                                                              |                                                                                                                                                                                                                                                                                                              |
| Bridge:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87-454                                                                                                                             |                                                                                                                                   | Bridge:                                                                                                                                                    |                                                                                                                                                            | 87-454                                                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                              |
| Bridge:<br>Placement                                                                                                                 | t:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>87-454</b><br>Left of CL                                                                                                        |                                                                                                                                   | Bridge:<br>Placement                                                                                                                                       |                                                                                                                                                            | <b>87-454</b><br>Right of C                                                                                                                                   | L                                                                                                                            |                                                                                                                                                                                                                                                                                                              |
| Placement<br>Placement                                                                                                               | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Left of CL<br>09/10/96                                                                                                             |                                                                                                                                   | Placement<br>Placement                                                                                                                                     | Date:                                                                                                                                                      | Right of C<br>10/16/96                                                                                                                                        | L                                                                                                                            |                                                                                                                                                                                                                                                                                                              |
| Placement                                                                                                                            | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Left of CL                                                                                                                         |                                                                                                                                   | Placement                                                                                                                                                  | Date:                                                                                                                                                      | Right of C                                                                                                                                                    | L                                                                                                                            |                                                                                                                                                                                                                                                                                                              |
| Placement<br>Placement                                                                                                               | t Date:<br>ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Left of CL<br>09/10/96                                                                                                             |                                                                                                                                   | Placement<br>Placement                                                                                                                                     | Date:<br>ite:                                                                                                                                              | Right of C<br>10/16/96                                                                                                                                        |                                                                                                                              | Mean<br>Depth                                                                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da                                                                                                  | t Date:<br>ate:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Left of CL<br>09/10/96<br>08/14/02                                                                                                 | rack                                                                                                                              | Placement<br>Placement<br>Survey Da                                                                                                                        | t Date:<br>hte:<br>rack                                                                                                                                    | Right of C<br>10/16/96<br>08/14/02                                                                                                                            | rack                                                                                                                         |                                                                                                                                                                                                                                                                                                              |
| Placement<br>Placement<br>Survey Da<br>Off C                                                                                         | t Date:<br>ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Left of CL<br>09/10/96<br>08/14/02<br>On C                                                                                         |                                                                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C                                                                                                               | Date:<br>ite:                                                                                                                                              | Right of C<br>10/16/96<br>08/14/02<br>On C                                                                                                                    |                                                                                                                              | Depth                                                                                                                                                                                                                                                                                                        |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Left of CL<br>09/10/96<br>08/14/02<br>On Ca<br>Sample                                                                              | rack<br>kg/m <sup>3</sup>                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                                     | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                               | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample                                                                                                          | rack<br>kg/m <sup>3</sup>                                                                                                    | Depth<br>(mm)                                                                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Left of CL<br>09/10/96<br>08/14/02<br>On Ca<br>Sample<br>1A                                                                        | rack<br>kg/m <sup>3</sup><br>9.33                                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                               | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>LIP                                                                                                        | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A                                                                                                    | rack<br>kg/m <sup>3</sup><br>LIP                                                                                             | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                                                  |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Left of CL<br>09/10/96<br>08/14/02<br>On Ca<br>Sample<br>1A<br>1B                                                                  | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>9.33<br>4.35                                                                            | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                         | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>LIP<br>LIP                                                                                                | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B                                                                                              | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP                                                                                      | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04<br>0.21<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Left of CL<br>09/10/96<br>08/14/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00                                                                         | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E                                                                | <b>rack</b><br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>LIP<br>LIP                                                   | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                                         |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04<br>0.21<br>0.00<br>0.00<br>6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Left of CL<br>09/10/96<br>08/14/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                                | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67                                                          | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A                                                                      | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>LIP<br>6.79                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                                                           |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04<br>0.21<br>0.00<br>0.00<br>6.54<br>1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Left of CL<br>09/10/96<br>08/14/02<br>On Cr<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                    | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48<br>4.03                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                         | <b>a</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67<br>2.25                                                   | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B                                                    | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>LIP<br>6.79<br>3.61                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                                                  |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04<br>0.21<br>0.00<br>0.00<br>6.54<br>1.98<br>0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Left of CL<br>09/10/96<br>08/14/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48<br>4.03<br>2.31                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                  | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67<br>2.25<br>0.26                                        | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                                          | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>LIP<br>6.79<br>3.61<br>2.94                                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                                                   |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04<br>0.21<br>0.00<br>0.00<br>6.54<br>1.98<br>0.36<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Left of CL<br>09/10/96<br>08/14/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48<br>4.03<br>2.31<br>1.78                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                           | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67<br>2.25<br>0.26<br>0.00                                | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                        | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>LIP<br>EIP<br>6.79<br>3.61<br>2.94<br>2.66                          | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                          |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04<br>0.21<br>0.00<br>0.00<br>6.54<br>1.98<br>0.36<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Left of CL<br>09/10/96<br>08/14/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48<br>4.03<br>2.31<br>1.78<br>2.19                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                                    | <b>Tack</b><br><b>kg/m<sup>3</sup></b><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67<br>2.25<br>0.26<br>0.00<br>0.00<br>0.00                                | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                                  | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>6.79<br>3.61<br>2.94<br>2.66<br>2.93                                | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                  |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04<br>0.21<br>0.00<br>0.00<br>6.54<br>1.98<br>0.36<br>0.00<br>0.00<br>5.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Left of CL<br>09/10/96<br>08/14/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A             | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48<br>4.03<br>2.31<br>1.78<br>2.19<br>5.02                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                             | <b>a</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67<br>2.25<br>0.26<br>0.00<br>0.00<br>10.80                 | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A                                       | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>6.79<br>3.61<br>2.94<br>2.66<br>2.93<br>9.25                        | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           65.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>http://www.new.org/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/sc | Left of CL<br>09/10/96<br>08/14/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B      | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48<br>4.03<br>2.31<br>1.78<br>2.19<br>5.02<br>3.76         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | <b>E Date:</b><br>htte:<br>rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67<br>2.25<br>0.26<br>0.00<br>0.00<br>0.00<br>10.80<br>3.98 | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B                    | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>LIP<br>6.79<br>3.61<br>2.94<br>2.66<br>2.93<br>9.25<br>4.70         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                              |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.08<br>2.04<br>0.21<br>0.00<br>0.00<br>6.54<br>1.98<br>0.36<br>0.00<br>0.00<br>5.66<br>1.65<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Left of CL<br>09/10/96<br>08/14/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48<br>4.03<br>2.31<br>1.78<br>2.19<br>5.02<br>3.76<br>2.77 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67<br>2.25<br>0.26<br>0.00<br>0.00<br>10.80<br>3.98<br>1.29        | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>LIP<br>6.79<br>3.61<br>2.94<br>2.66<br>2.93<br>9.25<br>4.70<br>3.54 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>47.6                                                                                                                                                                                   |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>http://www.new.org/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/sc | Left of CL<br>09/10/96<br>08/14/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B      | rack<br>kg/m <sup>3</sup><br>9.33<br>4.35<br>2.76<br>3.21<br>3.08<br>7.48<br>4.03<br>2.31<br>1.78<br>2.19<br>5.02<br>3.76         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | <b>E Date:</b><br>htte:<br>rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>0.00<br>0.00<br>8.67<br>2.25<br>0.26<br>0.00<br>0.00<br>0.00<br>10.80<br>3.98 | Right of C<br>10/16/96<br>08/14/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B                    | rack<br>kg/m <sup>3</sup><br>LIP<br>LIP<br>LIP<br>LIP<br>LIP<br>6.79<br>3.61<br>2.94<br>2.66<br>2.93<br>9.25<br>4.70         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                              |

| Table D.1 ( | (con't) – | - Chloride | Concentration | Data |
|-------------|-----------|------------|---------------|------|
|-------------|-----------|------------|---------------|------|

| Bridge:                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-184                                                                                                                                        |                                                                                                                           | Bridge:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-184                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                          | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inside<br>09/26/90<br>08/05/02                                                                                                                |                                                                                                                           | Placement<br>Placement<br>Survey Da                                                                                                  | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Outside<br>09/28/90<br>08/05/02                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Off C                                                                                                                                        | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>On C</b>                                                                                                                                   | rack                                                                                                                      | Off C                                                                                                                                | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | On C                                                                                                                            | rack                                                                                                                      | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Sample                                                                                                                                       | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                                                        | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                                                               | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                                          | kg/m <sup>3</sup>                                                                                                         | (mm)                                                                                                                                                                                                                                                                            |
| 8A                                                                                                                                           | 9.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7A                                                                                                                                            | 8.56                                                                                                                      | 2A                                                                                                                                   | 6.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1A                                                                                                                              | 6.19                                                                                                                      | 9.5                                                                                                                                                                                                                                                                             |
| 8B                                                                                                                                           | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7B                                                                                                                                            | 5.79                                                                                                                      | 2B                                                                                                                                   | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1B                                                                                                                              | 3.89                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 8C                                                                                                                                           | 3.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7C                                                                                                                                            | 4.58                                                                                                                      | 2C                                                                                                                                   | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1C                                                                                                                              | 3.45                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 8D                                                                                                                                           | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7D                                                                                                                                            | 3.61                                                                                                                      | 2D                                                                                                                                   | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1D                                                                                                                              | 3.14                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 8E                                                                                                                                           | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7E                                                                                                                                            | 2.19                                                                                                                      | 2E                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1E                                                                                                                              | 2.45                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| 10A                                                                                                                                          | 8.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9A                                                                                                                                            | 4.76                                                                                                                      | 4A                                                                                                                                   | 5.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3A                                                                                                                              | 5.38                                                                                                                      | 9.5                                                                                                                                                                                                                                                                             |
| 10B                                                                                                                                          | 6.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9B                                                                                                                                            | 4.26                                                                                                                      | 4B                                                                                                                                   | 3.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3B                                                                                                                              | 3.11                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 10C                                                                                                                                          | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9C                                                                                                                                            | 3.08                                                                                                                      | 4C                                                                                                                                   | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3C                                                                                                                              | 2.59                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 10D                                                                                                                                          | 2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9D                                                                                                                                            | 3.98                                                                                                                      | 4D                                                                                                                                   | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3D                                                                                                                              | 2.14                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 10E                                                                                                                                          | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E                                                                                                                                            | 5.21                                                                                                                      | 4E                                                                                                                                   | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3E                                                                                                                              | 1.54                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| 12A                                                                                                                                          | 8.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11A                                                                                                                                           | 8.01                                                                                                                      | 6A                                                                                                                                   | 5.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5A                                                                                                                              | 6.95                                                                                                                      | 9.5                                                                                                                                                                                                                                                                             |
| 12B                                                                                                                                          | 4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11B                                                                                                                                           | 4.62                                                                                                                      | 6B                                                                                                                                   | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5B                                                                                                                              | 4.31                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 12C                                                                                                                                          | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11C                                                                                                                                           | 4.12                                                                                                                      | 6C                                                                                                                                   | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5C                                                                                                                              | 3.50                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 12D                                                                                                                                          | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11D                                                                                                                                           | 3.78                                                                                                                      | 6D                                                                                                                                   | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5D                                                                                                                              | 3.41                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 12E                                                                                                                                          | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11E                                                                                                                                           | 3.26                                                                                                                      | 6E                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5E                                                                                                                              | 2.69                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                                                                                                                           |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Bridge:                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-187                                                                                                                                        |                                                                                                                           | Bridge:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-187                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Bridge:<br>Placement                                                                                                                         | t:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>89-187</b><br>Inside                                                                                                                       |                                                                                                                           | Bridge:<br>Placement                                                                                                                 | t:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>89-187</b> Outside                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| C                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                                                                                                                           | 0                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                                                    | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inside                                                                                                                                        |                                                                                                                           | Placement                                                                                                                            | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Outside                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da                                                                                                          | t Date:<br>nte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inside<br>06/26/90<br>07/12/01                                                                                                                | rack                                                                                                                      | Placement<br>Placement<br>Survey Da                                                                                                  | t Date:<br>ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Outside<br>06/28/90<br>07/12/01                                                                                                 | rack                                                                                                                      | Mean<br>Denth                                                                                                                                                                                                                                                                   |
| Placement<br>Placement<br>Survey Da<br>Off C                                                                                                 | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inside<br>06/26/90<br>07/12/01<br>On C                                                                                                        |                                                                                                                           | Placement<br>Placement<br>Survey Da<br>Off C                                                                                         | t Date:<br>ate:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Outside<br>06/28/90<br>07/12/01<br>On C                                                                                         |                                                                                                                           | Depth                                                                                                                                                                                                                                                                           |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                       | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inside<br>06/26/90<br>07/12/01<br>On Ca<br>Sample                                                                                             | kg/m <sup>3</sup>                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample                                                                               | kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                                                                                                                                                                                                   |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                 | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inside<br>06/26/90<br>07/12/01<br>On Ca<br>Sample<br>7A                                                                                       | <b>kg/m<sup>3</sup></b><br>9.07                                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A                                                                         | <b>kg/m<sup>3</sup></b><br>8.94                                                                                           | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                           | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inside<br>06/26/90<br>07/12/01<br>On Ca<br>Sample<br>7A<br>7B                                                                                 | <b>kg/m<sup>3</sup></b><br>9.07<br>4.42                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B                                                                   | <b>kg/m<sup>3</sup></b><br>8.94<br>4.47                                                                                   | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                    |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                            | <b>kg/m<sup>3</sup></b><br>9.07<br>4.42<br>3.09                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C                                                             | <b>kg/m<sup>3</sup></b><br>8.94<br>4.47<br>3.13                                                                           | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                               | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inside<br>06/26/90<br>07/12/01<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D                                                                     | <b>kg/m<sup>3</sup></b><br>9.07<br>4.42<br>3.09<br>2.43                                                                   | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                       | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                       | <b>kg/m<sup>3</sup></b><br>8.94<br>4.47<br>3.13<br>1.96                                                                   | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                             |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                         | t Date:<br>http://www.market.org/constraints/file/file/file/file/file/file/file/file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inside<br>06/26/90<br>07/12/01<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E                                                               | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                 | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                            |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                  | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21<br>0.00<br>5.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                              | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16<br>0.16<br>0.16<br>3.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                              |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                           | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21<br>0.00<br>5.38<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                                    | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88<br>3.05                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16<br>0.16<br>3.37<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89<br>2.34                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                    | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21<br>0.00<br>5.38<br>0.00<br>0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                              | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88<br>3.05<br>2.48                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16<br>0.16<br>3.37<br>0.28<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89<br>2.34<br>2.06                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                             | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21<br>0.00<br>5.38<br>0.00<br>0.83<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                        | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88<br>3.05<br>2.48<br>2.20                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | t Date:<br>http://prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/prack/pr | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89<br>2.34<br>2.06<br>1.84                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                             |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                      | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21<br>0.00<br>5.38<br>0.00<br>0.83<br>0.00<br>0.83<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                      | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88<br>3.05<br>2.48<br>2.20<br>1.99                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | t Date:<br>http://www.new.org/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/sc | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89<br>2.34<br>2.06<br>1.84<br>0.93                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A               | t Date:<br>http://www.new.org/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/sc | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A                           | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88<br>3.05<br>2.48<br>2.20<br>1.99<br>8.53                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16<br>0.16<br>0.16<br>3.37<br>0.28<br>0.00<br>0.00<br>0.00<br>0.00<br>4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A             | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89<br>2.34<br>2.06<br>1.84<br>0.93<br>6.17                 | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7                                             |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B        | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21<br>0.00<br>5.38<br>0.00<br>0.83<br>0.00<br>0.83<br>0.00<br>0.438<br>0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B        | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88<br>3.05<br>2.48<br>2.20<br>1.99<br>8.53<br>4.62         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16<br>0.16<br>0.16<br>3.37<br>0.28<br>0.00<br>0.00<br>0.00<br>0.00<br>4.16<br>1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89<br>2.34<br>2.06<br>1.84<br>0.93<br>6.17<br>3.46         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21<br>0.00<br>5.38<br>0.00<br>0.83<br>0.00<br>0.83<br>0.00<br>0.00<br>4.38<br>0.66<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88<br>3.05<br>2.48<br>2.20<br>1.99<br>8.53<br>4.62<br>3.59 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | t Date:<br>http:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16<br>0.16<br>0.16<br>3.37<br>0.28<br>0.00<br>0.00<br>0.00<br>0.00<br>4.16<br>1.14<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89<br>2.34<br>2.06<br>1.84<br>0.93<br>6.17<br>3.46<br>2.08 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                              |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B        | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.81<br>2.53<br>1.02<br>0.21<br>0.00<br>5.38<br>0.00<br>0.83<br>0.00<br>0.83<br>0.00<br>0.438<br>0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inside<br>06/26/90<br>07/12/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B        | kg/m <sup>3</sup><br>9.07<br>4.42<br>3.09<br>2.43<br>1.51<br>5.88<br>3.05<br>2.48<br>2.20<br>1.99<br>8.53<br>4.62         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>5.42<br>0.83<br>0.11<br>0.16<br>0.16<br>0.16<br>3.37<br>0.28<br>0.00<br>0.00<br>0.00<br>0.00<br>4.16<br>1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Outside<br>06/28/90<br>07/12/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>8.94<br>4.47<br>3.13<br>1.96<br>2.85<br>5.89<br>2.34<br>2.06<br>1.84<br>0.93<br>6.17<br>3.46         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |

| Table D.1 (con | n't) – Chloride | Concentration | Data |
|----------------|-----------------|---------------|------|
|----------------|-----------------|---------------|------|

|                                                                                                        |                                                                                                                           | 89-206                                                                                                                  |                                                                                                                   | Bridge:                                                                                              |                                                                                                                                           | 89-206                                                                                  |                                                                                                                   |                                                                                                            |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Placement                                                                                              |                                                                                                                           | Right of C                                                                                                              | Ĺ                                                                                                                 | Placement                                                                                            | t <b>:</b>                                                                                                                                | Left of CL                                                                              |                                                                                                                   |                                                                                                            |
| Placement                                                                                              | Date:                                                                                                                     | 10/04/95                                                                                                                |                                                                                                                   | Placement                                                                                            | t Date:                                                                                                                                   | 10/10/95                                                                                |                                                                                                                   |                                                                                                            |
| Survey Da                                                                                              | ite:                                                                                                                      | 08/28/02                                                                                                                |                                                                                                                   | Survey Da                                                                                            | ite:                                                                                                                                      | 08/28/02                                                                                |                                                                                                                   |                                                                                                            |
|                                                                                                        |                                                                                                                           |                                                                                                                         |                                                                                                                   |                                                                                                      |                                                                                                                                           |                                                                                         |                                                                                                                   | Mean                                                                                                       |
| Off Ci                                                                                                 | rack                                                                                                                      | On C                                                                                                                    | rack                                                                                                              | Off C                                                                                                | rack                                                                                                                                      | On C                                                                                    | rack                                                                                                              | Depth                                                                                                      |
| Sample                                                                                                 | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                                                  | kg/m <sup>3</sup>                                                                                                 | Sample                                                                                               | kg/m <sup>3</sup>                                                                                                                         | Sample                                                                                  | kg/m <sup>3</sup>                                                                                                 | (mm)                                                                                                       |
| 8A                                                                                                     | 3.38                                                                                                                      | 7A                                                                                                                      | 5.08                                                                                                              | 1A                                                                                                   | 1.61                                                                                                                                      | 2A                                                                                      | 5.45                                                                                                              | 9.5                                                                                                        |
| 8B                                                                                                     | 0.44                                                                                                                      | 7B                                                                                                                      | 2.32                                                                                                              | 1B                                                                                                   | 0.00                                                                                                                                      | 2B                                                                                      | 2.73                                                                                                              | 28.6                                                                                                       |
| 8C                                                                                                     | 0.14                                                                                                                      | 7C                                                                                                                      | 1.66                                                                                                              | 1C                                                                                                   | 0.00                                                                                                                                      | 2C                                                                                      | 2.25                                                                                                              | 47.6                                                                                                       |
| 8D                                                                                                     | 0.13                                                                                                                      | 7D                                                                                                                      | 0.63                                                                                                              | 1D                                                                                                   | 0.00                                                                                                                                      | 2D                                                                                      | 0.47                                                                                                              | 66.7                                                                                                       |
| 8E                                                                                                     | 0.11                                                                                                                      | 7E                                                                                                                      | 0.13                                                                                                              | 1E                                                                                                   | 0.00                                                                                                                                      | 2E                                                                                      | 0.13                                                                                                              | 85.7                                                                                                       |
| 10A                                                                                                    | 4.61                                                                                                                      | 9A                                                                                                                      | 4.10                                                                                                              | 3A                                                                                                   | 4.63                                                                                                                                      | 4A                                                                                      | 4.95                                                                                                              | 9.5                                                                                                        |
| 10B                                                                                                    | 1.02                                                                                                                      | 9B                                                                                                                      | 2.47                                                                                                              | 3B                                                                                                   | 1.07                                                                                                                                      | 4B                                                                                      | 1.42                                                                                                              | 28.6                                                                                                       |
| 10C                                                                                                    | 0.00                                                                                                                      | 9C                                                                                                                      | 2.36                                                                                                              | 3C                                                                                                   | 0.00                                                                                                                                      | 4C                                                                                      | 0.28                                                                                                              | 47.6                                                                                                       |
| 10D                                                                                                    | 0.16                                                                                                                      | 9D                                                                                                                      | 2.13                                                                                                              | 3D                                                                                                   | 0.00                                                                                                                                      | 4D                                                                                      | 0.00                                                                                                              | 66.7                                                                                                       |
| 10E                                                                                                    | 0.15                                                                                                                      | 9E                                                                                                                      | 1.84                                                                                                              | 3E                                                                                                   | 0.00                                                                                                                                      | 4E                                                                                      | 0.00                                                                                                              | 85.7                                                                                                       |
| 12A                                                                                                    | 3.43                                                                                                                      | 11A                                                                                                                     | 3.39                                                                                                              | 5A                                                                                                   | 3.85                                                                                                                                      | 6A                                                                                      | 5.92                                                                                                              | 9.5                                                                                                        |
| 12B                                                                                                    | 0.59                                                                                                                      | 11B                                                                                                                     | 1.82                                                                                                              | 5B                                                                                                   | 0.57                                                                                                                                      | 6B                                                                                      | 3.50                                                                                                              | 28.6                                                                                                       |
| 12C                                                                                                    | 0.00                                                                                                                      | 11C                                                                                                                     | 2.32                                                                                                              | 5C                                                                                                   | 0.20                                                                                                                                      | 6C                                                                                      | 2.52                                                                                                              | 47.6                                                                                                       |
| 12D                                                                                                    | 0.00                                                                                                                      | 11D                                                                                                                     | 2.02                                                                                                              | 5D                                                                                                   | 0.00                                                                                                                                      | 6D                                                                                      | 1.49                                                                                                              | 66.7                                                                                                       |
| 12E                                                                                                    | 0.00                                                                                                                      | 11E                                                                                                                     | 1.70                                                                                                              | 5E                                                                                                   | 0.00                                                                                                                                      | 6E                                                                                      | 1.52                                                                                                              | 85.7                                                                                                       |
| Bridge:                                                                                                |                                                                                                                           | 89-207                                                                                                                  |                                                                                                                   | Bridge:                                                                                              |                                                                                                                                           | 89-207                                                                                  |                                                                                                                   |                                                                                                            |
| Di luge.                                                                                               |                                                                                                                           |                                                                                                                         |                                                                                                                   | Druge.                                                                                               |                                                                                                                                           |                                                                                         |                                                                                                                   |                                                                                                            |
| Placement                                                                                              |                                                                                                                           | Left of CL                                                                                                              |                                                                                                                   | Placement                                                                                            |                                                                                                                                           | Right of C                                                                              | Ĺ                                                                                                                 |                                                                                                            |
| Placement                                                                                              | Date:                                                                                                                     | 10/24/95                                                                                                                |                                                                                                                   | Placement                                                                                            | + Date                                                                                                                                    | 04/19/96                                                                                |                                                                                                                   |                                                                                                            |
| ~ ~                                                                                                    |                                                                                                                           |                                                                                                                         |                                                                                                                   |                                                                                                      |                                                                                                                                           |                                                                                         |                                                                                                                   |                                                                                                            |
| Survey Da                                                                                              |                                                                                                                           | 08/27/02                                                                                                                |                                                                                                                   | Survey Da                                                                                            |                                                                                                                                           | 08/27/02                                                                                |                                                                                                                   | Maaa                                                                                                       |
| Survey Da<br>Off Ci                                                                                    | ite:                                                                                                                      |                                                                                                                         | rack                                                                                                              |                                                                                                      | nte:                                                                                                                                      | 08/27/02<br>On Cr                                                                       | rack                                                                                                              | Mean<br>Depth                                                                                              |
| Off Ci                                                                                                 | ite:<br>rack                                                                                                              | 08/27/02<br>On C                                                                                                        |                                                                                                                   | Survey Da                                                                                            | nte:<br>rack                                                                                                                              |                                                                                         |                                                                                                                   |                                                                                                            |
| •                                                                                                      | ite:                                                                                                                      | 08/27/02                                                                                                                | rack<br>kg/m <sup>3</sup><br>6.85                                                                                 | Survey Da<br>Off C                                                                                   | nte:                                                                                                                                      | On C                                                                                    | rack<br>kg/m <sup>3</sup><br>5.04                                                                                 | Depth                                                                                                      |
| Off Ci<br>Sample                                                                                       | nte:<br>rack<br>kg/m <sup>3</sup>                                                                                         | 08/27/02<br>On Ca<br>Sample                                                                                             | kg/m <sup>3</sup>                                                                                                 | Survey Da<br>Off C<br>Sample                                                                         | nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                         | On Ca<br>Sample                                                                         | kg/m <sup>3</sup>                                                                                                 | Depth<br>(mm)                                                                                              |
| Off Co<br>Sample<br>7A                                                                                 | nte:<br>rack<br>kg/m <sup>3</sup><br>3.34                                                                                 | 08/27/02<br>On C<br>Sample<br>8A                                                                                        | <b>kg/m<sup>3</sup></b> 6.85                                                                                      | Survey Da<br>Off C<br>Sample                                                                         | nte:<br>rack<br>kg/m <sup>3</sup><br>4.22                                                                                                 | On Co<br>Sample<br>2A                                                                   | <b>kg/m<sup>3</sup></b><br>5.04                                                                                   | <b>Depth</b><br>(mm)<br>9.5                                                                                |
| Off Cr<br>Sample<br>7A<br>7B<br>7C                                                                     | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15                                                                         | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C                                                                            | kg/m <sup>3</sup><br>6.85<br>3.74<br>2.77                                                                         | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C                                                       | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00                                                                                         | On Cr<br>Sample<br>2A<br>2B<br>2C                                                       | <b>kg/m<sup>3</sup></b><br>5.04<br>3.30<br>2.66                                                                   | Depth<br>(mm)<br>9.5<br>28.6<br>47.6                                                                       |
| Off Cr<br>Sample<br>7A<br>7B                                                                           | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13                                                                 | 08/27/02<br>On C<br>Sample<br>8A<br>8B                                                                                  | <b>kg/m<sup>3</sup></b><br>6.85<br>3.74                                                                           | Survey Da<br>Off C<br>Sample<br>1A<br>1B                                                             | nte:<br>rack<br>kg/m <sup>3</sup><br>4.22<br>0.19                                                                                         | On Ca<br>Sample<br>2A<br>2B                                                             | <b>kg/m<sup>3</sup></b><br>5.04<br>3.30<br>2.66<br>1.85                                                           | Depth<br>(mm)<br>9.5<br>28.6                                                                               |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D                                                               | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15                                                                         | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                      | <b>kg/m<sup>3</sup></b><br>6.85<br>3.74<br>2.77<br>2.36                                                           | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                 | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00                                                                                 | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D                                                 | <b>kg/m<sup>3</sup></b><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56                                                   | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                        |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E                                                         | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13<br>0.11                                                         | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8D<br>8E                                                          | <b>kg/m<sup>3</sup></b><br>6.85<br>3.74<br>2.77<br>2.36<br>2.59<br>5.71                                           | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                     | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00<br>0.00<br>0.00                                                                 | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                           | kg/m <sup>3</sup><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56<br>5.20                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                         |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                             | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13<br>0.11<br>3.72<br>0.64                                         | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                  | kg/m <sup>3</sup><br>6.85<br>3.74<br>2.77<br>2.36<br>2.59<br>5.71<br>2.52                                         | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                               | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00<br>0.00<br>4.18<br>0.32                                                         | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                               | kg/m <sup>3</sup><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56<br>5.20<br>3.34                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                        |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                       | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13<br>0.11<br>3.72<br>0.64<br>0.14                                 | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                           | kg/m <sup>3</sup><br>6.85<br>3.74<br>2.77<br>2.36<br>2.59<br>5.71<br>2.52<br>2.53                                 | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                         | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00<br>0.00<br>4.18<br>0.32<br>0.00                                                 | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                         | kg/m <sup>3</sup><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56<br>5.20<br>3.34<br>2.40                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                 | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13<br>0.11<br>3.72<br>0.64<br>0.14<br>0.13                         | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                    | kg/m <sup>3</sup><br>6.85<br>3.74<br>2.77<br>2.36<br>2.59<br>5.71<br>2.52<br>2.53<br>2.64                         | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                   | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00<br>0.00<br>4.18<br>0.32<br>0.00<br>0.00<br>0.00                                 | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                   | kg/m <sup>3</sup><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56<br>5.20<br>3.34<br>2.40<br>2.23                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                        |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                           | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13<br>0.11<br>3.72<br>0.64<br>0.14<br>0.13<br>0.00                 | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                             | kg/m <sup>3</sup><br>6.85<br>3.74<br>2.77<br>2.36<br>2.59<br>5.71<br>2.52<br>2.53<br>2.64<br>2.30                 | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E             | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00<br>0.00<br>4.18<br>0.32<br>0.00<br>0.00<br>0.00<br>0.00                         | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E             | kg/m <sup>3</sup><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56<br>5.20<br>3.34<br>2.40<br>2.23<br>1.80                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A                    | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13<br>0.11<br>3.72<br>0.64<br>0.14<br>0.13<br>0.00<br>3.87         | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                      | kg/m <sup>3</sup><br>6.85<br>3.74<br>2.77<br>2.36<br>2.59<br>5.71<br>2.52<br>2.53<br>2.64<br>2.30<br>4.29         | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A       | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00<br>0.00<br>4.18<br>0.32<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>2.03 | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A       | kg/m <sup>3</sup><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56<br>5.20<br>3.34<br>2.40<br>2.23<br>1.80<br>5.40         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5         |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13<br>0.11<br>3.72<br>0.64<br>0.14<br>0.13<br>0.00<br>3.87<br>0.33 | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B | kg/m <sup>3</sup><br>6.85<br>3.74<br>2.77<br>2.36<br>2.59<br>5.71<br>2.52<br>2.53<br>2.64<br>2.30<br>4.29<br>3.14 | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00<br>0.00<br>4.18<br>0.32<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B | kg/m <sup>3</sup><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56<br>5.20<br>3.34<br>2.40<br>2.23<br>1.80<br>5.40<br>2.84 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6 |
| Off Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A                    | rack<br>kg/m <sup>3</sup><br>3.34<br>0.16<br>0.15<br>0.13<br>0.11<br>3.72<br>0.64<br>0.14<br>0.13<br>0.00<br>3.87         | 08/27/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                      | kg/m <sup>3</sup><br>6.85<br>3.74<br>2.77<br>2.36<br>2.59<br>5.71<br>2.52<br>2.53<br>2.64<br>2.30<br>4.29         | Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A       | rack<br>kg/m <sup>3</sup><br>4.22<br>0.19<br>0.00<br>0.00<br>0.00<br>4.18<br>0.32<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>2.03         | On Cr<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A       | kg/m <sup>3</sup><br>5.04<br>3.30<br>2.66<br>1.85<br>1.56<br>5.20<br>3.34<br>2.40<br>2.23<br>1.80<br>5.40         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5         |

| Table D.1 | (con't) · | – Chloride | Concentration | Data |
|-----------|-----------|------------|---------------|------|
|           |           |            |               |      |

| Bridge:                                                                                                                 |                                                                                                                                                      | 89-210                                                                                                                |                                                                                                                                   | Bridge:                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89-210                                                                                                                                           |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement                                                                                                               | Placement:<br>Placement Date:                                                                                                                        |                                                                                                                       | Right of CL<br>10/12/95                                                                                                           |                                                                                                                                                                  | Placement:<br>Placement Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                  | Left of CL<br>10/18/95                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                          |
| Survey Da                                                                                                               | ate:                                                                                                                                                 | 08/16/01                                                                                                              |                                                                                                                                   | Survey Da                                                                                                                                                        | ite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/16/01                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Off C                                                                                                                   | rack                                                                                                                                                 | On C                                                                                                                  | rack                                                                                                                              | Off C                                                                                                                                                            | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>On C</b>                                                                                                                                      | rack                                                                                                                                                                                                     | Mean<br>Depth                                                                                                                                                                                                                                                                                                                                                            |
| Sample                                                                                                                  | kg/m <sup>3</sup>                                                                                                                                    | Sample                                                                                                                | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                                                                           | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample                                                                                                                                           | kg/m <sup>3</sup>                                                                                                                                                                                        | (mm)                                                                                                                                                                                                                                                                                                                                                                     |
| 8A                                                                                                                      | 0.52                                                                                                                                                 | 7A                                                                                                                    | 3.83                                                                                                                              | 2A                                                                                                                                                               | 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1A                                                                                                                                               | 6.44                                                                                                                                                                                                     | 9.5                                                                                                                                                                                                                                                                                                                                                                      |
| 8B                                                                                                                      | 0.00                                                                                                                                                 | 7B                                                                                                                    | 2.34                                                                                                                              | 2B                                                                                                                                                               | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1B                                                                                                                                               | 2.87                                                                                                                                                                                                     | 28.6                                                                                                                                                                                                                                                                                                                                                                     |
| 8C                                                                                                                      | 0.00                                                                                                                                                 | 7C                                                                                                                    | 2.11                                                                                                                              | 2C                                                                                                                                                               | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1C                                                                                                                                               | 2.10                                                                                                                                                                                                     | 47.6                                                                                                                                                                                                                                                                                                                                                                     |
| 8D                                                                                                                      | 0.00                                                                                                                                                 | 7D                                                                                                                    | 1.76                                                                                                                              | 2D                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1D                                                                                                                                               | 2.24                                                                                                                                                                                                     | 66.7                                                                                                                                                                                                                                                                                                                                                                     |
| 8E                                                                                                                      | 0.00                                                                                                                                                 | 7E                                                                                                                    | 0.20                                                                                                                              | 2E                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1E                                                                                                                                               | 1.62                                                                                                                                                                                                     | 85.7                                                                                                                                                                                                                                                                                                                                                                     |
| 10A                                                                                                                     | 3.22                                                                                                                                                 | 9A                                                                                                                    | 4.15                                                                                                                              | 4A                                                                                                                                                               | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3A                                                                                                                                               | 3.83                                                                                                                                                                                                     | 9.5                                                                                                                                                                                                                                                                                                                                                                      |
| 10B                                                                                                                     | 0.29                                                                                                                                                 | 9B                                                                                                                    | 2.39                                                                                                                              | 4B                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3B                                                                                                                                               | 2.78                                                                                                                                                                                                     | 28.6                                                                                                                                                                                                                                                                                                                                                                     |
| 10C                                                                                                                     | 0.12                                                                                                                                                 | 9C                                                                                                                    | 2.01                                                                                                                              | 4C                                                                                                                                                               | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3C                                                                                                                                               | 2.30                                                                                                                                                                                                     | 47.6                                                                                                                                                                                                                                                                                                                                                                     |
| 10D                                                                                                                     | 0.00                                                                                                                                                 | 9D                                                                                                                    | 1.56                                                                                                                              | 4D                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3D                                                                                                                                               | 1.93                                                                                                                                                                                                     | 66.7                                                                                                                                                                                                                                                                                                                                                                     |
| 10E                                                                                                                     | 0.00                                                                                                                                                 | 9E                                                                                                                    | 0.71                                                                                                                              | 4E                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3E                                                                                                                                               | 1.44                                                                                                                                                                                                     | 85.7                                                                                                                                                                                                                                                                                                                                                                     |
| 12A                                                                                                                     | 1.16                                                                                                                                                 | 11A                                                                                                                   | 4.99                                                                                                                              | 6A                                                                                                                                                               | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5A                                                                                                                                               | 3.08                                                                                                                                                                                                     | 9.5                                                                                                                                                                                                                                                                                                                                                                      |
| 12B                                                                                                                     | 0.00                                                                                                                                                 | 11B                                                                                                                   | 2.71                                                                                                                              | 6B                                                                                                                                                               | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5B                                                                                                                                               | 2.05                                                                                                                                                                                                     | 28.6                                                                                                                                                                                                                                                                                                                                                                     |
| 12C                                                                                                                     | 0.00                                                                                                                                                 | 11C                                                                                                                   | 2.28                                                                                                                              | 6C                                                                                                                                                               | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5C                                                                                                                                               | 2.04                                                                                                                                                                                                     | 47.6                                                                                                                                                                                                                                                                                                                                                                     |
| 12D                                                                                                                     | 0.00                                                                                                                                                 | 11D                                                                                                                   | 1.71                                                                                                                              | 6D                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5D                                                                                                                                               | 1.83                                                                                                                                                                                                     | 66.7                                                                                                                                                                                                                                                                                                                                                                     |
| 12E                                                                                                                     | 0.00                                                                                                                                                 | 11E                                                                                                                   | 1.06                                                                                                                              | 6E                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5E                                                                                                                                               | 1.68                                                                                                                                                                                                     | 85.7                                                                                                                                                                                                                                                                                                                                                                     |
| Bridge:                                                                                                                 |                                                                                                                                                      | 89-234                                                                                                                |                                                                                                                                   | Bridge:                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89-234                                                                                                                                           |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                         |                                                                                                                                                      |                                                                                                                       |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Placement                                                                                                               | t:                                                                                                                                                   | SFO South                                                                                                             | 20 ft                                                                                                                             | Placement                                                                                                                                                        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SFO North                                                                                                                                        | n 18 ft                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
| Placement<br>Placement                                                                                                  |                                                                                                                                                      | 06/20/96                                                                                                              | 20 ft                                                                                                                             | Placement<br>Placement                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06/25/96                                                                                                                                         | 18 ft                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                         | t Date:                                                                                                                                              |                                                                                                                       | 1 20 ft                                                                                                                           |                                                                                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  | n 18 ft                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                          |
| Placement<br>Survey Da                                                                                                  | t Date:<br>ate:                                                                                                                                      | 06/20/96<br>09/23/02                                                                                                  |                                                                                                                                   | Placement<br>Survey Da                                                                                                                                           | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06/25/96<br>09/24/02                                                                                                                             |                                                                                                                                                                                                          | Mean<br>Depth                                                                                                                                                                                                                                                                                                                                                            |
| Placement<br>Survey Da<br>Off C                                                                                         | t Date:<br>ate:<br>rack                                                                                                                              | 06/20/96<br>09/23/02<br>On Ca                                                                                         | rack                                                                                                                              | Placement<br>Survey Da<br>Off C                                                                                                                                  | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06/25/96<br>09/24/02<br>On Ca                                                                                                                    | rack                                                                                                                                                                                                     | Depth                                                                                                                                                                                                                                                                                                                                                                    |
| Placement<br>Survey Da                                                                                                  | t Date:<br>ate:                                                                                                                                      | 06/20/96<br>09/23/02                                                                                                  |                                                                                                                                   | Placement<br>Survey Da                                                                                                                                           | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06/25/96<br>09/24/02                                                                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                         | 06/20/96<br>09/23/02<br>On Ca<br>Sample                                                                               | rack<br>kg/m <sup>3</sup>                                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample                                                                                                                        | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06/25/96<br>09/24/02<br>On Ca<br>Sample                                                                                                          | rack<br>kg/m <sup>3</sup>                                                                                                                                                                                | Depth<br>(mm)                                                                                                                                                                                                                                                                                                                                                            |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A                                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00                                                                                                 | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A                                                                          | rack<br>kg/m <sup>3</sup><br>7.73                                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>13A                                                                                                                 | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06/25/96<br>09/24/02<br>On C<br>Sample<br>14A                                                                                                    | rack<br>kg/m <sup>3</sup><br>6.03                                                                                                                                                                        | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B                                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91                                                                                         | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B                                                                    | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.73<br>3.98                                                                            | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B                                                                                                          | <b>t Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.70<br>1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06/25/96<br>09/24/02<br>On C<br>Sample<br>14A<br>14B                                                                                             | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.03<br>2.94                                                                                                                                                   | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                                                                                                             |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C                                                             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45                                                                                 | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C                                                              | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C                                                                                                   | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.70<br>1.32<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06/25/96<br>09/24/02<br>On Ca<br>Sample<br>14A<br>14B<br>14C                                                                                     | rack<br>kg/m <sup>3</sup><br>6.03<br>2.94<br>2.75                                                                                                                                                        | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14                                                                         | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                        | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C<br>13D                                                                                            | <b>a Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.70<br>1.32<br>0.14<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06/25/96<br>09/24/02<br>On Ca<br>Sample<br>14A<br>14B<br>14C<br>14D                                                                              | rack<br>kg/m <sup>3</sup><br>6.03<br>2.94<br>2.75<br>2.60                                                                                                                                                | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                                                                                                                      |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                 | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14<br>0.13                                                                 | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                  | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01<br>2.18                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E                                                                                     | <b>a Date:</b><br><b>inte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.70<br>1.32<br>0.14<br>0.12<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06/25/96<br>09/24/02<br>On Ca<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E                                                                       | rack<br>kg/m <sup>3</sup><br>6.03<br>2.94<br>2.75<br>2.60<br>2.49                                                                                                                                        | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14<br>0.13<br>7.83                                                         | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                            | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01<br>2.18<br>6.66                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A                                                                              | <b>bate:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b><br><b>table:</b> | 06/25/96<br>09/24/02<br>On C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A                                                                 | rack<br>kg/m <sup>3</sup><br>6.03<br>2.94<br>2.75<br>2.60<br>2.49<br>5.05                                                                                                                                | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                                                                                                                       |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14<br>0.13<br>7.83<br>1.89                                                 | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                      | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01<br>2.18<br>6.66<br>3.42                                                 | Placement           Survey Da           Off C           Sample           13A           13B           13C           13D           13E           15A           15B | <b>a</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.70<br>1.32<br>0.14<br>0.12<br>0.00<br>5.95<br>1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06/25/96<br>09/24/02<br>On C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14C<br>14D<br>14E<br>16A<br>16B                                            | rack<br>kg/m <sup>3</sup><br>6.03<br>2.94<br>2.75<br>2.60<br>2.49<br>5.05<br>2.03                                                                                                                        | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                                                                                                                                                                                                                                                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14<br>0.13<br>7.83<br>1.89<br>0.21                                         | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                                | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01<br>2.18<br>6.66<br>3.42<br>2.45                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C                                                                | <b>bate:</b><br><b>track</b><br><b>kg/m<sup>3</sup></b><br>5.70<br>1.32<br>0.14<br>0.12<br>0.00<br>5.95<br>1.22<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06/25/96<br>09/24/02<br>On Ca<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C                                                  | rack<br>kg/m <sup>3</sup><br>6.03<br>2.94<br>2.75<br>2.60<br>2.49<br>5.05<br>2.03<br>1.56                                                                                                                | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                                                                                                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14<br>0.13<br>7.83<br>1.89<br>0.21<br>0.13                                 | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                          | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01<br>2.18<br>6.66<br>3.42<br>2.45<br>1.76                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D                                                         | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.70<br>1.32<br>0.14<br>0.12<br>0.00<br>5.95<br>1.22<br>0.12<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06/25/96<br>09/24/02<br>On Ca<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D                             | rack<br>kg/m <sup>3</sup><br>6.03<br>2.94<br>2.75<br>2.60<br>2.49<br>5.05<br>2.03<br>1.56<br>1.18                                                                                                        | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5                                                                                                         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14<br>0.13<br>7.83<br>1.89<br>0.21<br>0.13<br>0.10<br>6.84<br>1.92         | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B        | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01<br>2.18<br>6.66<br>3.42<br>2.45<br>1.76<br>1.54<br>7.38<br>3.34         | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A<br>17B                                    | <b>bate:</b><br><b>track</b><br><b>kg/m<sup>3</sup></b><br>5.70<br>1.32<br>0.14<br>0.12<br>0.00<br>5.95<br>1.22<br>0.12<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06/25/96<br>09/24/02<br>On C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B                       | rack<br>kg/m <sup>3</sup><br>6.03<br>2.94<br>2.75<br>2.60<br>2.49<br>5.05<br>2.03<br>1.56<br>1.18<br>0.59                                                                                                | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           65.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14<br>0.13<br>7.83<br>1.89<br>0.21<br>0.13<br>0.10<br>6.84<br>1.92<br>0.22 | 06/20/96<br>09/23/02<br>On Ca<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01<br>2.18<br>6.66<br>3.42<br>2.45<br>1.76<br>1.54<br>7.38<br>3.34<br>2.34 | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A                                           | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.70<br>1.32<br>0.14<br>0.12<br>0.00<br>5.95<br>1.22<br>0.12<br>0.00<br>0.00<br>5.02<br>1.01<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06/25/96<br>09/24/02<br>On Ca<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B<br>18C | kg/m³           6.03           2.94           2.75           2.60           2.49           5.05           2.03           1.56           1.18           0.59           4.78           2.69           1.71 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           64.7           85.7           9.5           28.6           47.6 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>8.00<br>2.91<br>0.45<br>0.14<br>0.13<br>7.83<br>1.89<br>0.21<br>0.13<br>0.10<br>6.84<br>1.92         | 06/20/96<br>09/23/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B        | rack<br>kg/m <sup>3</sup><br>7.73<br>3.98<br>2.90<br>2.01<br>2.18<br>6.66<br>3.42<br>2.45<br>1.76<br>1.54<br>7.38<br>3.34         | Placement<br>Survey Da<br>Off C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A<br>17B                                    | <b>a</b> Date:<br>htte:<br><b>b b c b c c c b c c c c c c c c c c</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06/25/96<br>09/24/02<br>On C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B                       | kg/m³           6.03           2.94           2.75           2.60           2.49           5.05           2.03           1.56           1.18           0.59           4.78           2.69                | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           65.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                               |

| Bridge:                                                                                                           |                                                                                                                                              | 89-234                                                                                                         |                                                                                                                           | Bridge:                                                                                                                                                                                                                      |                                                                                                                                                                        | 89-235                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                               | nent Date: 06/28/96                                                                                                                          |                                                                                                                | Placement                                                                                                                 | Placement:<br>Placement Date:<br>Survey Date:                                                                                                                                                                                |                                                                                                                                                                        | SFO Right 18 ft<br>05/01/97<br>09/24/02                                                                                             |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Off C                                                                                                             | rack                                                                                                                                         | On C                                                                                                           | rack                                                                                                                      | Off C                                                                                                                                                                                                                        | rack                                                                                                                                                                   | On C                                                                                                                                | rack                                                                                                                      | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Sample                                                                                                            | kg/m <sup>3</sup>                                                                                                                            | Sample                                                                                                         | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                                                                                                                                                       | kg/m <sup>3</sup>                                                                                                                                                      | Sample                                                                                                                              | kg/m <sup>3</sup>                                                                                                         | (mm)                                                                                                                                                                                                                                                                            |
| 8A                                                                                                                | 6.60                                                                                                                                         | 7A                                                                                                             | 8.09                                                                                                                      | 1A                                                                                                                                                                                                                           | 5.03                                                                                                                                                                   | 2A                                                                                                                                  | 5.10                                                                                                                      | 9.5                                                                                                                                                                                                                                                                             |
| 8B                                                                                                                | 2.19                                                                                                                                         | 7B                                                                                                             | 3.07                                                                                                                      | 1B                                                                                                                                                                                                                           | 0.78                                                                                                                                                                   | 2B                                                                                                                                  | 2.48                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 8C                                                                                                                | 1.30                                                                                                                                         | 7C                                                                                                             | 2.22                                                                                                                      | 1C                                                                                                                                                                                                                           | 0.16                                                                                                                                                                   | 2C                                                                                                                                  | 0.99                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 8D                                                                                                                | 0.17                                                                                                                                         | 7D                                                                                                             | 2.37                                                                                                                      | 1D                                                                                                                                                                                                                           | 0.12                                                                                                                                                                   | 2D                                                                                                                                  | 0.36                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 8E                                                                                                                | 0.20                                                                                                                                         | 7E                                                                                                             | 2.58                                                                                                                      | 1E                                                                                                                                                                                                                           | 0.11                                                                                                                                                                   | 2E                                                                                                                                  | 0.17                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| 10A                                                                                                               | 5.39                                                                                                                                         | 9A                                                                                                             | 7.49                                                                                                                      | 3A                                                                                                                                                                                                                           | 3.01                                                                                                                                                                   | 4A                                                                                                                                  | 5.66                                                                                                                      | 9.5                                                                                                                                                                                                                                                                             |
| 10B                                                                                                               | 1.19                                                                                                                                         | 9B                                                                                                             | 4.06                                                                                                                      | 3B                                                                                                                                                                                                                           | 1.16                                                                                                                                                                   | 4B                                                                                                                                  | 2.22                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 10C                                                                                                               | 0.11                                                                                                                                         | 9C                                                                                                             | 3.25                                                                                                                      | 3C                                                                                                                                                                                                                           | 0.58                                                                                                                                                                   | 4C                                                                                                                                  | 1.03                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 10D                                                                                                               | 0.00                                                                                                                                         | 9D                                                                                                             | 2.61                                                                                                                      | 3D                                                                                                                                                                                                                           | 0.21                                                                                                                                                                   | 4D                                                                                                                                  | 0.35                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 10E                                                                                                               | 0.00                                                                                                                                         | 9E                                                                                                             | 2.04                                                                                                                      | 3E                                                                                                                                                                                                                           | 0.12                                                                                                                                                                   | 4E                                                                                                                                  | 0.16                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| 12A                                                                                                               | 6.91                                                                                                                                         | 11A                                                                                                            | 5.68                                                                                                                      | 5A                                                                                                                                                                                                                           | 3.39                                                                                                                                                                   | 6A                                                                                                                                  | 6.53                                                                                                                      | 9.5                                                                                                                                                                                                                                                                             |
| 12B                                                                                                               | 0.98                                                                                                                                         | 11B                                                                                                            | 2.76                                                                                                                      | 5B                                                                                                                                                                                                                           | 0.19                                                                                                                                                                   | 6B                                                                                                                                  | 2.88                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 12C                                                                                                               | 0.12                                                                                                                                         | 11C                                                                                                            | 2.67                                                                                                                      | 5C                                                                                                                                                                                                                           | 0.00                                                                                                                                                                   | 6C                                                                                                                                  | 1.99                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 12D                                                                                                               | 0.13                                                                                                                                         | 11D                                                                                                            | 2.55                                                                                                                      | 5D                                                                                                                                                                                                                           | 0.00                                                                                                                                                                   | 6D                                                                                                                                  | 0.98                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 12E                                                                                                               | 0.12                                                                                                                                         | 11E                                                                                                            | 2.26                                                                                                                      | 5E                                                                                                                                                                                                                           | 0.00                                                                                                                                                                   | 6E                                                                                                                                  | 0.33                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| Bridge:                                                                                                           |                                                                                                                                              | 89-240                                                                                                         |                                                                                                                           | Bridge:                                                                                                                                                                                                                      |                                                                                                                                                                        | 89-240                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
|                                                                                                                   |                                                                                                                                              |                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                              |                                                                                                                                                                        |                                                                                                                                     |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                         | t:                                                                                                                                           | Rt. 22 ft S                                                                                                    | FO                                                                                                                        | Placement                                                                                                                                                                                                                    | :                                                                                                                                                                      | Lt. 22 ft Sl                                                                                                                        | FO                                                                                                                        |                                                                                                                                                                                                                                                                                 |
| Placement<br>Placement                                                                                            |                                                                                                                                              | Rt. 22 ft Sl<br>08/05/97                                                                                       | FO                                                                                                                        | Placement<br>Placement                                                                                                                                                                                                       |                                                                                                                                                                        | Lt. 22 ft Sl<br>08/07/97                                                                                                            | FO                                                                                                                        |                                                                                                                                                                                                                                                                                 |
|                                                                                                                   | t Date:                                                                                                                                      |                                                                                                                | FO                                                                                                                        |                                                                                                                                                                                                                              | Date:                                                                                                                                                                  |                                                                                                                                     | FO                                                                                                                        |                                                                                                                                                                                                                                                                                 |
| Placement<br>Survey Da                                                                                            | t Date:<br>ate:                                                                                                                              | 08/05/97<br>08/29/02                                                                                           |                                                                                                                           | Placement<br>Survey Da                                                                                                                                                                                                       | Date:                                                                                                                                                                  | 08/07/97<br>08/29/02                                                                                                                |                                                                                                                           | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Placement<br>Survey Da<br>Off C                                                                                   | t Date:<br>ate:<br>rack                                                                                                                      | 08/05/97<br>08/29/02<br>On Ca                                                                                  | rack                                                                                                                      | Placement<br>Survey Da<br>Off C                                                                                                                                                                                              | t Date:<br>hte:<br>rack                                                                                                                                                | 08/07/97<br>08/29/02<br>On C                                                                                                        | rack                                                                                                                      | Depth                                                                                                                                                                                                                                                                           |
| Placement<br>Survey Da<br>Off C<br>Sample                                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                 | 08/05/97<br>08/29/02<br>On Ca<br>Sample                                                                        | rack<br>kg/m <sup>3</sup>                                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample                                                                                                                                                                                    | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                           | 08/07/97<br>08/29/02<br>On C<br>Sample                                                                                              | rack<br>kg/m <sup>3</sup>                                                                                                 | Depth<br>(mm)                                                                                                                                                                                                                                                                   |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.52                                                                                         | 08/05/97<br>08/29/02<br>On C<br>Sample<br>2A                                                                   | rack<br>kg/m <sup>3</sup><br>5.25                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>7A                                                                                                                                                                              | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.09                                                                                                                   | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A                                                                                        | rack<br>kg/m <sup>3</sup><br>5.32                                                                                         | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65                                                                                 | 08/05/97<br>08/29/02<br>On Ca<br>Sample<br>2A<br>2B                                                            | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B                                                                                                                                                                        | <b>t Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39                                                                                | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B                                                                                  | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.32<br>1.82                                                                    | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                    |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C                                                       | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00                                                                         | 08/05/97<br>08/29/02<br>On Ca<br>Sample<br>2A<br>2B<br>2C                                                      | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C                                                                                                                                                                  | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.09<br>0.39<br>0.00                                                                                            | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8B<br>8C                                                                      | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.00                                                         | 08/05/97<br>08/29/02<br>On Ca<br>Sample<br>2A<br>2B                                                            | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B                                                                                                                                                                        | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00                                                                            | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                      | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00                                                                 | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                    |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                 | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00                                                                         | 08/05/97<br>08/29/02<br>On Ca<br>Sample<br>2A<br>2B<br>2C<br>2D                                                | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D                                                                                                                                                            | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.09<br>0.39<br>0.00                                                                                            | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8B<br>8C                                                                      | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                             |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.00<br>0.10                                                 | 08/05/97<br>08/29/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                           | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93<br>0.95                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7D<br>7E                                                                                                                                                | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00<br>0.00                                                                 | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00<br>0.00<br>0.00                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                            |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.10<br>5.93                                                 | 08/05/97<br>08/29/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                     | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93<br>0.95<br>6.37                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A                                                                                                                                                | <b>bate:</b><br><b>tate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00<br>0.00<br>6.98                                         | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                         | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00<br>0.00<br>8.12                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                               | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.00<br>0.10<br>5.93<br>0.35                                 | 08/05/97<br>08/29/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                               | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93<br>0.95<br>6.37<br>1.67                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                                                                                                                          | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.98<br>1.84                                         | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                  | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00<br>0.00<br>8.12<br>2.40                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                                                                                                                                                                      |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                         | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.00<br>0.10<br>5.93<br>0.35<br>0.00                        | 08/05/97<br>08/29/02<br>On Ca<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                        | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93<br>0.95<br>6.37<br>1.67<br>0.27                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                                                                                                        | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.39 | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                           | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00<br>0.00<br>8.12<br>2.40<br>0.35                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                      |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.00<br>0.10<br>5.93<br>0.35<br>0.00<br>0.00<br>0.00<br>0.00 | 08/05/97<br>08/29/02<br>On Ca<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                  | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93<br>0.95<br>6.37<br>1.67<br>0.27<br>0.11                         | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                                                                                                  | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.13                         | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                    | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00<br>0.00<br>8.12<br>2.40<br>0.35<br>0.21                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                             |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.10<br>5.93<br>0.35<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 08/05/97<br>08/29/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E             | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93<br>0.95<br>6.37<br>1.67<br>0.27<br>0.11<br>0.00                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                                                                                                            | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.13<br>0.13<br>0.15         | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D                      | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00<br>0.00<br>8.12<br>2.40<br>0.35<br>0.21<br>0.18                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>6A       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.10<br>5.93<br>0.35<br>0.00<br>0.00<br>0.11<br>5.79         | 08/05/97<br>08/29/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A       | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93<br>0.95<br>6.37<br>1.67<br>0.27<br>0.11<br>0.00<br>4.74         | Placement           Survey Da           Off C           Sample           7A           7B           7C           7D           7E           9A           9B           9C           9D           9E           11A               | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00<br>0.00<br>6.98<br>1.84<br>0.18<br>0.13<br>0.15<br>5.16                 | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                      | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00<br>0.00<br>8.12<br>2.40<br>0.35<br>0.21<br>0.18<br>7.86         | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7                                             |
| Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>6A<br>6B | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.52<br>0.65<br>0.00<br>0.00<br>0.10<br>5.93<br>0.35<br>0.00<br>0.00<br>0.11<br>5.79<br>1.22 | 08/05/97<br>08/29/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B | rack<br>kg/m <sup>3</sup><br>5.25<br>3.05<br>2.29<br>1.93<br>0.95<br>6.37<br>1.67<br>0.27<br>0.11<br>0.00<br>4.74<br>0.63 | Placement           Survey Da           Off C           Sample           7A           7B           7C           7D           7E           9A           9B           9C           9D           9E           11A           11B | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.09<br>0.39<br>0.00<br>0.00<br>0.00<br>0.00<br>6.98<br>1.84<br>0.13<br>0.15<br>5.16<br>2.56                 | 08/07/97<br>08/29/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B | rack<br>kg/m <sup>3</sup><br>5.32<br>1.82<br>0.22<br>0.00<br>0.00<br>8.12<br>2.40<br>0.35<br>0.21<br>0.18<br>7.86<br>3.84 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |

| Placement Date:         Right of CL ( $10/17/97$ )         Placement: Date:         Left of CL ( $10/21/97$ )         Wavey Date: $10/21/97$ ( $10/21/97$ )           Survey Date: $0017/97$ Survey Date: $00121/97$ ( $10/21/97$ )         Mean Depth           Sample         kg/m <sup>3</sup> Sample         kg/m <sup>3</sup> Sample         kg/m <sup>3</sup> (mm)           Sample         kg/m <sup>3</sup> Sample         kg/m <sup>3</sup> Sample         kg/m <sup>3</sup> (mm)           7A         6.19         8.A         6.35         1.A         7.83         2.A         8.85         9.5           7B         0.82         8.B         4.00         1.B         1.83         2.05         5.11         2.66           7C         0.20         8.C         3.11         1.C         0.23         2.C         4.41         47.6           7D         0.17         8.D         2.25         1.D         0.11         2.D         3.22         66.7           10A         7.17         9.A         8.62         4.A         7.72         3.A         7.61         9.5           10B         2.99         9.56         4.8         1.09         3.B         1.67         2.86                                                                                                                                                                                             | Bridge:                                                                                                                                                  |                                                                                                                                                              | 89-244                                                                                                                                                                |                                                                                                                                           | Bridge:                                                                                                                                                         |                                                                                                                                                                               | 89-244                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Off $\Gamma$ -rack         Sample         kg/m³         Sample         kg/m³< | Placemen                                                                                                                                                 | t Date:                                                                                                                                                      | 10/17/97                                                                                                                                                              |                                                                                                                                           | <b>Placement Date:</b>                                                                                                                                          |                                                                                                                                                                               | 10/21/97                                                                                                                                                              |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Off Crack                                                                                                                                                |                                                                                                                                                              | On Crack                                                                                                                                                              |                                                                                                                                           | Off Crack                                                                                                                                                       |                                                                                                                                                                               | On Crack                                                                                                                                                              |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample                                                                                                                                                   | kg/m <sup>3</sup>                                                                                                                                            | Sample                                                                                                                                                                | kg/m <sup>3</sup>                                                                                                                         | Sample                                                                                                                                                          | kg/m <sup>3</sup>                                                                                                                                                             | Sample                                                                                                                                                                | kg/m <sup>3</sup>                                                                                                                         | (mm)                                                                                                                                                                                                                                                                            |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                              | 1                                                                                                                                                                     |                                                                                                                                           | -                                                                                                                                                               |                                                                                                                                                                               | -                                                                                                                                                                     |                                                                                                                                           | ( )                                                                                                                                                                                                                                                                             |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7B                                                                                                                                                       | 0.82                                                                                                                                                         | 8B                                                                                                                                                                    | 4.00                                                                                                                                      | 1B                                                                                                                                                              | 1.83                                                                                                                                                                          | 2B                                                                                                                                                                    | 5.11                                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |      |
| 7E         0.00         8E         1.93         1E         0.10         2E         2.59         85.7           10A         7.17         9A         8.62         4A         7.72         3A         7.61         9.5           10B         2.29         9B         5.06         4B         1.09         3B         1.67         28.6           10C         0.46         9C         3.82         4C         0.16         3C         0.37         47.6           10D         0.24         9D         2.54         4D         0.29         3D         0.41         66.7           10E         0.20         9E         2.63         4E         0.10         3E         LIP         85.7           12A         2.95         11A         7.47         5A         4.13         6A         7.19         9.5           12B         0.19         11B         3.90         5B         0.42         6B         4.00         28.6           12C         0.00         11C         2.99         5C         0.31         6C         0.45         47.6           12D         0.17         11D         2.01         5D         0.12         6D <td>7C</td> <td>0.20</td> <td>8C</td> <td>3.11</td> <td>1C</td> <td>0.23</td> <td>2C</td> <td>4.41</td> <td>47.6</td>                                                                                                                                       | 7C                                                                                                                                                       | 0.20                                                                                                                                                         | 8C                                                                                                                                                                    | 3.11                                                                                                                                      | 1C                                                                                                                                                              | 0.23                                                                                                                                                                          | 2C                                                                                                                                                                    | 4.41                                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          | 0.17                                                                                                                                                         |                                                                                                                                                                       | 2.25                                                                                                                                      | 1D                                                                                                                                                              | 0.11                                                                                                                                                                          | 2D                                                                                                                                                                    | 3.22                                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7E                                                                                                                                                       | 0.00                                                                                                                                                         | 8E                                                                                                                                                                    | 1.93                                                                                                                                      | 1E                                                                                                                                                              | 0.10                                                                                                                                                                          | 2E                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| 12A       2.95       11A       7.47       5A       4.13       6A       7.19       9.5         12B       0.19       11B       3.90       5B       0.42       6B       4.00       28.6         12C       0.00       11C       2.99       5C       0.31       6C       0.45       47.6         12D       0.17       11D       2.01       5D       0.12       6D       1.73       66.7         12E       0.32       11E       2.20       5E       0.00       6E       0.76       85.7         Bridge:       89-245         Placement:       Lt. of CL Unit #2       Placement Date:       10/22/97         Survey Date:       09/04/02       Survey Date:       09/04/02       09/04/02         Mean         Mean         Sample kg/m³       Sample kg/m³       Sample kg/m³       (mm)         19A       7.04       20A       7.29       14A       4.71       13A       8.48       9.5         19B       1.02       20B       4.42       14B       0.27       13B       4.13       28.6         19D       0.12       20C </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| 12E       0.32       11E       2.20       5E       0.00       6E       0.76       85.7         Bridge:       89-245       Bridge: $89-245$ Bridge: $89-245$ Lt. of CL Unit #2       Placement Date: $10/20/97$ Out of $10/20/97$ Survey Date: $09/04/02$ Mean         Survey Date:       09/04/02       Survey Date: $09/04/02$ Mean       Mean         Sample       kg/m³       Sample       kg/m³       Sample       kg/m³       Sample       kg/m³       Mean         19A       7.04       20A       7.29       14A       4.71       13A       8.48       9.5         19B       1.02       20B       4.42       14B       0.27       13B       4.13       28.6         19C       0.12       20C       3.46       14C       0.19       13C       3.60       47.6         19B       0.00       20D       3.08       14D       0.11       13D       3.01       66.7         19E       0.00       20D       2.65       14E       0.10       13E       2.84       85.7         21A       5.32       22A       7.54       16A       5.64 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| Bridge:       89-245       Bridge:       89-245         Placement:       Lt. of CL Unit #2       Placement:       Placement:       Lt. of CL Unit #1         Placement Date: $10/20/97$ Placement: $10/22/97$ $10/22/97$ Survey Dat: $09/04/02$ Survey Dat: $09/04/02$ $09/04/02$ Sample       kg/m³       Sample       kg/m³       Sample       kg/m³       Mean         0ff Crack       On Crack       Off Crack       Off Crack       Mean         19A       7.04       20A       7.29       14A       4.71       13A       8.48       9.5         19B       1.02       20B       4.42       14B       0.27       13B       4.13       28.6         19C       0.12       20C       3.46       14C       0.19       13C       3.60       47.6         19D       0.00       20D       3.08       14D       0.11       13D       3.01       66.7         19E       0.00       20E       2.65       14E       0.10       13E       2.84       85.7         21A       5.32       22A       7.54       16A       5.64       15A       6.03       9                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| Placement:       Lt. of CL Unit #2       Placement: Date:       Lt. of CL Unit #1         Placement: Date:       10/22/97         Survey Date:       09/04/02         Survey Date:       09/04/02         Mean         Off Crack       Off Crack       Mean         Sample       kg/m³       Sample       kg/m³       Sample       kg/m³       Mean         Sample       kg/m³       Sample       kg/m³       Sample       kg/m³       Mean         J19B       1.02       200       3.060       47.6         19D       0.00       20D       3.08       14E <th <<="" colspa="5" td=""><td>IZE</td><td>0.52</td><td>IIE</td><td>2.20</td><td>JE</td><td>0.00</td><td>0E</td><td>0.70</td><td>83.7</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <td>IZE</td> <td>0.52</td> <td>IIE</td> <td>2.20</td> <td>JE</td> <td>0.00</td> <td>0E</td> <td>0.70</td> <td>83.7</td>                                  | IZE                                                                                                                                                          | 0.52                                                                                                                                                                  | IIE                                                                                                                                       | 2.20                                                                                                                                                            | JE                                                                                                                                                                            | 0.00                                                                                                                                                                  | 0E                                                                                                                                        | 0.70                                                                                                                                                                                                                                                                            | 83.7 |
| Placement Date: $10/22/97$ Survey Date: $09/04/02$ Survey Date: $09/04/02$ Survey Date: $09/04/02$ Mean           Off $C_{\pi ck}$ Off $C_{\pi ck}$ Mean           Off $C_{\pi ck}$ Off $C_{\pi ck}$ Mean           Sample         kg/m³         Sample kg/m³         Sample kg/m³         Mean           Doff $C_{\pi ck}$ Off $C_{\pi ck}$ Mean           Janual Mark         Ag/m³         Sample kg/m³         Sample kg/m³         Mean           Janual Mark         Ag/m³         Sample kg/m³         Sample kg/m³         Sample Mark         Ag/m³         Mean           Janual Mark         Ag/m³         Sample kg/m³         Sample kg/m³         Sample Mark         Ag/m³         Mark           Janual Mark         Sample Mark          Sample Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bridge                                                                                                                                                   |                                                                                                                                                              | 80 245                                                                                                                                                                |                                                                                                                                           | Duidan                                                                                                                                                          |                                                                                                                                                                               | 00 245                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| Off Crack         On Crack         Off Crack         Off Crack         Off Crack         Mean Depth           Sample         kg/m³         Sample         kg/m³         Sample         kg/m³         Sample         kg/m³         Mean Depth           19A         7.04         20A         7.29         14A         4.71         13A         8.48         9.5           19B         1.02         20B         4.42         14B         0.27         13B         4.13         28.6           19C         0.12         20C         3.46         14C         0.19         13C         3.60         47.6           19D         0.00         20D         3.08         14D         0.11         13D         3.01         66.7           19E         0.00         20E         2.65         14E         0.10         13E         2.84         85.7           21A         5.32         22A         7.54         16A         5.64         15A         6.03         9.5           21B         0.55         22B         4.06         16B         0.42         15B         3.47         28.6           21D         0.00         22D         2.51         16D         0.00                                                                                                                                                                                                                            | Driuge.                                                                                                                                                  |                                                                                                                                                              | 07-243                                                                                                                                                                |                                                                                                                                           | bridge:                                                                                                                                                         |                                                                                                                                                                               | 89-245                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| 19A7.0420A7.2914A4.7113A8.489.519B1.0220B4.4214B0.2713B4.1328.619C0.1220C3.4614C0.1913C3.6047.619D0.0020D3.0814D0.1113D3.0166.719E0.0020E2.6514E0.1013E2.8485.721A5.3222A7.5416A5.6415A6.039.521B0.5522B4.0616B0.4215B3.4728.621C0.1722C2.8416C0.1315C2.5347.621D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015D1.8566.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Placemen                                                                                                                                                 | t Date:                                                                                                                                                      | Lt. of CL U<br>10/20/97                                                                                                                                               | Unit #2                                                                                                                                   | Placement<br>Placement                                                                                                                                          | Date:                                                                                                                                                                         | Lt. of CL U<br>10/22/97                                                                                                                                               | Unit #1                                                                                                                                   |                                                                                                                                                                                                                                                                                 |      |
| 19A7.0420A7.2914A4.7113A8.489.519B1.0220B4.4214B0.2713B4.1328.619C0.1220C3.4614C0.1913C3.6047.619D0.0020D3.0814D0.1113D3.0166.719E0.0020E2.6514E0.1013E2.8485.721A5.3222A7.5416A5.6415A6.039.521B0.5522B4.0616B0.4215B3.4728.621C0.1722C2.8416C0.1315C2.5347.621D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Placement<br>Placement<br>Survey Da                                                                                                                      | t Date:<br>ate:                                                                                                                                              | Lt. of CL U<br>10/20/97<br>09/04/02                                                                                                                                   |                                                                                                                                           | Placement<br>Placement<br>Survey Da                                                                                                                             | Date:                                                                                                                                                                         | Lt. of CL U<br>10/22/97<br>09/04/02                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |      |
| 19C0.1220C3.4614C0.1913C3.6047.619D0.0020D3.0814D0.1113D3.0166.719E0.0020E2.6514E0.1013E2.8485.721A5.3222A7.5416A5.6415A6.039.521B0.5522B4.0616B0.4215B3.4728.621C0.1722C2.8416C0.1315C2.5347.621D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Placement<br>Placement<br>Survey Da<br>Off C                                                                                                             | t Date:<br>ate:<br>rack                                                                                                                                      | Lt. of CL U<br>10/20/97<br>09/04/02<br>On C                                                                                                                           | rack                                                                                                                                      | Placement<br>Placement<br>Survey Da<br>Off C                                                                                                                    | t Date:<br>hte:<br>rack                                                                                                                                                       | Lt. of CL U<br>10/22/97<br>09/04/02<br>On C                                                                                                                           | rack                                                                                                                                      | Depth                                                                                                                                                                                                                                                                           |      |
| 19D0.0020D3.0814D0.1113D3.0166.719E0.0020E2.6514E0.1013E2.8485.721A5.3222A7.5416A5.6415A6.039.521B0.5522B4.0616B0.4215B3.4728.621C0.1722C2.8416C0.1315C2.5347.621D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                 | Lt. of CL U<br>10/20/97<br>09/04/02<br>On Ca<br>Sample                                                                                                                | rack<br>kg/m <sup>3</sup>                                                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                                          | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                  | Lt. of CL U<br>10/22/97<br>09/04/02<br>On Ca<br>Sample                                                                                                                | rack<br>kg/m <sup>3</sup>                                                                                                                 | Depth<br>(mm)                                                                                                                                                                                                                                                                   |      |
| 19E0.0020E2.6514E0.1013E2.8485.721A5.3222A7.5416A5.6415A6.039.521B0.5522B4.0616B0.4215B3.4728.621C0.1722C2.8416C0.1315C2.5347.621D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A                                                                                            | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04                                                                                                         | Lt. of CL U<br>10/20/97<br>09/04/02<br>On Ca<br>Sample<br>20A                                                                                                         | rack<br>kg/m <sup>3</sup><br>7.29                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A                                                                                                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.71                                                                                                                         | Lt. of CL U<br>10/22/97<br>09/04/02<br>On Ca<br>Sample<br>13A                                                                                                         | <b>rack</b><br><u>kg/m<sup>3</sup></u><br>8.48                                                                                            | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                     |      |
| 21A5.3222A7.5416A5.6415A6.039.521B0.5522B4.0616B0.4215B3.4728.621C0.1722C2.8416C0.1315C2.5347.621D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B                                                                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02                                                                                                 | Lt. of CL U<br>10/20/97<br>09/04/02<br>On Ca<br>Sample<br>20A<br>20B                                                                                                  | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.29<br>4.42                                                                                    | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B                                                                                            | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.71<br>0.27                                                                                                          | Lt. of CL U<br>10/22/97<br>09/04/02<br>On Ca<br>Sample<br>13A<br>13B                                                                                                  | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>8.48<br>4.13                                                                                    | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                    |      |
| 21B0.5522B4.0616B0.4215B3.4728.621C0.1722C2.8416C0.1315C2.5347.621D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C                                                                              | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12                                                                                         | Lt. of CL U<br>10/20/97<br>09/04/02<br>On C<br>Sample<br>20A<br>20B<br>20C                                                                                            | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C                                                                                     | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.71<br>0.27<br>0.19                                                                                                   | Lt. of CL U<br>10/22/97<br>09/04/02<br>On C<br>Sample<br>13A<br>13B<br>13C                                                                                            | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60                                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                     |      |
| 21C0.1722C2.8416C0.1315C2.5347.621D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D                                                                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>0.00                                                                 | Lt. of CL U<br>10/20/97<br>09/04/02<br>On C<br>Sample<br>20A<br>20B<br>20C<br>20D                                                                                     | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E                                                                       | <b>a</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10                                                                                  | Lt. of CL U<br>10/22/97<br>09/04/02<br>On Ca<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E                                                                             | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01                                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                     |      |
| 21D0.0022D2.5116D0.0015D1.8566.721E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>0.00<br>5.32                                                         | Lt. of CL U<br>10/20/97<br>09/04/02<br>On C<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A                                                                       | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E                                                                       | <b>bate:</b><br><b>tate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10<br>5.64                                                        | Lt. of CL U<br>10/22/97<br>09/04/02<br>On C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A                                                                       | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                              |      |
| 21E0.0022E2.3016E0.0015E0.9985.724A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B                                                  | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>5.32<br>0.55                                                         | Lt. of CL U<br>10/20/97<br>09/04/02<br>On Ca<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B                                                               | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54<br>4.06                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B                                                         | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10<br>5.64<br>0.42                                                                   | Lt. of CL U<br>10/22/97<br>09/04/02<br>On Ca<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B                                                               | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03<br>3.47                                                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                     |      |
| 24A5.0123A7.7518A4.0617A6.379.524B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C                                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>5.32<br>0.55<br>0.17                                                 | Lt. of CL U<br>10/20/97<br>09/04/02<br><b>On C</b><br><b>Sample</b><br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C                                           | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54<br>4.06<br>2.84                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C                                                  | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10<br>5.64<br>0.42<br>0.13                                                           | Lt. of CL U<br>10/22/97<br>09/04/02<br><b>On C</b><br><b>Sample</b><br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C                                           | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03<br>3.47<br>2.53                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                      |      |
| 24B0.4223B4.4218B0.4317B2.9528.624C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D                                    | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>5.32<br>0.55<br>0.17<br>0.00                                         | Lt. of CL U<br>10/20/97<br>09/04/02<br><b>On C</b><br><b>Sample</b><br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D                                    | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54<br>4.06<br>2.84<br>2.51                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D                                           | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10<br>5.64<br>0.42<br>0.13<br>0.00                                                | Lt. of CL U<br>10/22/97<br>09/04/02<br>On C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D                                                  | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03<br>3.47<br>2.53<br>1.85                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                             |      |
| 24C0.2923C2.5618C0.1817C1.6247.624D0.5423D2.1818D0.1417D0.7066.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E                             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>5.32<br>0.55<br>0.17<br>0.00<br>0.00<br>0.00                         | Lt. of CL U<br>10/20/97<br>09/04/02<br>On Ca<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E                                          | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54<br>4.06<br>2.84<br>2.51<br>2.30                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E                                    | <b>a</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10<br>5.64<br>0.42<br>0.13<br>0.00<br>0.00                                          | Lt. of CL U<br>10/22/97<br>09/04/02<br><b>On C</b><br><b>Sample</b><br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E                             | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03<br>3.47<br>2.53<br>1.85<br>0.99                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                     |      |
| 24D 0.54 23D 2.18 18D 0.14 17D 0.70 66.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E<br>24A                      | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>5.32<br>0.55<br>0.17<br>0.00<br>0.00<br>5.01                         | Lt. of CL U<br>10/20/97<br>09/04/02<br>On C<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E<br>23A                                    | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54<br>4.06<br>2.84<br>2.51<br>2.30<br>7.75                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16B<br>16C<br>16D<br>16E<br>18A               | <b>a</b> Date:<br>htte:<br><b>b b c c c c c c c c c c</b>                                                                                                                     | Lt. of CL U<br>10/22/97<br>09/04/02<br>On C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A                                    | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03<br>3.47<br>2.53<br>1.85<br>0.99<br>6.37                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7                              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E<br>24A<br>24B               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>5.32<br>0.55<br>0.17<br>0.00<br>0.00<br>5.01<br>0.42                 | Lt. of CL U<br>10/20/97<br>09/04/02<br>On Ca<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E<br>23A<br>23B                            | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54<br>4.06<br>2.84<br>2.51<br>2.30<br>7.75<br>4.42                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B        | <b>a Date:</b><br><b>inte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10<br>5.64<br>0.42<br>0.13<br>0.00<br>0.00<br>4.06<br>0.43      | Lt. of CL U<br>10/22/97<br>09/04/02<br>On Ca<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>15D<br>15E<br>17A<br>17B              | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03<br>3.47<br>2.53<br>1.85<br>0.99<br>6.37<br>2.95                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |      |
| 24E         0.54         23E         1.86         18E         0.00         17E         0.29         85.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E<br>24A<br>24B<br>24C        | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>5.32<br>0.55<br>0.17<br>0.00<br>0.00<br>5.01<br>0.42<br>0.29         | Lt. of CL U<br>10/20/97<br>09/04/02<br><b>On C</b><br><b>Sample</b><br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E<br>23A<br>23B<br>23C        | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54<br>4.06<br>2.84<br>2.51<br>2.30<br>7.75<br>4.42<br>2.56         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B<br>18C | <b>bate:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10<br>5.64<br>0.42<br>0.13<br>0.00<br>0.00<br>4.06<br>0.43<br>0.18 | Lt. of CL U<br>10/22/97<br>09/04/02<br><b>On C</b><br><b>Sample</b><br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A<br>17B<br>17C        | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03<br>3.47<br>2.53<br>1.85<br>0.99<br>6.37<br>2.95<br>1.62         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E<br>24A<br>24B<br>24C<br>24D | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.04<br>1.02<br>0.12<br>0.00<br>0.00<br>5.32<br>0.55<br>0.17<br>0.00<br>0.00<br>5.01<br>0.42<br>0.29<br>0.54 | Lt. of CL U<br>10/20/97<br>09/04/02<br><b>On C</b><br><b>Sample</b><br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E<br>23A<br>23B<br>23C<br>23D | rack<br>kg/m <sup>3</sup><br>7.29<br>4.42<br>3.46<br>3.08<br>2.65<br>7.54<br>4.06<br>2.84<br>2.51<br>2.30<br>7.75<br>4.42<br>2.56<br>2.18 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B<br>18C<br>18D        | <b>a</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.71<br>0.27<br>0.19<br>0.11<br>0.10<br>5.64<br>0.42<br>0.13<br>0.00<br>0.00<br>4.06<br>0.43<br>0.18<br>0.14           | Lt. of CL U<br>10/22/97<br>09/04/02<br><b>On C</b><br><b>Sample</b><br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A<br>17B<br>17C<br>17D | rack<br>kg/m <sup>3</sup><br>8.48<br>4.13<br>3.60<br>3.01<br>2.84<br>6.03<br>3.47<br>2.53<br>1.85<br>0.99<br>6.37<br>2.95<br>1.62<br>0.70 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                      |      |

| Table D.1 (con't) – Chloride Concentration Da | ta |
|-----------------------------------------------|----|
|-----------------------------------------------|----|

| Bridge:                                                                                                             |                                                                                                                                               | 89-245                                                                                                                                            |                                                                                                                           | Bridge:                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-245                                                                                                         |                                                                                                                           |                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Placement:<br>Placement Date:<br>Survey Date:                                                                       |                                                                                                                                               | Rt. of CL Unit #2<br>10/23/97<br>09/03/02                                                                                                         |                                                                                                                           | Placement:<br>Placement Date:<br>Survey Date:                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rt. of CL Unit #1<br>10/24/97<br>09/03/02                                                                      |                                                                                                                           |                                                                                                    |
| Survey Da                                                                                                           |                                                                                                                                               | 07/03/02                                                                                                                                          |                                                                                                                           | Survey Date.                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09/03/02                                                                                                       |                                                                                                                           | Mean                                                                                               |
| Off C                                                                                                               | rack                                                                                                                                          | On C                                                                                                                                              | rack                                                                                                                      | Off C                                                                                                             | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | On C                                                                                                           | rack                                                                                                                      | Depth                                                                                              |
| Sample                                                                                                              | kg/m <sup>3</sup>                                                                                                                             | Sample                                                                                                                                            | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                                            | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                         | kg/m <sup>3</sup>                                                                                                         | (mm)                                                                                               |
| 7A                                                                                                                  | 7.68                                                                                                                                          | 8A                                                                                                                                                | 7.72                                                                                                                      | 1A                                                                                                                | 6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2A                                                                                                             | 6.47                                                                                                                      | 9.5                                                                                                |
| 7B                                                                                                                  | 0.76                                                                                                                                          | 8B                                                                                                                                                | 3.11                                                                                                                      | 1B                                                                                                                | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2B                                                                                                             | 3.18                                                                                                                      | 28.6                                                                                               |
| 7C                                                                                                                  | 0.14                                                                                                                                          | 8C                                                                                                                                                | 2.31                                                                                                                      | 1C                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2C                                                                                                             | 2.21                                                                                                                      | 47.6                                                                                               |
| 7D                                                                                                                  | 0.12                                                                                                                                          | 8D                                                                                                                                                | 1.62                                                                                                                      | 1D                                                                                                                | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2D                                                                                                             | 1.88                                                                                                                      | 66.7                                                                                               |
| 7E                                                                                                                  | 0.27                                                                                                                                          | 8E                                                                                                                                                | 0.60                                                                                                                      | 1E                                                                                                                | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2E                                                                                                             | 1.94                                                                                                                      | 85.7                                                                                               |
| 9A                                                                                                                  | 5.19                                                                                                                                          | 10A                                                                                                                                               | 5.75                                                                                                                      | 4A                                                                                                                | 5.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3A                                                                                                             | 5.94                                                                                                                      | 9.5                                                                                                |
| 9B                                                                                                                  | 0.81                                                                                                                                          | 10B                                                                                                                                               | 2.26                                                                                                                      | 4B                                                                                                                | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3B                                                                                                             | 3.44                                                                                                                      | 28.6                                                                                               |
| 9C                                                                                                                  | 0.21                                                                                                                                          | 10C                                                                                                                                               | 1.91                                                                                                                      | 4C                                                                                                                | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3C                                                                                                             | 2.59                                                                                                                      | 47.6                                                                                               |
| 9D                                                                                                                  | 0.12                                                                                                                                          | 10D                                                                                                                                               | 1.51                                                                                                                      | 4D                                                                                                                | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3D                                                                                                             | 2.28                                                                                                                      | 66.7                                                                                               |
| 9E                                                                                                                  | 0.18                                                                                                                                          | 10E                                                                                                                                               | 1.17                                                                                                                      | 4E                                                                                                                | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3E                                                                                                             | 1.96                                                                                                                      | 85.7                                                                                               |
| 11A                                                                                                                 | 5.92                                                                                                                                          | 12A                                                                                                                                               | 6.14                                                                                                                      | 5A                                                                                                                | 7.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6A                                                                                                             | 9.96                                                                                                                      | 9.5                                                                                                |
| 11B                                                                                                                 | 1.46                                                                                                                                          | 12B                                                                                                                                               | 2.77                                                                                                                      | 5B                                                                                                                | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6B                                                                                                             | 4.50                                                                                                                      | 28.6                                                                                               |
| 11C                                                                                                                 | 0.18                                                                                                                                          | 12C                                                                                                                                               | 2.43                                                                                                                      | 5C                                                                                                                | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6C                                                                                                             | 2.59                                                                                                                      | 47.6                                                                                               |
| 11D                                                                                                                 | 0.17                                                                                                                                          | 12D                                                                                                                                               | 1.92                                                                                                                      | 5D                                                                                                                | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6D                                                                                                             | 2.65                                                                                                                      | 66.7                                                                                               |
| 11E                                                                                                                 | 0.00                                                                                                                                          | 12E                                                                                                                                               | 1.76                                                                                                                      | 5E                                                                                                                | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6E                                                                                                             | 2.30                                                                                                                      | 85.7                                                                                               |
| Bridge:                                                                                                             |                                                                                                                                               | 89-246                                                                                                                                            |                                                                                                                           | Bridge:                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-246                                                                                                         |                                                                                                                           |                                                                                                    |
|                                                                                                                     |                                                                                                                                               |                                                                                                                                                   |                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |                                                                                                                           |                                                                                                    |
| Placement                                                                                                           | t <b>:</b>                                                                                                                                    | East 1/2 SI                                                                                                                                       | FO                                                                                                                        | Placement                                                                                                         | t <b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | West 1/2 S                                                                                                     | SFO                                                                                                                       |                                                                                                    |
|                                                                                                                     |                                                                                                                                               | East 1/2 SI<br>09/08/97                                                                                                                           | FO                                                                                                                        | Placement<br>Placement                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | West 1/2 S<br>09/10/97                                                                                         | SFO                                                                                                                       |                                                                                                    |
| Placement                                                                                                           | t Date:                                                                                                                                       |                                                                                                                                                   | FO                                                                                                                        |                                                                                                                   | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | West 1/2 S<br>09/10/97<br>09/12/02                                                                             | SFO                                                                                                                       |                                                                                                    |
| Placement<br>Placement<br>Survey Da                                                                                 | t Date:<br>nte:                                                                                                                               | 09/08/97<br>09/12/02                                                                                                                              |                                                                                                                           | Placement<br>Survey Da                                                                                            | t Date:<br>nte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09/10/97<br>09/12/02                                                                                           |                                                                                                                           |                                                                                                    |
| Placement                                                                                                           | t Date:<br>hte:<br>rack                                                                                                                       | 09/08/97                                                                                                                                          | rack                                                                                                                      | Placement                                                                                                         | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09/10/97                                                                                                       | rack                                                                                                                      |                                                                                                    |
| Placement<br>Survey Da                                                                                              | t Date:<br>nte:                                                                                                                               | 09/08/97<br>09/12/02                                                                                                                              |                                                                                                                           | Placement<br>Survey Da                                                                                            | t Date:<br>nte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09/10/97<br>09/12/02                                                                                           |                                                                                                                           |                                                                                                    |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A                                                                     | t Date:<br>hte:<br>rack                                                                                                                       | 09/08/97<br>09/12/02<br>On Ca                                                                                                                     | rack                                                                                                                      | Placement<br>Survey Da<br>Off C                                                                                   | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09/10/97<br>09/12/02<br>On C                                                                                   | rack                                                                                                                      | <b>Depth</b><br>(mm)<br>9.5                                                                        |
| Placement<br>Survey Da<br>Off C<br>Sample                                                                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                  | 09/08/97<br>09/12/02<br>On Ca<br>Sample                                                                                                           | rack<br>kg/m <sup>3</sup>                                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample                                                                         | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09/10/97<br>09/12/02<br>On C<br>Sample                                                                         | rack<br>kg/m <sup>3</sup>                                                                                                 | Depth<br>(mm)                                                                                      |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A                                                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>3.09                                                                                          | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A                                                                                                      | rack<br>kg/m <sup>3</sup><br>3.00                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A                                                                   | rack<br>kg/m <sup>3</sup><br>4.57                                                                                         | <b>Depth</b><br>(mm)<br>9.5                                                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B                                                               | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23                                                                                  | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B                                                                                                | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>3.00<br>1.54                                                                    | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B                                                             | <b>rack</b><br><u>kg/m<sup>3</sup></u><br>4.57<br>2.47                                                                    | Depth<br>(mm)<br>9.5<br>28.6                                                                       |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C                                                         | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11                                                                         | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B<br>8C                                                                                          | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C                                                       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C                                                       | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38                                                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6                                                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D                                                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13                                                                 | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                                    | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                 | t Date:<br>http://www.internationalized for the internationalized for th | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                 | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E                                             | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13<br>0.10                                                         | 09/08/97<br>09/12/02<br>On Ca<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                             | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96<br>0.68                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                           | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15<br>0.13<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                           | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86<br>1.89                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A                                       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13<br>0.10<br>3.99                                                 | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                                       | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96<br>0.68<br>3.79                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A                                     | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15<br>0.13<br>0.10<br>3.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A                                     | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86<br>1.89<br>4.44                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                 | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13<br>0.10<br>3.99<br>1.19                                         | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                                | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96<br>0.68<br>3.79<br>1.24                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B                               | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15<br>0.13<br>0.10<br>3.98<br>0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B                               | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86<br>1.89<br>4.44<br>2.34                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C               | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13<br>0.10<br>3.99<br>1.19<br>0.26                                 | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                         | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96<br>0.68<br>3.79<br>1.24<br>0.97                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C                         | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15<br>0.13<br>0.10<br>3.98<br>0.30<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C                         | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86<br>1.89<br>4.44<br>2.34<br>2.29                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D         | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13<br>0.10<br>3.99<br>1.19<br>0.26<br>0.14                         | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                                  | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96<br>0.68<br>3.79<br>1.24<br>0.97<br>0.85                         | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15<br>0.13<br>0.10<br>3.98<br>0.30<br>0.22<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D                   | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86<br>1.89<br>4.44<br>2.34<br>2.29<br>1.99                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13<br>0.10<br>3.99<br>1.19<br>0.26<br>0.14<br>0.11                 | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                                           | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96<br>0.68<br>3.79<br>1.24<br>0.97<br>0.85<br>0.54                 | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D<br>4E             | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15<br>0.13<br>0.10<br>3.98<br>0.30<br>0.22<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D<br>3E             | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86<br>1.89<br>4.44<br>2.34<br>2.29<br>1.99<br>1.37                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>12A        | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13<br>0.10<br>3.99<br>1.19<br>0.26<br>0.14<br>0.11<br>2.70         | 09/08/97<br>09/12/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>11A                                    | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96<br>0.68<br>3.79<br>1.24<br>0.97<br>0.85<br>0.54<br>4.35         | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15<br>0.13<br>0.10<br>3.98<br>0.30<br>0.22<br>0.00<br>0.00<br>3.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A       | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86<br>1.89<br>4.44<br>2.34<br>2.29<br>1.99<br>1.37<br>4.52         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>12A<br>12B | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>3.09<br>0.23<br>0.11<br>0.13<br>0.10<br>3.99<br>1.19<br>0.26<br>0.14<br>0.11<br>2.70<br>0.69 | 09/08/97<br>09/12/02<br><b>On C</b><br><b>Sample</b><br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>11A<br>11B | rack<br>kg/m <sup>3</sup><br>3.00<br>1.54<br>1.23<br>0.96<br>0.68<br>3.79<br>1.24<br>0.97<br>0.85<br>0.54<br>4.35<br>1.92 | Placement<br>Survey Da<br>Off C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.06<br>0.44<br>0.15<br>0.13<br>0.10<br>3.98<br>0.30<br>0.22<br>0.00<br>0.00<br>3.07<br>0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09/10/97<br>09/12/02<br>On C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B | rack<br>kg/m <sup>3</sup><br>4.57<br>2.47<br>2.38<br>1.86<br>1.89<br>4.44<br>2.34<br>2.29<br>1.99<br>1.37<br>4.52<br>2.23 | 9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6          |

| Table D.1 | (con't | ) – Chloride | <b>Concentration Data</b> |
|-----------|--------|--------------|---------------------------|
|-----------|--------|--------------|---------------------------|

| Bridge:                                                                                                       |                                                                                                                                                      | 89-247                                                                                                                |                                                                                                                                   | Bridge:                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-247                                                                                                                                     |                                                                                                                                   |                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Placement:<br>Placement Date:                                                                                 |                                                                                                                                                      | SFO West 13 ft<br>05/05/97                                                                                            |                                                                                                                                   |                                                                                                                                                                                                                                                 | Placement:<br>Placement Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                            | SFO East 26 ft<br>05/07/97                                                                                                        |                                                                                                                            |
| Survey Da                                                                                                     |                                                                                                                                                      | 09/05/02                                                                                                              |                                                                                                                                   |                                                                                                                                                                                                                                                 | Survey Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                                                                   |                                                                                                                            |
| Sui (0) 20                                                                                                    |                                                                                                                                                      |                                                                                                                       |                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09/05/02                                                                                                                                   |                                                                                                                                   | Mean                                                                                                                       |
| Off C                                                                                                         |                                                                                                                                                      | On C                                                                                                                  |                                                                                                                                   | Off C                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | On C                                                                                                                                       |                                                                                                                                   | Depth                                                                                                                      |
| Sample                                                                                                        | kg/m <sup>3</sup>                                                                                                                                    | Sample                                                                                                                | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                                                                                                                                                          | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                                                     | kg/m <sup>3</sup>                                                                                                                 | (mm)                                                                                                                       |
| 8A                                                                                                            | 1.85                                                                                                                                                 | 7A                                                                                                                    | 4.42                                                                                                                              | 3A                                                                                                                                                                                                                                              | 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1A                                                                                                                                         | 6.69                                                                                                                              | 9.5                                                                                                                        |
| 8B                                                                                                            | 0.00                                                                                                                                                 | 7B                                                                                                                    | 1.70                                                                                                                              | 3B                                                                                                                                                                                                                                              | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1B                                                                                                                                         | 3.12                                                                                                                              | 28.6                                                                                                                       |
| 8C                                                                                                            | 0.00                                                                                                                                                 | 7C                                                                                                                    | 1.43                                                                                                                              | 3C                                                                                                                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1C                                                                                                                                         | 3.09                                                                                                                              | 47.6                                                                                                                       |
| 8D                                                                                                            | 0.00                                                                                                                                                 | 7D                                                                                                                    | 1.29                                                                                                                              | 3D                                                                                                                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1D                                                                                                                                         | 2.22                                                                                                                              | 66.7                                                                                                                       |
| 8E                                                                                                            | 0.00                                                                                                                                                 | 7E                                                                                                                    | 1.15                                                                                                                              | 3E                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1E                                                                                                                                         | 1.66                                                                                                                              | 85.7                                                                                                                       |
| 10A                                                                                                           | 1.65                                                                                                                                                 | 9A                                                                                                                    | 3.01                                                                                                                              | 4A                                                                                                                                                                                                                                              | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2A                                                                                                                                         | 4.62                                                                                                                              | 9.5                                                                                                                        |
| 10B                                                                                                           | 0.12                                                                                                                                                 | 9B                                                                                                                    | 1.93                                                                                                                              | 4B                                                                                                                                                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2B                                                                                                                                         | 2.76                                                                                                                              | 28.6                                                                                                                       |
| 10C                                                                                                           | 0.00                                                                                                                                                 | 9C                                                                                                                    | 1.97                                                                                                                              | 4C                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2C                                                                                                                                         | 3.00                                                                                                                              | 47.6                                                                                                                       |
| 10D                                                                                                           | 0.12                                                                                                                                                 | 9D                                                                                                                    | 2.01                                                                                                                              | 4D                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2D                                                                                                                                         | 2.38                                                                                                                              | 66.7                                                                                                                       |
| 10E                                                                                                           | 0.00                                                                                                                                                 | 9E                                                                                                                    | 0.82                                                                                                                              | 4E                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2E                                                                                                                                         | 1.80                                                                                                                              | 85.7                                                                                                                       |
| 12A                                                                                                           | 1.58                                                                                                                                                 | 11A                                                                                                                   | 3.52                                                                                                                              | 5A                                                                                                                                                                                                                                              | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6A                                                                                                                                         | 4.59                                                                                                                              | 9.5                                                                                                                        |
| 12B                                                                                                           | 0.17                                                                                                                                                 | 11B                                                                                                                   | 1.71                                                                                                                              | 5B                                                                                                                                                                                                                                              | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6B                                                                                                                                         | 2.64                                                                                                                              | 28.6                                                                                                                       |
| 12C                                                                                                           | 0.00                                                                                                                                                 | 11C                                                                                                                   | 1.44                                                                                                                              | 5C                                                                                                                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6C                                                                                                                                         | 2.35                                                                                                                              | 47.6                                                                                                                       |
| 12D                                                                                                           | 0.00                                                                                                                                                 | 11D                                                                                                                   | 1.66                                                                                                                              | 5D                                                                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6D                                                                                                                                         | 1.93                                                                                                                              | 66.7                                                                                                                       |
| 12E                                                                                                           | 0.00                                                                                                                                                 | 11E                                                                                                                   | 1.24                                                                                                                              | 5E                                                                                                                                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6E                                                                                                                                         | 1.79                                                                                                                              | 85.7                                                                                                                       |
|                                                                                                               |                                                                                                                                                      |                                                                                                                       |                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                   |                                                                                                                            |
| Bridge:                                                                                                       |                                                                                                                                                      | 89-248                                                                                                                |                                                                                                                                   | Bridge:                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-248                                                                                                                                     |                                                                                                                                   |                                                                                                                            |
|                                                                                                               |                                                                                                                                                      |                                                                                                                       |                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                   |                                                                                                                            |
| Placement                                                                                                     | t:                                                                                                                                                   | Westbound                                                                                                             | d Lane                                                                                                                            | Placement                                                                                                                                                                                                                                       | t <b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eastbound                                                                                                                                  | Lane                                                                                                                              |                                                                                                                            |
|                                                                                                               |                                                                                                                                                      | Westbound<br>04/24/98                                                                                                 | l Lane                                                                                                                            | Placement<br>Placement                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eastbound 05/01/98                                                                                                                         | Lane                                                                                                                              |                                                                                                                            |
| Placement                                                                                                     | t Date:                                                                                                                                              |                                                                                                                       | l Lane                                                                                                                            |                                                                                                                                                                                                                                                 | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                            | Lane                                                                                                                              |                                                                                                                            |
| Placement<br>Placement<br>Survey Da<br>Off C                                                                  | t Date:<br>ate:                                                                                                                                      | 04/24/98                                                                                                              |                                                                                                                                   | Placement                                                                                                                                                                                                                                       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05/01/98                                                                                                                                   |                                                                                                                                   |                                                                                                                            |
| Placement<br>Survey Da                                                                                        | t Date:<br>ate:<br>rack                                                                                                                              | 04/24/98<br>09/25/02                                                                                                  | rack                                                                                                                              | Placement<br>Survey Da                                                                                                                                                                                                                          | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/01/98<br>09/25/02                                                                                                                       | rack                                                                                                                              |                                                                                                                            |
| Placement<br>Survey Da<br>Off C                                                                               | t Date:<br>ate:                                                                                                                                      | 04/24/98<br>09/25/02<br>On Ca                                                                                         |                                                                                                                                   | Placement<br>Survey Da<br>Off C                                                                                                                                                                                                                 | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05/01/98<br>09/25/02<br>On Ca                                                                                                              |                                                                                                                                   | Depth                                                                                                                      |
| Placement<br>Survey Da<br>Off C<br>Sample                                                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                         | 04/24/98<br>09/25/02<br>On Ca<br>Sample                                                                               | rack<br>kg/m <sup>3</sup>                                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample                                                                                                                                                                                                       | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 05/01/98<br>09/25/02<br>On Ca<br>Sample                                                                                                    | rack<br>kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.07                                                                                                 | 04/24/98<br>09/25/02<br>On Ca<br>Sample<br>1A                                                                         | rack<br>kg/m <sup>3</sup><br>5.92                                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A                                                                                                                                                                                                 | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A                                                                                               | rack<br>kg/m <sup>3</sup><br>3.56                                                                                                 | <b>Depth</b><br>(mm)<br>9.5                                                                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14                                                                                 | 04/24/98<br>09/25/02<br>On Ca<br>Sample<br>1A<br>1B                                                                   | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C                                                                                                                                                                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>1.74<br>0.19<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B                                                                                         | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65                                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6                                                                                       |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12                                                                         | 04/24/98<br>09/25/02<br>On C<br>Sample<br>1A<br>1B<br>1C                                                              | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.92<br>3.32                                                                            | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B                                                                                                                                                                                           | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>1.74<br>0.19<br>0.16<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 05/01/98<br>09/25/02<br>On Ca<br>Sample<br>8A<br>8B<br>8B<br>8C                                                                            | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37                                                                         | Depth<br>(mm)<br>9.5<br>28.6                                                                                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                       | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16                                                                 | 04/24/98<br>09/25/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                 | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E                                                                                                                                                                         | t Date:<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://www.market.com/<br>http://wwww.market.com/<br>http://www.market.com/<br>http://www.market.co                                                         | 05/01/98<br>09/25/02<br>On Ca<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                      | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                       |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A                                 | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59                                                         | 04/24/98<br>09/25/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A                                           | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A                                                                                                                                                      | t Date:<br>http://www.nter.<br>track<br>kg/m <sup>3</sup><br>1.74<br>0.19<br>0.16<br>0.13<br>0.14<br>1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                                | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                         |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59<br>1.32                                                 | 04/24/98<br>09/25/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B                                      | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08<br>2.99                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>10A<br>10B                                                                                                                                               | t Date:<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://wwww.nter.<br>http://wwww.nter.<br>http://wwww.nter.<br>http://wwww.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nter.<br>http://wwwwww.nter.<br>http://www.nter.<br>http://www.nter.<br>http://www.nte | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                         | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42<br>2.97                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59<br>1.32<br>0.30                                         | 04/24/98<br>09/25/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C                                | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08<br>2.99<br>1.51                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>10A<br>10B<br>10C                                                                                                                                                    | t Date:<br>http://docs.org/line/10141111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/01/98<br>09/25/02<br>On Ca<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                 | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42<br>2.97<br>2.48                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59<br>1.32<br>0.30<br>0.11                                 | 04/24/98<br>09/25/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D                         | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08<br>2.99<br>1.51<br>1.45                                 | Placement           Survey Da           Off C           Sample           7A           7B           7C           7D           7E           10A           10B           10C           10D                                                         | t Date:<br>http://www.new.org/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/sc                                                                                                                                                                                                                                 | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                           | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42<br>2.97<br>2.48<br>2.15                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                        |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D<br>3E                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59<br>1.32<br>0.30<br>0.11<br>0.39                         | 04/24/98<br>09/25/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D<br>4C<br>4D<br>4E        | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08<br>2.99<br>1.51<br>1.45<br>0.83                         | Placement           Survey Da           Off C           Sample           7A           7B           7C           7D           7E           10A           10B           10C           10D           10E                                           | t Date:<br>http:<br>rack<br>kg/m <sup>3</sup><br>1.74<br>0.19<br>0.16<br>0.13<br>0.14<br>1.48<br>0.16<br>0.00<br>0.00<br>0.00<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                                    | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42<br>2.97<br>2.48<br>2.15<br>2.24                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D<br>3E<br>6A             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59<br>1.32<br>0.30<br>0.11<br>0.39<br>1.69                 | 04/24/98<br>09/25/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A              | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08<br>2.99<br>1.51<br>1.45<br>0.83<br>4.45                 | Placement           Survey Da           Off C           Sample           7A           7B           7C           7D           7E           10A           10B           10C           10D           10E                                           | t Date:<br>http://docs.org/line/file/file/file/file/file/file/file/fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                             | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42<br>2.97<br>2.48<br>2.15<br>2.24<br>2.72                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                         |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D<br>3E<br>6A<br>6B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59<br>1.32<br>0.30<br>0.11<br>0.39<br>1.69<br>1.17         | 04/24/98<br>09/25/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B        | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08<br>2.99<br>1.51<br>1.45<br>0.83<br>4.45<br>2.72         | Placement           Survey Da           Off C           Sample           7A           7B           7C           7D           7E           10A           10B           10C           10D           10E           11A           11B               | t Date:<br>http://docs.org/line/file/file/file/file/file/file/file/fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B        | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42<br>2.97<br>2.48<br>2.15<br>2.24<br>2.72<br>2.18         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                 |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D<br>3E<br>6A<br>6B<br>6C | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59<br>1.32<br>0.30<br>0.11<br>0.39<br>1.69<br>1.17<br>0.39 | 04/24/98<br>09/25/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B<br>5C | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08<br>2.99<br>1.51<br>1.45<br>0.83<br>4.45<br>2.72<br>2.30 | Placement           Survey Da           Off C           Sample           7A           7B           7C           7D           7E           10A           10B           10C           10D           10E           11A           11B           11C | t Date:<br>http:<br>rack<br>kg/m <sup>3</sup><br>1.74<br>0.19<br>0.16<br>0.13<br>0.14<br>1.48<br>0.16<br>0.00<br>0.00<br>0.00<br>0.12<br>2.24<br>0.26<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42<br>2.97<br>2.48<br>2.15<br>2.24<br>2.72<br>2.18<br>1.69 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>64.7 |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>3A<br>3B<br>3C<br>3D<br>3E<br>6A<br>6B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>2.07<br>0.42<br>0.14<br>0.12<br>0.16<br>3.59<br>1.32<br>0.30<br>0.11<br>0.39<br>1.69<br>1.17         | 04/24/98<br>09/25/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>4A<br>4B<br>4C<br>4D<br>4E<br>5A<br>5B        | rack<br>kg/m <sup>3</sup><br>5.92<br>3.32<br>2.72<br>2.43<br>1.72<br>4.08<br>2.99<br>1.51<br>1.45<br>0.83<br>4.45<br>2.72         | Placement           Survey Da           Off C           Sample           7A           7B           7C           7D           7E           10A           10B           10C           10D           10E           11A           11B               | t Date:<br>http://docs.org/line/file/file/file/file/file/file/file/fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/01/98<br>09/25/02<br>On C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B        | rack<br>kg/m <sup>3</sup><br>3.56<br>3.00<br>2.65<br>2.37<br>2.12<br>3.42<br>2.97<br>2.48<br>2.15<br>2.24<br>2.72<br>2.18         | 9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                  |

| Table D.1 | (con't) | – Chloride Concentration D | )ata |
|-----------|---------|----------------------------|------|
|           |         |                            |      |

| Bridge:                                                                                                 |                                                                                                                                                                       | 46-289                                                                                                         |                                                                                                                           | Bridge:                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46-289                                                                                                                            |                                                                                                                                   |                                                                                                    |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Placement<br>Placement                                                                                  |                                                                                                                                                                       | Inside 24 ft<br>09/02/92                                                                                       |                                                                                                                           | Placement:<br>Placement Date:                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outside 20 ft<br>09/11/92                                                                                                         |                                                                                                                                   |                                                                                                    |
| Survey Da                                                                                               | nte:                                                                                                                                                                  | 07/17/02                                                                                                       |                                                                                                                           | <b>Survey Date:</b> 07/17/02                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   | Mean                                                                                                                              |                                                                                                    |
| Off Crack                                                                                               |                                                                                                                                                                       | On Crack                                                                                                       |                                                                                                                           | Off C                                                                                                                                                                                                                             | Off Crack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   | On Crack                                                                                                                          |                                                                                                    |
| Sample                                                                                                  | kg/m <sup>3</sup>                                                                                                                                                     | Sample                                                                                                         | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                                                                                                                                                            | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample                                                                                                                            | kg/m <sup>3</sup>                                                                                                                 | (mm)                                                                                               |
| 8A                                                                                                      | 4.30                                                                                                                                                                  | 7A                                                                                                             | 7.13                                                                                                                      | 2A                                                                                                                                                                                                                                | 2.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1A                                                                                                                                | 7.61                                                                                                                              | 9.5                                                                                                |
| 8B                                                                                                      | 0.35                                                                                                                                                                  | 7B                                                                                                             | 5.14                                                                                                                      | 2B                                                                                                                                                                                                                                | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1B                                                                                                                                | 4.56                                                                                                                              | 28.6                                                                                               |
| 8C                                                                                                      | 0.00                                                                                                                                                                  | 7C                                                                                                             | 4.18                                                                                                                      | 2C                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1C                                                                                                                                | 3.83                                                                                                                              | 47.6                                                                                               |
| 8D                                                                                                      | 0.00                                                                                                                                                                  | 7D                                                                                                             | 3.66                                                                                                                      | 2D                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1D                                                                                                                                | 4.42                                                                                                                              | 66.7                                                                                               |
| 8E                                                                                                      | 0.00                                                                                                                                                                  | 7E                                                                                                             | 2.74                                                                                                                      | 2E                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1E                                                                                                                                | 3.34                                                                                                                              | 85.7                                                                                               |
| 10A                                                                                                     | 5.18                                                                                                                                                                  | 9A                                                                                                             | 7.91                                                                                                                      | 4A                                                                                                                                                                                                                                | 4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3A                                                                                                                                | 6.37                                                                                                                              | 9.5                                                                                                |
| 10B                                                                                                     | 1.27                                                                                                                                                                  | 9B                                                                                                             | 5.66                                                                                                                      | 4B                                                                                                                                                                                                                                | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3B                                                                                                                                | 5.09                                                                                                                              | 28.6                                                                                               |
| 10C                                                                                                     | 0.00                                                                                                                                                                  | 9C                                                                                                             | 4.39                                                                                                                      | 4C                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3C                                                                                                                                | 5.68                                                                                                                              | 47.6                                                                                               |
| 10D                                                                                                     | 0.00                                                                                                                                                                  | 9D                                                                                                             | 3.38                                                                                                                      | 4D                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3D                                                                                                                                | 5.80                                                                                                                              | 66.7                                                                                               |
| 10E                                                                                                     | 0.00                                                                                                                                                                  | 9E                                                                                                             | 2.14                                                                                                                      | 4E                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3E                                                                                                                                | 6.70                                                                                                                              | 85.7                                                                                               |
| 12A                                                                                                     | 6.01                                                                                                                                                                  | 11A                                                                                                            | 9.09                                                                                                                      | 6A                                                                                                                                                                                                                                | 5.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5A                                                                                                                                | 6.42                                                                                                                              | 9.5                                                                                                |
| 12B                                                                                                     | 2.14                                                                                                                                                                  | 11B                                                                                                            | 6.69                                                                                                                      | 6B                                                                                                                                                                                                                                | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5B                                                                                                                                | 5.68                                                                                                                              | 28.6                                                                                               |
| 12C                                                                                                     | 0.28                                                                                                                                                                  | 11C                                                                                                            | 5.20                                                                                                                      | 6C                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5C                                                                                                                                | 4.96                                                                                                                              | 47.6                                                                                               |
| 12D                                                                                                     | 0.00                                                                                                                                                                  | 11D                                                                                                            | 4.02                                                                                                                      | 6D                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5D                                                                                                                                | 4.32                                                                                                                              | 66.7                                                                                               |
| 12E                                                                                                     | 0.00                                                                                                                                                                  | 11E                                                                                                            | 2.53                                                                                                                      | 6E                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5E                                                                                                                                | 4.51                                                                                                                              | 85.7                                                                                               |
| Bridge:                                                                                                 |                                                                                                                                                                       | 46-290                                                                                                         |                                                                                                                           | Bridge:                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46-290                                                                                                                            |                                                                                                                                   |                                                                                                    |
|                                                                                                         |                                                                                                                                                                       |                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                                   |                                                                                                    |
| Placement                                                                                               | t:                                                                                                                                                                    | Inside 24 f                                                                                                    | ì                                                                                                                         | Placement                                                                                                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Outside 10                                                                                                                        | ) ft                                                                                                                              |                                                                                                    |
|                                                                                                         |                                                                                                                                                                       | Inside 24 f<br>09/08/92                                                                                        | t                                                                                                                         | Placement<br>Placement                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outside 10<br>09/15/92                                                                                                            | ) ft                                                                                                                              |                                                                                                    |
| Placement                                                                                               | t Date:                                                                                                                                                               |                                                                                                                | ì                                                                                                                         |                                                                                                                                                                                                                                   | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   | ) ft                                                                                                                              |                                                                                                    |
| Placement<br>Placement<br>Survey Da<br>Off C                                                            | t Date:<br>ate:                                                                                                                                                       | 09/08/92                                                                                                       |                                                                                                                           | Placement                                                                                                                                                                                                                         | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09/15/92                                                                                                                          |                                                                                                                                   |                                                                                                    |
| Placement<br>Survey Da<br>Off C                                                                         | t Date:<br>ate:<br>rack                                                                                                                                               | 09/08/92<br>07/16/02<br>On C                                                                                   | rack                                                                                                                      | Placement<br>Survey Da<br>Off C                                                                                                                                                                                                   | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 09/15/92<br>07/16/02                                                                                                              | rack                                                                                                                              |                                                                                                    |
| Placement<br>Survey Da                                                                                  | t Date:<br>ate:                                                                                                                                                       | 09/08/92<br>07/16/02                                                                                           |                                                                                                                           | Placement<br>Survey Da                                                                                                                                                                                                            | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09/15/92<br>07/16/02<br>On C                                                                                                      |                                                                                                                                   | Depth                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                          | 09/08/92<br>07/16/02<br>On C<br>Sample                                                                         | rack<br>kg/m <sup>3</sup>                                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample                                                                                                                                                                                         | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09/15/92<br>07/16/02<br>On C<br>Sample                                                                                            | rack<br>kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                      |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.38                                                                                                                  | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A                                                                   | rack<br>kg/m <sup>3</sup><br>8.08                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                                                                                                                   | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A                                                                                      | rack<br>kg/m <sup>3</sup><br>7.37                                                                                                 | <b>Depth</b><br>(mm)<br>9.5                                                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67                                                                                                          | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B                                                             | <b>rack</b><br>kg/m <sup>3</sup><br>8.08<br>4.24                                                                          | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                                                                                                             | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.14<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B                                                                                | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.37<br>5.21                                                                            | Depth<br>(mm)<br>9.5<br>28.6                                                                       |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15                                                                                                  | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C                                                       | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                                                                                                       | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.14<br>0.17<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                          | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29                                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00                                                                                          | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                 | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                                                                                                                 | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.14<br>0.17<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D                                                                    | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00<br>0.00<br>0.00                                                                          | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                           | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98<br>1.57<br>8.05<br>5.40                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                                                                                                           | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.14<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E                                                  | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85<br>2.75                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00<br>0.00<br>0.00<br>5.67                                                                  | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                     | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98<br>1.57<br>8.05                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8C<br>8D<br>8E<br>10A                                                                                                                                        | <b>bate:</b><br><b>tate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.14<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>8.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                            | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85<br>2.75<br>7.89                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00<br>0.00<br>5.67<br>0.81                                                                  | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                               | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98<br>1.57<br>8.05<br>5.40                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                                                                                                             | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.14<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>8.50<br>2.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B                                      | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85<br>2.75<br>7.89<br>5.81                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C               | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00<br>0.00<br>5.67<br>0.81<br>0.00                                                         | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                         | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98<br>1.57<br>8.05<br>5.40<br>4.36                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                                                                                                      | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.14<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00          | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85<br>2.75<br>7.89<br>5.81<br>4.33                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00<br>0.00<br>5.67<br>0.81<br>0.00<br>0.00<br>0.00                                          | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                   | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98<br>1.57<br>8.05<br>5.40<br>4.36<br>3.93                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                                                                                                               | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.14<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                          | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85<br>2.75<br>7.89<br>5.81<br>4.33<br>3.43                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00<br>0.00<br>0.00<br>5.67<br>0.81<br>0.00<br>0.00<br>0.00<br>0.00<br>0.14                  | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E             | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98<br>1.57<br>8.05<br>5.40<br>4.36<br>3.93<br>3.01                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C                                                                                                                        | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.14<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                    | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85<br>2.75<br>7.89<br>5.81<br>4.33<br>3.43<br>2.81                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7        |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00<br>0.00<br>0.00<br>5.67<br>0.81<br>0.00<br>0.00<br>0.00<br>0.14<br>6.19<br>0.97<br>0.00 | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A       | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98<br>1.57<br>8.05<br>5.40<br>4.36<br>3.93<br>3.01<br>8.66         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A                                                                                                   | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.14<br>0.17<br>0.00<br>0.00<br>0.00<br>8.50<br>2.95<br>0.87<br>0.16<br>0.00<br>6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85<br>2.75<br>7.89<br>5.81<br>4.33<br>3.43<br>2.81<br>9.00<br>6.80<br>5.33 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5 |
| Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.38<br>1.67<br>0.15<br>0.00<br>0.00<br>5.67<br>0.81<br>0.00<br>0.00<br>0.00<br>0.14<br>6.19<br>0.97                  | 09/08/92<br>07/16/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B | rack<br>kg/m <sup>3</sup><br>8.08<br>4.24<br>3.18<br>1.98<br>1.57<br>8.05<br>5.40<br>4.36<br>3.93<br>3.01<br>8.66<br>4.87 | Placement           Survey Da           Off C           Sample           8A           8B           8C           8D           8E           10A           10B           10C           10D           10E           12A           12B | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.14<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>8.50<br>2.95<br>0.87<br>0.16<br>0.00<br>6.60<br>1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09/15/92<br>07/16/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B                  | rack<br>kg/m <sup>3</sup><br>7.37<br>5.21<br>3.29<br>2.85<br>2.75<br>7.89<br>5.81<br>4.33<br>3.43<br>2.81<br>9.00<br>6.80         | 9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6          |

| Table D.1 (c | con't) – Chl | loride Concer | itration Data |
|--------------|--------------|---------------|---------------|
|--------------|--------------|---------------|---------------|

| Placement:<br>Placement Date: $07/28/94$<br>07/28/94         Placement:<br>Placement Date:<br>06/27/02         Lt. of CL 18 ft<br>07/30/94<br>06/27/02           Sample         kg/m <sup>3</sup> Mean<br>Depth           2A         5.18         1A         7.36         8A         5.09         7A         4.76         9.5           2B         1.22         1B         3.60         8B         1.44         7B         3.06         28.6           2C         0.00         1D         1.13         8D         0.00         7D         2.05         66.7           2E         0.00         1B         0.75         8E         0.00         7E         0.99         85.7           4A         4.00         3A         6.07         10A         4.88         9A         3.95         9.5           4B         0.54         3B         3.26         10B         2.72         9B         2.09         2.86           4C         0.00         3D         1.12         10D                                                                |                                                                                                                               |                                                                                                                                                                      | 46-299                                                                                                                                                         |                                                                                                                                           | Bridge:                                                                                                                                                                                                                           |                                                                                                                                                                                       | 46-299                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Placement Date:<br>Survey Date:                                                                                               |                                                                                                                                                                      | 07/28/94<br>06/27/02                                                                                                                                           |                                                                                                                                           | Placement                                                                                                                                                                                                                         | <b>Placement Date:</b>                                                                                                                                                                |                                                                                                                                                        | 07/30/94                                                                                                                                  |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           | U                                                                                                                                                                                                                                 |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           | -                                                                                                                                                                                                                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               | 0                                                                                                                                                                    | -                                                                                                                                                              | 0                                                                                                                                         | -                                                                                                                                                                                                                                 |                                                                                                                                                                                       | -                                                                                                                                                      |                                                                                                                                           | . ,                                                                                                                                                                                                                                                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| 6E         0.00         5E         0.97         12E         0.00         11E         0.42         85.7           Bridge:         46-300         Bridge:         46-300         Rt. of CL 18 ft         Placement:         Rt. of CL 18 ft         Placement:         Number of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Bridge:       46-300       Bridge:       46-300         Placement:       Lt. of CL 22 ft       Placement:       Rt. of CL 18 ft         Placement Date: $08/14/95$ Placement Date: $08/10/95$ Survey Date: $08/03/01$ Survey Date: $08/03/01$ Off Crack       On Crack       Off Crack       On Crack       Depth         Sample       kg/m³       Sample       kg/m³       Sample       kg/m³       (mm)         2A       4.10       1A $7.64$ 8A $6.29$ $7A$ $3.83$ $9.5$ 2B       2.03       1B $4.80$ 8B $1.96$ $7B$ $2.34$ $28.6$ 2C       0.46       1C $3.22$ 8C $0.26$ $7C$ $2.11$ $47.6$ 2D       0.15       1D $1.20$ 8D $0.00$ $7D$ $1.76$ $66.7$ 2E       0.17       1E $0.33$ 8E $0.00$ $7E$ $0.20$ $85.7$ 4A $5.24$ $3A$ $6.11$ $10A$ $5.36$ $9A$ $6.25$ $9.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Placement:<br>Placement Date:<br>Survey Date:         Lt. of CL 22 ft<br>08/03/01         Placement:<br>Placement Date:<br>08/03/01         Rt. of CL 18 ft<br>08/10/95<br>08/03/01           Off Crack         On Crack         Off Crack         On Crack         Mean<br>Depth           Sample         kg/m³         Sample         kg/m³         Sample         kg/m³         Sample         kg/m³         Mean<br>Depth           2A         4.10         1A         7.64         8A         6.29         7A         3.83         9.5           2B         2.03         1B         4.80         8B         1.96         7B         2.34         28.6           2C         0.46         1C         3.22         8C         0.26         7C         2.11         47.6           2D         0.15         1D         1.20         8D         0.00         7D         1.76         66.7           2E         0.17         1E         0.33         8E         0.00         7E         0.20         85.7           4A         5.24         3A         6.11         10A         5.36         9A         6.25         9.5           4B         1.46         3B         3.90         10B         2.60         9B         3.67                                                     | 6E                                                                                                                            | 0.00                                                                                                                                                                 | 5E                                                                                                                                                             | 0.97                                                                                                                                      | 12E                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                  | HE                                                                                                                                                     | 0.42                                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| Placement Date:         08/14/95         Placement Date:         08/10/95           Survey Date:         08/03/01         Survey Date:         08/03/01           Off Crack         On Crack         Off Crack         On Crack         Off Crack         On Crack         Mean           Sample         kg/m³         Sample         kg/m³         Sample         kg/m³         Sample         kg/m³         Mean           2A         4.10         1A         7.64         8A         6.29         7A         3.83         9.5           2B         2.03         1B         4.80         8B         1.96         7B         2.34         28.6           2C         0.46         1C         3.22         8C         0.26         7C         2.11         47.6           2D         0.15         1D         1.20         8D         0.00         7D         1.76         66.7           2E         0.17         1E         0.33         8E         0.00         7E         0.20         85.7           4A         5.24         3A         6.11         10A         5.36         9A         6.25         9.5           4B         1.46         3B <td< th=""><th>Bridge:</th><th></th><th>46-300</th><th></th><th>Bridge:</th><th></th><th>46-300</th><th></th><th></th></td<> | Bridge:                                                                                                                       |                                                                                                                                                                      | 46-300                                                                                                                                                         |                                                                                                                                           | Bridge:                                                                                                                                                                                                                           |                                                                                                                                                                                       | 46-300                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Survey Date: $08/03/01$ MeanOff CrackOff CrackMeanOff CrackOn CrackOn CrackDepthSamplekg/m³Samplekg/m³Samplekg/m³(mm)2A4.101A7.648A $6.29$ 7A $3.83$ $9.5$ 2B2.031B4.808B $1.96$ 7B $2.34$ $28.6$ 2C0.461C $3.22$ 8C $0.26$ 7C $2.11$ $47.6$ 2D0.151D1.208D $0.00$ 7D $1.76$ $66.7$ 2E0.171E $0.33$ 8E $0.00$ 7E $0.20$ $85.7$ 4A $5.24$ 3A $6.11$ $10A$ $5.36$ $9A$ $6.25$ $9.5$ 4B $1.46$ 3B $3.90$ $10B$ $2.60$ $9B$ $3.67$ $28.6$ 4C $0.00$ 3C $3.40$ $10C$ $1.28$ $9C$ $2.23$ $47.6$ 4D $0.00$ 3D $2.38$ $10D$ $0.27$ $9D$ $0.92$ $66.7$ 4E $0.00$ 3E $1.68$ $10E$ $0.00$ $9E$ $0.67$ $85.7$ 6A $5.40$ $5A$ $5.97$ $12A$ $6.37$ $11A$ $7.44$ $9.5$ 6B $2.62$ $5B$ $3.98$ $12B$ $3.18$ $11B$ $3.70$ $28.6$ 6C $0.40$ $5C$ $3.12$ $12C$ $0.57$ $11C$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Off Crack         On Crack         Off Crack         Off Crack         On Crack         Depth           Sample         kg/m³         (mm)           2A         4.10         1A         7.64         8A         6.29         7A         3.83         9.5           2B         2.03         1B         4.80         8B         1.96         7B         2.34         28.6           2C         0.46         1C         3.22         8C         0.26         7C         2.11         47.6           2D         0.15         1D         1.20         8D         0.00         7D         1.76         66.7           2E         0.17         1E         0.33         8E         0.00         7E         0.20         85.7           4A         5.24         3A         6.11         10A         5.36         9A         6.25         9.5           4B         1.46                                                                                                                | Placement                                                                                                                     | t <b>:</b>                                                                                                                                                           | Lt. of CL 2                                                                                                                                                    | 22 ft                                                                                                                                     | Placement                                                                                                                                                                                                                         |                                                                                                                                                                                       | Rt. of CL                                                                                                                                              | 18 ft                                                                                                                                     |                                                                                                                                                                                                                                                                                 |
| Off $Crack$ On $Crack$ Off $Crack$ On $Crack$ DepthSamplekg/m³Samplekg/m³Samplekg/m³Samplekg/m³(mm)2A4.101A7.648A6.297A3.839.52B2.031B4.808B1.967B2.3428.62C0.461C3.228C0.267C2.1147.62D0.151D1.208D0.007D1.7666.72E0.171E0.338E0.007E0.2085.74A5.243A6.1110A5.369A6.259.54B1.463B3.9010B2.609B3.6728.64C0.003C3.4010C1.289C2.2347.64D0.003D2.3810D0.279D0.9266.74E0.003E1.6810E0.009E0.6785.76A5.405A5.9712A6.3711A7.449.56B2.625B3.9812B3.1811B3.7028.66C0.405C3.1212C0.5711C2.7247.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                | 22 ft                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                        | 18 ft                                                                                                                                     |                                                                                                                                                                                                                                                                                 |
| Samplekg/m³Samplekg/m³Samplekg/m³Samplekg/m³(mm)2A4.101A7.648A $6.29$ 7A $3.83$ $9.5$ 2B2.031B4.808B $1.96$ 7B $2.34$ $28.6$ 2C0.461C $3.22$ 8C $0.26$ 7C $2.11$ $47.6$ 2D0.151D $1.20$ 8D $0.00$ 7D $1.76$ $66.7$ 2E0.171E $0.33$ 8E $0.00$ 7E $0.20$ $85.7$ 4A $5.24$ 3A $6.11$ $10A$ $5.36$ $9A$ $6.25$ $9.5$ 4B $1.46$ 3B $3.90$ $10B$ $2.60$ $9B$ $3.67$ $28.6$ 4C $0.00$ 3C $3.40$ $10C$ $1.28$ $9C$ $2.23$ $47.6$ 4D $0.00$ 3D $2.38$ $10D$ $0.27$ $9D$ $0.92$ $66.7$ 4E $0.00$ 3E $1.68$ $10E$ $0.00$ $9E$ $0.67$ $85.7$ 6A $5.40$ $5A$ $5.97$ $12A$ $6.37$ $11A$ $7.44$ $9.5$ 6B $2.62$ $5B$ $3.98$ $12B$ $3.18$ $11B$ $3.70$ $28.6$ 6C $0.40$ $5C$ $3.12$ $12C$ $0.57$ $11C$ $2.72$ $47.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Placement                                                                                                                     | t Date:                                                                                                                                                              | 08/14/95                                                                                                                                                       | 22 ft                                                                                                                                     | Placement                                                                                                                                                                                                                         | Date:                                                                                                                                                                                 | 08/10/95                                                                                                                                               | 18 ft                                                                                                                                     |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Survey Da                                                                                                        | t Date:<br>ate:                                                                                                                                                      | 08/14/95<br>08/03/01                                                                                                                                           |                                                                                                                                           | Placement<br>Survey Da                                                                                                                                                                                                            | Date:                                                                                                                                                                                 | 08/10/95<br>08/03/01                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Survey Da<br>Off C                                                                                               | t Date:<br>ate:<br>rack                                                                                                                                              | 08/14/95<br>08/03/01<br>On C                                                                                                                                   | rack                                                                                                                                      | Placement<br>Survey Da<br>Off C                                                                                                                                                                                                   | Date:<br>hte:<br>rack                                                                                                                                                                 | 08/10/95<br>08/03/01<br>On Ca                                                                                                                          | rack                                                                                                                                      | Depth                                                                                                                                                                                                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample                                                                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                         | 08/14/95<br>08/03/01<br>On C<br>Sample                                                                                                                         | rack<br>kg/m <sup>3</sup>                                                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample                                                                                                                                                                                         | Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                            | 08/10/95<br>08/03/01<br>On Ca<br>Sample                                                                                                                | rack<br>kg/m <sup>3</sup>                                                                                                                 | Depth<br>(mm)                                                                                                                                                                                                                                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                               | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>4.10                                                                                                                 | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A                                                                                                                   | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.64                                                                                            | Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                                                                                                                   | Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>6.29                                                                                                                                    | 08/10/95<br>08/03/01<br>On C<br>Sample<br>7A                                                                                                           | rack<br>kg/m <sup>3</sup><br>3.83                                                                                                         | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03                                                                                                         | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B                                                                                                             | <b>rack</b><br>kg/m <sup>3</sup><br>7.64<br>4.80                                                                                          | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                                                                                                             | <b>Date:</b><br><b>te:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96                                                                                                  | 08/10/95<br>08/03/01<br>On Ca<br>Sample<br>7A<br>7B                                                                                                    | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>3.83<br>2.34                                                                                    | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                    |
| 4A         5.24         3A         6.11         10A         5.36         9A         6.25         9.5           4B         1.46         3B         3.90         10B         2.60         9B         3.67         28.6           4C         0.00         3C         3.40         10C         1.28         9C         2.23         47.6           4D         0.00         3D         2.38         10D         0.27         9D         0.92         66.7           4E         0.00         3E         1.68         10E         0.00         9E         0.67         85.7           6A         5.40         5A         5.97         12A         6.37         11A         7.44         9.5           6B         2.62         5B         3.98         12B         3.18         11B         3.70         28.6           6C         0.40         5C         3.12         12C         0.57         11C         2.72         47.6                                                                                                                                                                                                                                                                                                                                                        | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46                                                                                                 | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C                                                                                                       | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                                                                                                       | <b>Date:</b><br><b>te:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26                                                                                          | 08/10/95<br>08/03/01<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                                               | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11                                                                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                            |
| 4B         1.46         3B         3.90         10B         2.60         9B         3.67         28.6           4C         0.00         3C         3.40         10C         1.28         9C         2.23         47.6           4D         0.00         3D         2.38         10D         0.27         9D         0.92         66.7           4E         0.00         3E         1.68         10E         0.00         9E         0.67         85.7           6A         5.40         5A         5.97         12A         6.37         11A         7.44         9.5           6B         2.62         5B         3.98         12B         3.18         11B         3.70         28.6           6C         0.40         5C         3.12         12C         0.57         11C         2.72         47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15                                                                                         | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                                                                 | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20                                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                                                                                                                 | <b>Date:</b><br><b>te:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00                                                                                  | 08/10/95<br>08/03/01<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D                                                                                        | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76                                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                             |
| 4C         0.00         3C         3.40         10C         1.28         9C         2.23         47.6           4D         0.00         3D         2.38         10D         0.27         9D         0.92         66.7           4E         0.00         3E         1.68         10E         0.00         9E         0.67         85.7           6A         5.40         5A         5.97         12A         6.37         11A         7.44         9.5           6B         2.62         5B         3.98         12B         3.18         11B         3.70         28.6           6C         0.40         5C         3.12         12C         0.57         11C         2.72         47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17                                                                                 | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                                                           | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                                                                                                           | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>0.00                                                                 | 08/10/95<br>08/03/01<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E                                                                                  | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                     |
| 4D         0.00         3D         2.38         10D         0.27         9D         0.92         66.7           4E         0.00         3E         1.68         10E         0.00         9E         0.67         85.7           6A         5.40         5A         5.97         12A         6.37         11A         7.44         9.5           6B         2.62         5B         3.98         12B         3.18         11B         3.70         28.6           6C         0.40         5C         3.12         12C         0.57         11C         2.72         47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                                 | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24                                                                         | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                                                                     | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8C<br>8D<br>8E<br>10A                                                                                                                                        | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>0.00<br>5.36                                                         | 08/10/95<br>08/03/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A                                                                             | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                              |
| 4E         0.00         3E         1.68         10E         0.00         9E         0.67         85.7           6A         5.40         5A         5.97         12A         6.37         11A         7.44         9.5           6B         2.62         5B         3.98         12B         3.18         11B         3.70         28.6           6C         0.40         5C         3.12         12C         0.57         11C         2.72         47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24<br>1.46                                                                 | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                                                               | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11<br>3.90                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                                                                                                             | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>5.36<br>2.60                                                         | 08/10/95<br>08/03/01<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B                                                           | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25<br>3.67                                                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                     |
| 6A5.405A5.9712A6.3711A7.449.56B2.625B3.9812B3.1811B3.7028.66C0.405C3.1212C0.5711C2.7247.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                                     | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24<br>1.46<br>0.00                                                        | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                                                                         | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11<br>3.90<br>3.40                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                                                                                                      | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>5.36<br>2.60<br>1.28                                                 | 08/10/95<br>08/03/01<br>0n C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                                     | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25<br>3.67<br>2.23                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                      |
| 6B2.625B3.9812B3.1811B3.7028.66C0.405C3.1212C0.5711C2.7247.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24<br>1.46<br>0.00<br>0.00                                                 | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                                                                   | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11<br>3.90<br>3.40<br>2.38                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                                                                                                               | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>5.36<br>2.60<br>1.28<br>0.27                                         | 08/10/95<br>08/03/01<br>0n C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                               | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25<br>3.67<br>2.23<br>0.92                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                             |
| 6C 0.40 5C 3.12 12C 0.57 11C 2.72 47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24<br>1.46<br>0.00<br>0.00<br>0.00<br>0.00                                 | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                                                             | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11<br>3.90<br>3.40<br>2.38<br>1.68                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C                                                                                                                        | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>5.36<br>2.60<br>1.28<br>0.27<br>0.00                                 | 08/10/95<br>08/03/01<br>0n C<br>5<br>3ample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                                    | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25<br>3.67<br>2.23<br>0.92<br>0.67                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24<br>1.46<br>0.00<br>0.00<br>0.00<br>5.40                                 | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A                                                       | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11<br>3.90<br>3.40<br>2.38<br>1.68<br>5.97                         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A                                                                                                   | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>5.36<br>2.60<br>1.28<br>0.27<br>0.00<br>6.37                         | 08/10/95<br>08/03/01<br>0n C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A                                              | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25<br>3.67<br>2.23<br>0.92<br>0.67<br>7.44                         | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           65.7           9.5           28.6           47.6           65.7           9.5           28.6           47.6           66.7           85.7 |
| (D = 0.00, 5D = 2.79, 12D = 0.16, 11D = 2.45, 16.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24<br>1.46<br>0.00<br>0.00<br>0.00<br>0.00<br>5.40<br>2.62                 | 08/14/95<br>08/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B                                                 | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11<br>3.90<br>3.40<br>2.38<br>1.68<br>5.97<br>3.98                 | Placement           Survey Da           Off C           Sample           8A           8B           8C           8D           8E           10A           10B           10C           10D           10E           12A           12B | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>5.36<br>2.60<br>1.28<br>0.27<br>0.00<br>6.37<br>3.18                 | 08/10/95<br>08/03/01<br>0n C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B               | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25<br>3.67<br>2.23<br>0.92<br>0.67<br>7.44<br>3.70                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24<br>1.46<br>0.00<br>0.00<br>0.00<br>0.00<br>5.40<br>2.62<br>0.40         | 08/14/95<br>08/03/01<br>08/03/01<br>08/03/01<br>1A<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C                               | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11<br>3.90<br>3.40<br>2.38<br>1.68<br>5.97<br>3.98<br>3.12         | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C                                                                                     | <b>bate:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>5.36<br>2.60<br>1.28<br>0.27<br>0.00<br>6.37<br>3.18<br>0.57         | 08/10/95<br>08/03/01<br>08/03/01<br>58mple<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C    | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25<br>3.67<br>2.23<br>0.92<br>0.67<br>7.44<br>3.70<br>2.72         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>47.6                                                                                                                                                      |
| 6E 0.00 5E 1.98 12E 0.17 11E 1.43 85.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C<br>6D | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.10<br>2.03<br>0.46<br>0.15<br>0.17<br>5.24<br>1.46<br>0.00<br>0.00<br>0.00<br>0.00<br>5.40<br>2.62<br>0.40<br>0.00 | 08/14/95<br>08/03/01<br>08/03/01<br>08/03/01<br>18<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>12<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C<br>5D | rack<br>kg/m <sup>3</sup><br>7.64<br>4.80<br>3.22<br>1.20<br>0.33<br>6.11<br>3.90<br>3.40<br>2.38<br>1.68<br>5.97<br>3.98<br>3.12<br>2.78 | Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C<br>12D                                                                              | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.29<br>1.96<br>0.26<br>0.00<br>0.00<br>5.36<br>2.60<br>1.28<br>0.27<br>0.00<br>6.37<br>3.18<br>0.57<br>0.16 | 08/10/95<br>08/03/01<br>0n C<br>5ample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C<br>11D | rack<br>kg/m <sup>3</sup><br>3.83<br>2.34<br>2.11<br>1.76<br>0.20<br>6.25<br>3.67<br>2.23<br>0.92<br>0.67<br>7.44<br>3.70<br>2.72<br>2.45 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                      |

| Bridge:                                                                                                                 |                                                                                                                                                      | 46-301                                                                                                                |                                                                                                                                   | Bridge:                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46-301                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement                                                                                                  |                                                                                                                                                      | Rt. of CL 24 ft<br>08/03/94                                                                                           |                                                                                                                                   | Placement:<br>Placement Date:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lt. of CL 24 to 36 ft<br>08/06/94                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Survey Date: 06/20/02                                                                                                   |                                                                                                                                                      |                                                                                                                       | Survey Date:                                                                                                                      |                                                                                                                                                            | 07/03/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Off C                                                                                                                   | rack                                                                                                                                                 | On C                                                                                                                  | rack                                                                                                                              | Off C                                                                                                                                                      | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | On Crack                                                                                                                             |                                                                                                                                   | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Sample                                                                                                                  | kg/m <sup>3</sup>                                                                                                                                    | Sample                                                                                                                | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                                                                     | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample                                                                                                                               | kg/m <sup>3</sup>                                                                                                                 | (mm)                                                                                                                                                                                                                                                                            |
| 2A                                                                                                                      | 6.24                                                                                                                                                 | 1A                                                                                                                    | 11.11                                                                                                                             | 8A                                                                                                                                                         | 3.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7A                                                                                                                                   | LIP                                                                                                                               | 9.5                                                                                                                                                                                                                                                                             |
| 2B                                                                                                                      | 2.13                                                                                                                                                 | 1B                                                                                                                    | 3.97                                                                                                                              | 8B                                                                                                                                                         | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7B                                                                                                                                   | LIP                                                                                                                               | 28.6                                                                                                                                                                                                                                                                            |
| 2C                                                                                                                      | 0.11                                                                                                                                                 | 1C                                                                                                                    | 2.39                                                                                                                              | 8C                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7C                                                                                                                                   | LIP                                                                                                                               | 47.6                                                                                                                                                                                                                                                                            |
| 2D                                                                                                                      | 0.00                                                                                                                                                 | 1D                                                                                                                    | 2.06                                                                                                                              | 8D                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7D                                                                                                                                   | 3.13                                                                                                                              | 66.7                                                                                                                                                                                                                                                                            |
| 2E                                                                                                                      | 0.00                                                                                                                                                 | 1E                                                                                                                    | 1.85                                                                                                                              | 8E                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7E                                                                                                                                   | 3.88                                                                                                                              | 85.7                                                                                                                                                                                                                                                                            |
| 4A                                                                                                                      | 5.42                                                                                                                                                 | 3A                                                                                                                    | 5.66                                                                                                                              | 10A                                                                                                                                                        | 6.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9A                                                                                                                                   | 6.50                                                                                                                              | 9.5                                                                                                                                                                                                                                                                             |
| 4B                                                                                                                      | 1.60                                                                                                                                                 | 3B                                                                                                                    | 3.20                                                                                                                              | 10R                                                                                                                                                        | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9B                                                                                                                                   | 3.52                                                                                                                              | 28.6                                                                                                                                                                                                                                                                            |
| 4D<br>4C                                                                                                                | 0.00                                                                                                                                                 | 3D<br>3C                                                                                                              | 2.17                                                                                                                              | 10D                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9C                                                                                                                                   | 2.29                                                                                                                              | 47.6                                                                                                                                                                                                                                                                            |
| 4C<br>4D                                                                                                                | 0.00                                                                                                                                                 | 3C<br>3D                                                                                                              | 1.54                                                                                                                              | 10C                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9D                                                                                                                                   | 2.29                                                                                                                              | 47.0<br>66.7                                                                                                                                                                                                                                                                    |
| 4D<br>4E                                                                                                                | 0.00                                                                                                                                                 | 3D<br>3E                                                                                                              | 0.96                                                                                                                              | 10D                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9D<br>9E                                                                                                                             | 1.78                                                                                                                              | 85.7                                                                                                                                                                                                                                                                            |
|                                                                                                                         |                                                                                                                                                      |                                                                                                                       |                                                                                                                                   |                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| 6A                                                                                                                      | 4.56                                                                                                                                                 | 5A                                                                                                                    | 6.11                                                                                                                              | 12A                                                                                                                                                        | 4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11A                                                                                                                                  | 5.15                                                                                                                              | 9.5<br>28.6                                                                                                                                                                                                                                                                     |
| 6B                                                                                                                      | 0.72                                                                                                                                                 | 5B                                                                                                                    | 2.59                                                                                                                              | 12B                                                                                                                                                        | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11B                                                                                                                                  | 4.06                                                                                                                              | 28.6                                                                                                                                                                                                                                                                            |
| 6C                                                                                                                      | 0.00                                                                                                                                                 | 5C                                                                                                                    | 1.99                                                                                                                              | 12C                                                                                                                                                        | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11C                                                                                                                                  | 2.90                                                                                                                              | 47.6                                                                                                                                                                                                                                                                            |
| 6D                                                                                                                      | 0.00                                                                                                                                                 | 5D                                                                                                                    | 1.49                                                                                                                              | 12D                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11D                                                                                                                                  | 2.99                                                                                                                              | 66.7                                                                                                                                                                                                                                                                            |
| 6E                                                                                                                      | 0.00                                                                                                                                                 | 5E                                                                                                                    | 1.04                                                                                                                              | 12E                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11E                                                                                                                                  | 5.10                                                                                                                              | 85.7                                                                                                                                                                                                                                                                            |
| Bridge:                                                                                                                 |                                                                                                                                                      | 46-301                                                                                                                |                                                                                                                                   | Bridge:                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46-301                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
|                                                                                                                         |                                                                                                                                                      |                                                                                                                       |                                                                                                                                   | 8                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                               | t:                                                                                                                                                   | Rt. of CL 2                                                                                                           | 24 to 36 ft                                                                                                                       | Placement                                                                                                                                                  | t <b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lt. of CL 2                                                                                                                          | 24 ft                                                                                                                             |                                                                                                                                                                                                                                                                                 |
|                                                                                                                         |                                                                                                                                                      | Rt. of CL 2<br>08/05/94                                                                                               | 24 to 36 ft                                                                                                                       | 0                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lt. of CL 2<br>08/06/94                                                                                                              | 24 ft                                                                                                                             |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                               | t Date:                                                                                                                                              |                                                                                                                       | 24 to 36 ft                                                                                                                       | Placement                                                                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      | 24 ft                                                                                                                             |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                               | t Date:<br>ate:                                                                                                                                      | 08/05/94                                                                                                              |                                                                                                                                   | Placement<br>Placement                                                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/06/94                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Placement<br>Survey Da                                                                                                  | t Date:<br>ate:<br>rack                                                                                                                              | 08/05/94<br>07/03/02                                                                                                  | rack                                                                                                                              | Placement<br>Placement<br>Survey Da                                                                                                                        | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08/06/94<br>06/20/02                                                                                                                 | rack                                                                                                                              |                                                                                                                                                                                                                                                                                 |
| Placement<br>Survey Da<br>Off C                                                                                         | t Date:<br>ate:                                                                                                                                      | 08/05/94<br>07/03/02<br>On Ca                                                                                         |                                                                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C                                                                                                               | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 08/06/94<br>06/20/02<br>On Cr                                                                                                        |                                                                                                                                   | Depth                                                                                                                                                                                                                                                                           |
| Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                         | 08/05/94<br>07/03/02<br>On Ca<br>Sample                                                                               | rack<br>kg/m <sup>3</sup>                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08/06/94<br>06/20/02<br>On Ca<br>Sample                                                                                              | rack<br>kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                                                                                                                                                                                                   |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.08                                                                                                 | 08/05/94<br>07/03/02<br>On Ca<br>Sample<br>1A                                                                         | rack<br>kg/m <sup>3</sup><br>7.64                                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                               | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A                                                                                        | rack<br>kg/m <sup>3</sup><br>8.24                                                                                                 | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17                                                                                 | 08/05/94<br>07/03/02<br>On C<br>Sample<br>1A<br>1B<br>1C                                                              | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                   | t Date:<br>http://www.material.org/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/acti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08/06/94<br>06/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C                                                                            | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42                                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                       | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00                                                                         | 08/05/94<br>07/03/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D                                                       | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                             | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>7.15<br>3.75<br>0.80<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D                                                                      | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                             |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00                                                                 | 08/05/94<br>07/03/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1C<br>1D<br>1E                                     | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.15<br>3.75<br>0.80<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E                                                    | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                            |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>6.61                                                         | 08/05/94<br>07/03/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                                | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>7.15<br>3.75<br>0.80<br>0.00<br>0.00<br>0.00<br>5.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                              | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>6.61<br>2.48                                                 | 08/05/94<br>07/03/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                      | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74<br>3.63                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                         | t Date:<br>http://www.mail.org/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/action/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                                    | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63<br>3.64                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                                                                                                                                                                      |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>6.61<br>2.48<br>0.32                                         | 08/05/94<br>07/03/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74<br>3.63<br>2.64                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                  | t Date:<br>http://docs.org/line/10141111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                  | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63<br>3.64<br>2.64                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>6.61<br>2.48<br>0.32<br>0.11                                 | 08/05/94<br>07/03/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                          | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74<br>3.63<br>2.64<br>2.07                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                           | t Date:<br>htt:<br>rack<br>kg/m <sup>3</sup><br>7.15<br>3.75<br>0.80<br>0.00<br>0.00<br>5.34<br>1.13<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                        | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63<br>3.64<br>2.64<br>2.76                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                             |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>0.00<br>6.61<br>2.48<br>0.32<br>0.11<br>0.00                 | 08/05/94<br>07/03/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                    | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74<br>3.63<br>2.64<br>2.07<br>1.61                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                                    | t Date:<br>htt:<br>rack<br>kg/m <sup>3</sup><br>7.15<br>3.75<br>0.80<br>0.00<br>0.00<br>5.34<br>1.13<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                      | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63<br>3.64<br>2.64<br>2.76<br>2.43                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>6.61<br>2.48<br>0.32<br>0.11<br>0.00<br>3.92                 | 08/05/94<br>07/03/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A              | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74<br>3.63<br>2.64<br>2.07<br>1.61<br>5.42                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                             | t Date:<br>http://docs.org/line/10041111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A               | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63<br>3.64<br>2.64<br>2.76<br>2.43<br>6.34                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>6.61<br>2.48<br>0.32<br>0.11<br>0.00<br>3.92<br>1.35         | 08/05/94<br>07/03/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B        | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74<br>3.63<br>2.64<br>2.07<br>1.61<br>5.42<br>2.88         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | t Date:<br>http://docs.org/line/10141111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/06/94<br>06/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B                    | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63<br>3.64<br>2.64<br>2.76<br>2.43<br>6.34<br>3.83         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>6.61<br>2.48<br>0.32<br>0.11<br>0.00<br>3.92<br>1.35<br>0.00 | 08/05/94<br>07/03/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74<br>3.63<br>2.64<br>2.07<br>1.61<br>5.42<br>2.88<br>2.87 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | t Date:<br>htt:<br>rack<br>kg/m <sup>3</sup><br>7.15<br>3.75<br>0.80<br>0.00<br>0.00<br>5.34<br>1.13<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 08/06/94<br>06/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63<br>3.64<br>2.64<br>2.76<br>2.43<br>6.34<br>3.83<br>3.12 | 9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>5.08<br>2.28<br>0.17<br>0.00<br>0.00<br>6.61<br>2.48<br>0.32<br>0.11<br>0.00<br>3.92<br>1.35         | 08/05/94<br>07/03/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B        | rack<br>kg/m <sup>3</sup><br>7.64<br>3.71<br>2.93<br>3.24<br>2.95<br>6.74<br>3.63<br>2.64<br>2.07<br>1.61<br>5.42<br>2.88         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | t Date:<br>http://docs.org/line/10141111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/06/94<br>06/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B                    | rack<br>kg/m <sup>3</sup><br>8.24<br>4.29<br>3.42<br>3.59<br>3.38<br>6.63<br>3.64<br>2.64<br>2.76<br>2.43<br>6.34<br>3.83         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                                                                                                                                      |

| Table D.1 | (con't) | – Chloride Concentration Data |
|-----------|---------|-------------------------------|
|           |         |                               |

| Bridge:                                                                                                                              |                                                                                                                                                      | 75-1                                                                                                                               |                                                                                                                                   | Bridge:                                                                                                                                                    |                                                                                                                                                                               | 75-1                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                  | t Date:                                                                                                                                              | Lt. of CL<br>10/17/91<br>08/23/02                                                                                                  |                                                                                                                                   | Placement<br>Placement<br>Survey Da                                                                                                                        | Date:                                                                                                                                                                         | Rt. of CL<br>10/19/91<br>08/23/02                                                                                                                                           |                                                                                                                                   | Mean                                                                                                                                                                                                                                                                                                                        |
| Off Crack                                                                                                                            |                                                                                                                                                      | On Crack                                                                                                                           |                                                                                                                                   | Off C                                                                                                                                                      | Off Crack                                                                                                                                                                     |                                                                                                                                                                             | On Crack                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |
| Sample                                                                                                                               | kg/m <sup>3</sup>                                                                                                                                    | Sample                                                                                                                             | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                                                                     | kg/m <sup>3</sup>                                                                                                                                                             | Sample                                                                                                                                                                      | kg/m <sup>3</sup>                                                                                                                 | (mm)                                                                                                                                                                                                                                                                                                                        |
| 2A                                                                                                                                   | 4.34                                                                                                                                                 | 1A                                                                                                                                 | 6.13                                                                                                                              | 8A                                                                                                                                                         | 6.37                                                                                                                                                                          | 7A                                                                                                                                                                          | 10.41                                                                                                                             | 9.5                                                                                                                                                                                                                                                                                                                         |
| 2B                                                                                                                                   | 0.57                                                                                                                                                 | 1B                                                                                                                                 | 4.56                                                                                                                              | 8B                                                                                                                                                         | 0.56                                                                                                                                                                          | 7B                                                                                                                                                                          | 5.49                                                                                                                              | 28.6                                                                                                                                                                                                                                                                                                                        |
| 2C                                                                                                                                   | 0.00                                                                                                                                                 | 1C                                                                                                                                 | 2.62                                                                                                                              | 8C                                                                                                                                                         | 0.11                                                                                                                                                                          | 7C                                                                                                                                                                          | 3.51                                                                                                                              | 47.6                                                                                                                                                                                                                                                                                                                        |
| 2D                                                                                                                                   | 0.14                                                                                                                                                 | 1D                                                                                                                                 | 2.18                                                                                                                              | 8D                                                                                                                                                         | 0.00                                                                                                                                                                          | 7D                                                                                                                                                                          | 2.92                                                                                                                              | 66.7                                                                                                                                                                                                                                                                                                                        |
| 2E                                                                                                                                   | 0.10                                                                                                                                                 | 1E                                                                                                                                 | 0.94                                                                                                                              | 8E                                                                                                                                                         | 0.00                                                                                                                                                                          | 7E                                                                                                                                                                          | 2.31                                                                                                                              | 85.7                                                                                                                                                                                                                                                                                                                        |
| 4A                                                                                                                                   | 7.13                                                                                                                                                 | 3A                                                                                                                                 | 6.74                                                                                                                              | 10A                                                                                                                                                        | 10.72                                                                                                                                                                         | 9A                                                                                                                                                                          | 8.68                                                                                                                              | 9.5                                                                                                                                                                                                                                                                                                                         |
| 4B                                                                                                                                   | 3.07                                                                                                                                                 | 3B                                                                                                                                 | 4.24                                                                                                                              | 10B                                                                                                                                                        | 2.65                                                                                                                                                                          | 9B                                                                                                                                                                          | 5.24                                                                                                                              | 28.6                                                                                                                                                                                                                                                                                                                        |
| 4C                                                                                                                                   | 0.81                                                                                                                                                 | 3C                                                                                                                                 | 3.16                                                                                                                              | 10C                                                                                                                                                        | 0.14                                                                                                                                                                          | 9C                                                                                                                                                                          | 4.02                                                                                                                              | 47.6                                                                                                                                                                                                                                                                                                                        |
| 4D                                                                                                                                   | 0.00                                                                                                                                                 | 3D                                                                                                                                 | 2.04                                                                                                                              | 10D                                                                                                                                                        | 0.15                                                                                                                                                                          | 9D                                                                                                                                                                          | 2.77                                                                                                                              | 66.7                                                                                                                                                                                                                                                                                                                        |
| 4E                                                                                                                                   | 0.15                                                                                                                                                 | 3E                                                                                                                                 | 1.27                                                                                                                              | 10E                                                                                                                                                        | 0.18                                                                                                                                                                          | 9E                                                                                                                                                                          | 1.53                                                                                                                              | 85.7                                                                                                                                                                                                                                                                                                                        |
| 6A                                                                                                                                   | 8.62                                                                                                                                                 | 5A                                                                                                                                 | 8.78                                                                                                                              | 12A                                                                                                                                                        | 8.47                                                                                                                                                                          | 11A                                                                                                                                                                         | 10.03                                                                                                                             | 9.5                                                                                                                                                                                                                                                                                                                         |
| 6B                                                                                                                                   | 3.46                                                                                                                                                 | 5B                                                                                                                                 | 5.91                                                                                                                              | 12B                                                                                                                                                        | 1.66                                                                                                                                                                          | 11B                                                                                                                                                                         | 5.61                                                                                                                              | 28.6                                                                                                                                                                                                                                                                                                                        |
| 6C                                                                                                                                   | 0.44                                                                                                                                                 | 5C                                                                                                                                 | 3.01                                                                                                                              | 12C                                                                                                                                                        | 0.13                                                                                                                                                                          | 11C                                                                                                                                                                         | 3.32                                                                                                                              | 47.6                                                                                                                                                                                                                                                                                                                        |
| 6D                                                                                                                                   | 0.00                                                                                                                                                 | 5D                                                                                                                                 | 0.80                                                                                                                              | 12D                                                                                                                                                        | 0.00                                                                                                                                                                          | 11D                                                                                                                                                                         | 2.07                                                                                                                              | 66.7                                                                                                                                                                                                                                                                                                                        |
| 6E                                                                                                                                   | 0.00                                                                                                                                                 | 5E                                                                                                                                 | 0.22                                                                                                                              | 12E                                                                                                                                                        | 0.00                                                                                                                                                                          | 11E                                                                                                                                                                         | 2.07                                                                                                                              | 85.7                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                      |                                                                                                                                                      |                                                                                                                                    |                                                                                                                                   |                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                             |
| Bridge:                                                                                                                              |                                                                                                                                                      | 75-49                                                                                                                              |                                                                                                                                   | Bridge:                                                                                                                                                    |                                                                                                                                                                               | 75-49                                                                                                                                                                       |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                             |
| Placement                                                                                                                            |                                                                                                                                                      | Eastbound                                                                                                                          |                                                                                                                                   | Placement                                                                                                                                                  |                                                                                                                                                                               | Westbound                                                                                                                                                                   | 1                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| Placement<br>Placement                                                                                                               | t Date:                                                                                                                                              | Eastbound<br>06/04/91                                                                                                              |                                                                                                                                   | Placement<br>Placement                                                                                                                                     | Date:                                                                                                                                                                         | Westbound<br>06/07/91                                                                                                                                                       | 1                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| Placement                                                                                                                            | t Date:                                                                                                                                              | Eastbound                                                                                                                          |                                                                                                                                   | Placement                                                                                                                                                  | Date:                                                                                                                                                                         | Westbound                                                                                                                                                                   | 1                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| Placement<br>Placement                                                                                                               | t Date:<br>ate:                                                                                                                                      | Eastbound<br>06/04/91                                                                                                              |                                                                                                                                   | Placement<br>Placement                                                                                                                                     | Date:                                                                                                                                                                         | Westbound<br>06/07/91                                                                                                                                                       |                                                                                                                                   | Mean<br>Depth                                                                                                                                                                                                                                                                                                               |
| Placement<br>Placement<br>Survey Da                                                                                                  | t Date:<br>ate:<br>rack                                                                                                                              | Eastbound<br>06/04/91<br>08/20/02                                                                                                  | rack                                                                                                                              | Placement<br>Placement<br>Survey Da                                                                                                                        | t Date:<br>hte:<br>rack                                                                                                                                                       | Westbound<br>06/07/91<br>08/20/02                                                                                                                                           | rack                                                                                                                              |                                                                                                                                                                                                                                                                                                                             |
| Placement<br>Placement<br>Survey Da<br>Off C                                                                                         | t Date:<br>ate:                                                                                                                                      | Eastbound<br>06/04/91<br>08/20/02<br>On C                                                                                          |                                                                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C                                                                                                               | Date:                                                                                                                                                                         | Westbound<br>06/07/91<br>08/20/02<br>On Ci                                                                                                                                  |                                                                                                                                   | Depth                                                                                                                                                                                                                                                                                                                       |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                         | Eastbound<br>06/04/91<br>08/20/02<br>On Ca<br>Sample                                                                               | rack<br>kg/m <sup>3</sup>                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                                     | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                  | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample                                                                                                                        | rack<br>kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                                                                                                                                                                                                                                               |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.39                                                                                                 | Eastbound<br>06/04/91<br>08/20/02<br>On Ca<br>Sample<br>1A                                                                         | rack<br>kg/m <sup>3</sup><br>9.17                                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                               | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>7.48                                                                                                                          | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A                                                                                                                  | rack<br>kg/m <sup>3</sup><br>7.24                                                                                                 | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99                                                                                         | Eastbound<br>06/04/91<br>08/20/02<br>On Ca<br>Sample<br>1A<br>1B                                                                   | <b>rack</b><br>kg/m <sup>3</sup><br>9.17<br>6.11                                                                                  | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                         | <b>t Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.48<br>3.89                                                                                       | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A<br>7B                                                                                                            | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.24<br>4.38                                                                            | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28                                                                                 | Eastbound<br>06/04/91<br>08/20/02<br>On Cr<br>Sample<br>1A<br>1B<br>1C                                                             | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                   | <b>t Date:</b><br><b>track</b><br><b>kg/m<sup>3</sup></b><br>7.48<br>3.89<br>1.33                                                                                             | Westbound<br>06/07/91<br>08/20/02<br>On Cr<br>Sample<br>7A<br>7B<br>7C                                                                                                      | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36                                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                                                        |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39                                                                         | Eastbound<br>06/04/91<br>08/20/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D                                                       | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                             | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66                                                                          | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D                                                                                                | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58                                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                                                                         |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39<br>0.20<br>7.86<br>4.05                                                 | Eastbound<br>06/04/91<br>08/20/02<br>On Cr<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62<br>7.32<br>5.09                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                         | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66<br>4.17                                                                   | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                                                              | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58<br>1.54<br>6.66<br>4.50                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | t Date:<br>http:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39<br>0.20<br>7.86<br>4.05<br>0.97                                        | Eastbound<br>06/04/91<br>08/20/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                                | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62<br>7.32<br>5.09<br>4.13                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                  | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66<br>4.17<br>0.59                                                        | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                                            | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58<br>1.54<br>6.66<br>4.50<br>3.15                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39<br>0.20<br>7.86<br>4.05<br>0.97<br>0.13                                 | Eastbound<br>06/04/91<br>08/20/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62<br>7.32<br>5.09<br>4.13<br>2.49                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                           | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66<br>4.17<br>0.59<br>0.11                                                | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                                      | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58<br>1.54<br>6.66<br>4.50<br>3.15<br>2.74                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           66.7                                                                                                                                                    |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39<br>0.20<br>7.86<br>4.05<br>0.97<br>0.13<br>0.00                         | Eastbound<br>06/04/91<br>08/20/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                    | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62<br>7.32<br>5.09<br>4.13<br>2.49<br>0.45                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                                    | <b>a</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66<br>4.17<br>0.59<br>0.11<br>0.00                                          | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                                                | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58<br>1.54<br>6.66<br>4.50<br>3.15<br>2.74<br>3.01                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39<br>0.20<br>7.86<br>4.05<br>0.97<br>0.13<br>0.00<br>8.48                 | Eastbound<br>06/04/91<br>08/20/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A              | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62<br>7.32<br>5.09<br>4.13<br>2.49<br>0.45<br>6.16                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                             | <b>Tack</b><br><b>kg/m<sup>3</sup></b><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66<br>4.17<br>0.59<br>0.11<br>0.00<br>6.47                                                | Westbound<br>06/07/91<br>08/20/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A                                                      | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58<br>1.54<br>6.66<br>4.50<br>3.15<br>2.74<br>3.01<br>7.97                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           9.5 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39<br>0.20<br>7.86<br>4.05<br>0.97<br>0.13<br>0.00<br>8.48<br>6.50         | Eastbound<br>06/04/91<br>08/20/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62<br>7.32<br>5.09<br>4.13<br>2.49<br>0.45<br>6.16<br>5.73         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | <b>Tack</b><br><b>kg/m<sup>3</sup></b><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66<br>4.17<br>0.59<br>0.11<br>0.00<br>6.47<br>3.76                                        | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B                                              | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58<br>1.54<br>6.66<br>4.50<br>3.15<br>2.74<br>3.01<br>7.97<br>5.34         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                             |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39<br>0.20<br>7.86<br>4.05<br>0.97<br>0.13<br>0.00<br>8.48<br>6.50<br>2.45 | Eastbound<br>06/04/91<br>08/20/02<br>On Cr<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62<br>7.32<br>5.09<br>4.13<br>2.49<br>0.45<br>6.16<br>5.73<br>3.61 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | <b>bate:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66<br>4.17<br>0.59<br>0.11<br>0.00<br>6.47<br>3.76<br>1.96 | Westbound<br>06/07/91<br>08/20/02<br><b>On Ca</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58<br>1.54<br>6.66<br>4.50<br>3.15<br>2.74<br>3.01<br>7.97<br>5.34<br>2.90 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>47.6                                                                                                                                                                                                  |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>7.39<br>5.99<br>3.28<br>1.39<br>0.20<br>7.86<br>4.05<br>0.97<br>0.13<br>0.00<br>8.48<br>6.50         | Eastbound<br>06/04/91<br>08/20/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>9.17<br>6.11<br>3.88<br>2.18<br>0.62<br>7.32<br>5.09<br>4.13<br>2.49<br>0.45<br>6.16<br>5.73         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | <b>Tack</b><br><b>kg/m<sup>3</sup></b><br>7.48<br>3.89<br>1.33<br>0.24<br>0.11<br>8.66<br>4.17<br>0.59<br>0.11<br>0.00<br>6.47<br>3.76                                        | Westbound<br>06/07/91<br>08/20/02<br>On Ca<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B                                              | rack<br>kg/m <sup>3</sup><br>7.24<br>4.38<br>3.36<br>2.58<br>1.54<br>6.66<br>4.50<br>3.15<br>2.74<br>3.01<br>7.97<br>5.34         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                             |

| Table D.1 ( | (con't) | <ul> <li>Chloride Concentration Da</li> </ul> | ta |
|-------------|---------|-----------------------------------------------|----|
|             |         |                                               |    |

| Bridge:                                                                                                                                                      |                                                                                                                                                                    | 81-49                                                                                                                                          |                                                                                                                                                                                           | Bridge:                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81-49                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                                          | t Date:                                                                                                                                                            | Rt. 22 ft<br>04/08/92<br>08/20/02                                                                                                              |                                                                                                                                                                                           | Placement<br>Placement<br>Survey Da                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rt. of CL 2<br>04/13/92<br>08/21/02                                                                                                              | 12 ft                                                                                                                                      | Mean                                                                                                                                                                                                                                                                                                                                       |
| Off C                                                                                                                                                        | Off Crack                                                                                                                                                          |                                                                                                                                                | On Crack                                                                                                                                                                                  |                                                                                                                                         | Off Crack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  | On Crack                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            |
| Sample                                                                                                                                                       | kg/m <sup>3</sup>                                                                                                                                                  | Sample                                                                                                                                         | kg/m <sup>3</sup>                                                                                                                                                                         | Sample                                                                                                                                  | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample                                                                                                                                           | kg/m <sup>3</sup>                                                                                                                          | (mm)                                                                                                                                                                                                                                                                                                                                       |
| 2A                                                                                                                                                           | 5.82                                                                                                                                                               | 1A                                                                                                                                             | 5.48                                                                                                                                                                                      | 7A                                                                                                                                      | 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8A                                                                                                                                               | 6.87                                                                                                                                       | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 2B                                                                                                                                                           | 0.94                                                                                                                                                               | 1B                                                                                                                                             | 2.99                                                                                                                                                                                      | 7B                                                                                                                                      | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8B                                                                                                                                               | 4.43                                                                                                                                       | 28.6                                                                                                                                                                                                                                                                                                                                       |
| 2C                                                                                                                                                           | 0.00                                                                                                                                                               | 1C                                                                                                                                             | 2.50                                                                                                                                                                                      | 7C                                                                                                                                      | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8C                                                                                                                                               | 3.09                                                                                                                                       | 47.6                                                                                                                                                                                                                                                                                                                                       |
| 2D                                                                                                                                                           | 0.10                                                                                                                                                               | 1D                                                                                                                                             | 1.75                                                                                                                                                                                      | 7D                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8D                                                                                                                                               | 2.72                                                                                                                                       | 66.7                                                                                                                                                                                                                                                                                                                                       |
| 2E                                                                                                                                                           | 0.12                                                                                                                                                               | 1E                                                                                                                                             | 1.07                                                                                                                                                                                      | 7E                                                                                                                                      | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8E                                                                                                                                               | 2.33                                                                                                                                       | 85.7                                                                                                                                                                                                                                                                                                                                       |
| 4A                                                                                                                                                           | 5.06                                                                                                                                                               | 3A                                                                                                                                             | 6.08                                                                                                                                                                                      | 9A                                                                                                                                      | 6.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10A                                                                                                                                              | 7.77                                                                                                                                       | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 4B                                                                                                                                                           | 0.29                                                                                                                                                               | 3B                                                                                                                                             | 2.99                                                                                                                                                                                      | 9B                                                                                                                                      | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10B                                                                                                                                              | 4.43                                                                                                                                       | 28.6                                                                                                                                                                                                                                                                                                                                       |
| 4C                                                                                                                                                           | 0.00                                                                                                                                                               | 3C                                                                                                                                             | 1.72                                                                                                                                                                                      | 9C                                                                                                                                      | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10C                                                                                                                                              | 3.58                                                                                                                                       | 47.6                                                                                                                                                                                                                                                                                                                                       |
| 4D                                                                                                                                                           | 0.00                                                                                                                                                               | 3D                                                                                                                                             | 3.55                                                                                                                                                                                      | 9D                                                                                                                                      | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10D                                                                                                                                              | 2.82                                                                                                                                       | 66.7                                                                                                                                                                                                                                                                                                                                       |
| 4E                                                                                                                                                           | 0.00                                                                                                                                                               | 3E                                                                                                                                             | 2.57                                                                                                                                                                                      | 9E                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10E                                                                                                                                              | 2.30                                                                                                                                       | 85.7                                                                                                                                                                                                                                                                                                                                       |
| 6A                                                                                                                                                           | 4.42                                                                                                                                                               | 5A                                                                                                                                             | 6.44                                                                                                                                                                                      | 11A                                                                                                                                     | 6.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12A                                                                                                                                              | 8.37                                                                                                                                       | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 6B<br>6C                                                                                                                                                     | 0.57                                                                                                                                                               | 5B                                                                                                                                             | 3.22                                                                                                                                                                                      | 11B                                                                                                                                     | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12B                                                                                                                                              | 4.20<br>2.60                                                                                                                               | 28.6<br>47.6                                                                                                                                                                                                                                                                                                                               |
| 6C<br>6D                                                                                                                                                     | $\begin{array}{c} 0.00\\ 0.00\end{array}$                                                                                                                          | 5C<br>5D                                                                                                                                       | 3.13<br>2.56                                                                                                                                                                              | 11C<br>11D                                                                                                                              | 0.12<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12C<br>12D                                                                                                                                       | 2.60                                                                                                                                       | 47.6<br>66.7                                                                                                                                                                                                                                                                                                                               |
| 6D<br>6E                                                                                                                                                     | 0.00                                                                                                                                                               | 3D<br>5E                                                                                                                                       | 2.30                                                                                                                                                                                      | 11D<br>11E                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12D<br>12E                                                                                                                                       | 1.65                                                                                                                                       | 85.7                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                              |                                                                                                                                                                    | JE                                                                                                                                             | 1.11                                                                                                                                                                                      | LIE                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IZE                                                                                                                                              | 1.03                                                                                                                                       | 03.7                                                                                                                                                                                                                                                                                                                                       |
| 0E                                                                                                                                                           | 0.00                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:                                                                                                                                                      | 0.00                                                                                                                                                               | 81-49                                                                                                                                          |                                                                                                                                                                                           | Bridge:                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81-49                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:<br>Placement                                                                                                                                         | t:                                                                                                                                                                 | Lt. 22 ft                                                                                                                                      |                                                                                                                                                                                           | Placement                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lt. of CL                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:<br>Placement<br>Placement                                                                                                                            | t:<br>t Date:                                                                                                                                                      | Lt. 22 ft<br>10/21/92                                                                                                                          |                                                                                                                                                                                           | Placement<br>Placement                                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lt. of CL 1<br>10/23/92                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:<br>Placement                                                                                                                                         | t:<br>t Date:                                                                                                                                                      | Lt. 22 ft                                                                                                                                      |                                                                                                                                                                                           | Placement                                                                                                                               | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lt. of CL                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:<br>Placement<br>Placement                                                                                                                            | t:<br>t Date:<br>ate:                                                                                                                                              | Lt. 22 ft<br>10/21/92                                                                                                                          | rack                                                                                                                                                                                      | Placement<br>Placement                                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lt. of CL 1<br>10/23/92                                                                                                                          | 12 ft                                                                                                                                      | Mean<br>Depth                                                                                                                                                                                                                                                                                                                              |
| Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                               | t:<br>t Date:<br>ate:                                                                                                                                              | Lt. 22 ft<br>10/21/92<br>08/21/02                                                                                                              |                                                                                                                                                                                           | Placement<br>Placement<br>Survey Da                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lt. of CL 1<br>10/23/92<br>08/22/02                                                                                                              | 12 ft<br>rack                                                                                                                              |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C                                                                                                      | t:<br>t Date:<br>ate:<br>rack                                                                                                                                      | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On C                                                                                                      | rack<br>kg/m <sup>3</sup><br>8.68                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C                                                                                            | t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C                                                                                                      | 12 ft                                                                                                                                      | Depth                                                                                                                                                                                                                                                                                                                                      |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                            | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                 | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On Ca<br>Sample                                                                                           | kg/m <sup>3</sup>                                                                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                  | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample                                                                                            | 12 ft<br>rack<br>kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                                                                                                                                                                                                                                                              |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A                                                                                     | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30                                                                                                         | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On Ca<br>Sample<br>13A                                                                                    | <b>kg/m<sup>3</sup></b><br>8.68                                                                                                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>20A                                                                           | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A                                                                                     | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22                                                                                                 | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                                                                                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B                                                                              | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54                                                                                                 | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On Ca<br>Sample<br>13A<br>13B                                                                             | <b>kg/m<sup>3</sup></b><br>8.68<br>4.28                                                                                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>20A<br>20B                                                                    | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.54<br>0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B                                                                              | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97                                                                                         | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                                                                               |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C                                                                       | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00                                                                                         | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On Cr<br>Sample<br>13A<br>13B<br>13C                                                                      | <b>kg/m<sup>3</sup></b><br>8.68<br>4.28<br>3.17                                                                                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>20A<br>20B<br>20C                                                             | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.54<br>0.80<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C                                                                       | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02                                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                                                                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A                                                  | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>0.00<br>5.47                                                         | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On Ca<br>Sample<br>13A<br>13B<br>13C<br>13D                                                               | kg/m <sup>3</sup><br>8.68<br>4.28<br>3.17<br>3.44<br>3.61<br>8.11                                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A                                        | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>0.00<br>7.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A                                                  | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                                                                                         |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B                                           | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>0.00<br>5.47<br>0.92                                                 | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On Co<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B                                          | kg/m <sup>3</sup><br>8.68<br>4.28<br>3.17<br>3.44<br>3.61<br>8.11<br>4.27                                                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B                                 | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>0.00<br>7.65<br>1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B                                           | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73<br>5.11                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                                                                                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C                                    | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>5.47<br>0.92<br>0.00                                                 | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C                                    | kg/m <sup>3</sup><br>8.68<br>4.28<br>3.17<br>3.44<br>3.61<br>8.11<br>4.27<br>3.03                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C                          | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>0.00<br>7.65<br>1.62<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C                                    | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73<br>5.11<br>4.10                                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                                                                                 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D                             | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>5.47<br>0.92<br>0.00<br>0.00<br>0.00                                 | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D                             | kg/m <sup>3</sup><br>8.68<br>4.28<br>3.17<br>3.44<br>3.61<br>8.11<br>4.27<br>3.03<br>3.15                                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D                   | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>0.00<br>7.65<br>1.62<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D                             | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73<br>5.11<br>4.10<br>3.94                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           66.7                                                                                                                                                                   |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E                      | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>5.47<br>0.92<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E                      | kg/m <sup>3</sup><br>8.68<br>4.28<br>3.17<br>3.44<br>3.61<br>8.11<br>4.27<br>3.03<br>3.15<br>2.94                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E                      | <b>a</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>7.65<br>1.62<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E                      | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73<br>5.11<br>4.10<br>3.94<br>3.47                         | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7                                                                                                        |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E<br>18A               | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                          | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A               | kg/m <sup>3</sup><br>8.68<br>4.28<br>3.17<br>3.44<br>3.61<br>8.11<br>4.27<br>3.03<br>3.15<br>2.94<br>6.84                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E<br>24A               | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>7.65<br>1.62<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E<br>23A               | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73<br>5.11<br>4.10<br>3.94<br>3.47<br>6.35                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5                                                                           |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B        | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                          | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On Cr<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A<br>17B       | kg/m³           8.68           4.28           3.17           3.44           3.61           8.11           4.27           3.03           3.15           2.94           6.84           4.16 | Placement<br>Placement<br>Survey Da<br>Off C<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E<br>24A<br>24B        | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>0.00<br>7.65<br>1.62<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E<br>23A<br>23B        | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73<br>5.11<br>4.10<br>3.94<br>3.47<br>6.35<br>3.88         | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B<br>18C | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>5.47<br>0.92<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On C<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A<br>17B<br>17C | kg/m <sup>3</sup><br>8.68<br>4.28<br>3.17<br>3.44<br>3.61<br>8.11<br>4.27<br>3.03<br>3.15<br>2.94<br>6.84<br>4.16<br>2.62                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E<br>24A<br>24B<br>24C | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>0.00<br>7.65<br>1.62<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E<br>23A<br>23B<br>23C | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73<br>5.11<br>4.10<br>3.94<br>3.47<br>6.35<br>3.88<br>2.56 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>47.6                                                                                                                                                                                                                 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>14A<br>14B<br>14C<br>14D<br>14E<br>16A<br>16B<br>16C<br>16D<br>16E<br>18A<br>18B        | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>4.30<br>0.54<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                          | Lt. 22 ft<br>10/21/92<br>08/21/02<br>On Cr<br>Sample<br>13A<br>13B<br>13C<br>13D<br>13E<br>15A<br>15B<br>15C<br>15D<br>15E<br>17A<br>17B       | kg/m³           8.68           4.28           3.17           3.44           3.61           8.11           4.27           3.03           3.15           2.94           6.84           4.16 | Placement<br>Placement<br>Survey Da<br>Off C<br>20A<br>20B<br>20C<br>20D<br>20E<br>22A<br>22B<br>22C<br>22D<br>22E<br>24A<br>24B        | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>5.54<br>0.80<br>0.00<br>0.00<br>0.00<br>0.00<br>7.65<br>1.62<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | Lt. of CL 1<br>10/23/92<br>08/22/02<br>On C<br>Sample<br>19A<br>19B<br>19C<br>19D<br>19E<br>21A<br>21B<br>21C<br>21D<br>21E<br>23A<br>23B        | 12 ft<br>rack<br>kg/m <sup>3</sup><br>9.22<br>4.97<br>4.02<br>3.56<br>2.24<br>7.73<br>5.11<br>4.10<br>3.94<br>3.47<br>6.35<br>3.88         | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |

| Bridge:                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-183                                                                                                                                                            |                                                                                                                                   | Bridge:                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89-183                                                                                                                                   |                                                                                                                                  |                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                                                   | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rt. Side<br>09/21/90<br>07/30/02                                                                                                                                  |                                                                                                                                   | Placement<br>Placement<br>Survey Da                                                                                                             | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lt. Side<br>09/25/90<br>07/30/02                                                                                                         |                                                                                                                                  |                                                                                                                                                           |
| Survey Da                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07730702                                                                                                                                                          |                                                                                                                                   | Survey Da                                                                                                                                       | ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07/30/02                                                                                                                                 |                                                                                                                                  | Mean                                                                                                                                                      |
| Off Crack                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | On C                                                                                                                                                              | On Crack Off Crac                                                                                                                 |                                                                                                                                                 | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | On Crack                                                                                                                                 |                                                                                                                                  | Depth                                                                                                                                                     |
| Sample                                                                                                                                                                | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                                                                            | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                                                          | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample                                                                                                                                   | kg/m <sup>3</sup>                                                                                                                | (mm)                                                                                                                                                      |
| 8A                                                                                                                                                                    | 4.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7A                                                                                                                                                                | 6.72                                                                                                                              | 2A                                                                                                                                              | 5.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1A                                                                                                                                       | 5.06                                                                                                                             | 9.5                                                                                                                                                       |
| 8B                                                                                                                                                                    | 2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7B                                                                                                                                                                | 4.84                                                                                                                              | 2B                                                                                                                                              | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1B                                                                                                                                       | 2.20                                                                                                                             | 28.6                                                                                                                                                      |
| 8C                                                                                                                                                                    | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7C                                                                                                                                                                | 3.61                                                                                                                              | 2C                                                                                                                                              | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1C                                                                                                                                       | 1.15                                                                                                                             | 47.6                                                                                                                                                      |
| 8D                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7D                                                                                                                                                                | 2.86                                                                                                                              | 2D                                                                                                                                              | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1D                                                                                                                                       | 0.60                                                                                                                             | 66.7                                                                                                                                                      |
| 8E                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7E                                                                                                                                                                | 2.38                                                                                                                              | 2E                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1E                                                                                                                                       | 0.00                                                                                                                             | 85.7                                                                                                                                                      |
| 10A                                                                                                                                                                   | 5.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9A                                                                                                                                                                | 6.95                                                                                                                              | 4A                                                                                                                                              | 7.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3A                                                                                                                                       | 4.82                                                                                                                             | 9.5                                                                                                                                                       |
| 10B                                                                                                                                                                   | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9B                                                                                                                                                                | 4.11                                                                                                                              | 4B                                                                                                                                              | 3.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3B                                                                                                                                       | 2.67                                                                                                                             | 28.6                                                                                                                                                      |
| 10C                                                                                                                                                                   | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9C                                                                                                                                                                | 3.27                                                                                                                              | 4C                                                                                                                                              | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3C                                                                                                                                       | 1.69                                                                                                                             | 47.6                                                                                                                                                      |
| 10D                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9D                                                                                                                                                                | 2.61                                                                                                                              | 4D                                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3D                                                                                                                                       | 0.62                                                                                                                             | 66.7                                                                                                                                                      |
| 10E                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9E                                                                                                                                                                | 1.61                                                                                                                              | 4E                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3E                                                                                                                                       | 0.00                                                                                                                             | 85.7                                                                                                                                                      |
| 12A                                                                                                                                                                   | 7.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11A                                                                                                                                                               | 6.32                                                                                                                              | 6A                                                                                                                                              | 5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5A                                                                                                                                       | 6.69                                                                                                                             | 9.5                                                                                                                                                       |
| 12B                                                                                                                                                                   | 2.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11B                                                                                                                                                               | 4.28                                                                                                                              | 6B                                                                                                                                              | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5B                                                                                                                                       | 4.32                                                                                                                             | 28.6                                                                                                                                                      |
| 12C                                                                                                                                                                   | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11C                                                                                                                                                               | 3.39                                                                                                                              | 6C                                                                                                                                              | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5C                                                                                                                                       | 3.37                                                                                                                             | 47.6                                                                                                                                                      |
| 12D                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11D                                                                                                                                                               | 3.16                                                                                                                              | 6D                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5D                                                                                                                                       | 3.11                                                                                                                             | 66.7                                                                                                                                                      |
| 12E                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11E                                                                                                                                                               | 3.23                                                                                                                              | 6E                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5E                                                                                                                                       | 2.59                                                                                                                             | 85.7                                                                                                                                                      |
|                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11L                                                                                                                                                               | 5.25                                                                                                                              | 0E                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          | 2.09                                                                                                                             |                                                                                                                                                           |
| Bridge:                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89-185                                                                                                                                                            | 5.25                                                                                                                              | Bridge:                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89-185                                                                                                                                   | ,                                                                                                                                |                                                                                                                                                           |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   | 5.25                                                                                                                              |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          | ,                                                                                                                                |                                                                                                                                                           |
| Bridge:                                                                                                                                                               | t <b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89-185                                                                                                                                                            | 5.25                                                                                                                              | Bridge:                                                                                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89-185                                                                                                                                   |                                                                                                                                  |                                                                                                                                                           |
| Bridge:<br>Placement                                                                                                                                                  | t:<br>t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>89-185</b> Outside                                                                                                                                             | 5.25                                                                                                                              | Bridge:<br>Placement                                                                                                                            | :<br>Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>89-185</b> Inside                                                                                                                     | ,                                                                                                                                |                                                                                                                                                           |
| Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                                        | t:<br>t Date:<br>hte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>89-185</b><br>Outside<br>06/23/90<br>08/05/02                                                                                                                  |                                                                                                                                   | Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                  | :<br>Date:<br>ite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>89-185</b><br>Inside<br>06/21/90<br>08/05/02                                                                                          |                                                                                                                                  | Mean                                                                                                                                                      |
| Bridge:<br>Placement<br>Placement                                                                                                                                     | t:<br>t Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>89-185</b><br>Outside<br>06/23/90                                                                                                                              | rack                                                                                                                              | Bridge:<br>Placement<br>Placement                                                                                                               | :<br>Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>89-185</b><br>Inside<br>06/21/90                                                                                                      | rack                                                                                                                             |                                                                                                                                                           |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off Ca<br>Sample                                                                                                    | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>89-185</b><br>Outside<br>06/23/90<br>08/05/02                                                                                                                  | rack<br>kg/m <sup>3</sup>                                                                                                         | Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                  | :<br>Date:<br>ite:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>89-185</b><br>Inside<br>06/21/90<br>08/05/02                                                                                          | rack<br>kg/m <sup>3</sup>                                                                                                        | Mean<br>Depth<br>(mm)                                                                                                                                     |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                               | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89-185<br>Outside<br>06/23/90<br>08/05/02<br>On C<br>Sample<br>7A                                                                                                 | rack<br>kg/m <sup>3</sup><br>8.52                                                                                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t<br>Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>3.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>89-185</b><br>Inside<br>06/21/90<br>08/05/02<br><b>On C</b><br><b>Sample</b><br>1A                                                    | rack<br>kg/m <sup>3</sup><br>6.28                                                                                                | Mean<br>Depth<br>(mm)<br>9.5                                                                                                                              |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off Cu<br>Sample<br>8A<br>8B                                                                                        | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>89-185</b><br>Outside<br>06/23/90<br>08/05/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B                                                                      | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73                                                                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | <b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>89-185</b><br>Inside<br>06/21/90<br>08/05/02<br><b>On Ca</b><br><b>Sample</b><br>1A<br>1B                                             | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66                                                                                        | Mean<br>Depth<br>(mm)<br>9.5<br>28.6                                                                                                                      |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                   | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89-185<br>Outside<br>06/23/90<br>08/05/02<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                                     | <b>rack</b><br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49                                                                          | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | <b>::</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C                                                            | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>6.28<br>2.66<br>4.06                                                                   | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                              |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                             | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89-185<br>Outside<br>06/23/90<br>08/05/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D                                                                               | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26                                                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                       | <b>::</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On Cr<br>Sample<br>1A<br>1B<br>1C<br>1D                                                      | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96                                                                        | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                      |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                       | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89-185<br>Outside<br>06/23/90<br>08/05/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7D<br>7E                                                                   | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89                                                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | <b>:</b><br><b>Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>3.53<br>1.00<br>0.14<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1D<br>1E                                          | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP                                                                 | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                              |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                                | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00<br>6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89-185<br>Outside<br>06/23/90<br>08/05/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                                       | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92                                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | <b>:</b><br><b>Date:</b><br><b>nte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>3.53<br>1.00<br>0.14<br>0.00<br>0.00<br>2.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                          | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49                                                         | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                       |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                         | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00<br>6.56<br>0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>89-185</b><br>Outside<br>06/23/90<br>08/05/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                        | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92<br>3.39                                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | <b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49<br>4.49                                                 | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                                               |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                  | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00<br>6.56<br>0.36<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89-185<br>Outside<br>06/23/90<br>08/05/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                           | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92<br>3.39<br>3.11                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | <b>c:</b><br><b>c</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49<br>4.49<br>4.21                                         | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                       |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                           | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00<br>0.36<br>0.36<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89-185<br>Outside<br>06/23/90<br>08/05/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                                 | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92<br>3.39<br>3.11<br>4.27                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | <b>:</b><br><b>Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>3.53<br>1.00<br>0.14<br>0.00<br>0.00<br>2.97<br>1.44<br>0.18<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49<br>4.49<br>4.21<br>4.47                                 | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                               |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                                    | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.36<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | <b>89-185</b><br>Outside<br>06/23/90<br>08/05/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                      | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92<br>3.39<br>3.11<br>4.27<br>3.50                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | <b>E Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>3.53<br>1.00<br>0.14<br>0.00<br>0.00<br>2.97<br>1.44<br>0.18<br>0.00<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On Cr<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                  | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49<br>4.49<br>4.21<br>4.47<br>3.86                         | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                       |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                             | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>6.56<br>0.36<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | 89-185<br>Outside<br>06/23/90<br>08/05/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A                                    | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92<br>3.39<br>3.11<br>4.27<br>3.50<br>5.63                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | <b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A            | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49<br>4.49<br>4.21<br>4.47<br>3.86<br>8.10                 | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                        |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00<br>6.56<br>0.36<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | <b>89-185</b><br>Outside<br>06/23/90<br>08/05/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B        | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92<br>3.39<br>3.11<br>4.27<br>3.50<br>5.63<br>4.26         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>3.53<br>1.00<br>0.14<br>0.00<br>0.00<br>2.97<br>1.44<br>0.18<br>0.00<br>0.11<br>6.34<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49<br>4.49<br>4.21<br>4.47<br>3.86<br>8.10<br>5.25         | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | <b>89-185</b><br>Outside<br>06/23/90<br>08/05/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92<br>3.39<br>3.11<br>4.27<br>3.50<br>5.63<br>4.26<br>3.51 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | <b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b><br><b>c:</b> | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49<br>4.49<br>4.21<br>4.47<br>3.86<br>8.10<br>5.25<br>3.95 | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>64.7                        |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.52<br>0.33<br>0.00<br>0.00<br>0.00<br>0.00<br>6.56<br>0.36<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | <b>89-185</b><br>Outside<br>06/23/90<br>08/05/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B        | rack<br>kg/m <sup>3</sup><br>8.52<br>4.73<br>4.49<br>4.26<br>2.89<br>6.92<br>3.39<br>3.11<br>4.27<br>3.50<br>5.63<br>4.26         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>3.53<br>1.00<br>0.14<br>0.00<br>0.00<br>2.97<br>1.44<br>0.18<br>0.00<br>0.11<br>6.34<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89-185<br>Inside<br>06/21/90<br>08/05/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>6.28<br>2.66<br>4.06<br>3.96<br>LIP<br>6.49<br>4.49<br>4.21<br>4.47<br>3.86<br>8.10<br>5.25         | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6 |

| Bridge:                                                                                                                                         |                                                                                                                                                            | 89-186                                                                                                                                                          |                                                                                                                                   | Bridge:                                                                                                                                                 |                                                                                                                                                                                        | 89-186                                                                                                                                                             |                                                                                                                                             |                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                             | t Date:                                                                                                                                                    | Inside<br>09/14/90<br>07/24/01                                                                                                                                  |                                                                                                                                   | Placement<br>Placement<br>Survey Da                                                                                                                     | Date:                                                                                                                                                                                  | Outside<br>09/17/90<br>07/24/01                                                                                                                                    |                                                                                                                                             |                                                                                                                                    |
| Off C                                                                                                                                           | rack                                                                                                                                                       | On C                                                                                                                                                            | rack                                                                                                                              | Off C                                                                                                                                                   | raelz                                                                                                                                                                                  | On C                                                                                                                                                               | rack                                                                                                                                        | Mean<br>Depth                                                                                                                      |
|                                                                                                                                                 | kg/m <sup>3</sup>                                                                                                                                          |                                                                                                                                                                 | kg/m <sup>3</sup>                                                                                                                 |                                                                                                                                                         | kg/m <sup>3</sup>                                                                                                                                                                      |                                                                                                                                                                    | kg/m <sup>3</sup>                                                                                                                           | -                                                                                                                                  |
| Sample<br>7A                                                                                                                                    | <b>kg/m</b><br>6.73                                                                                                                                        | Sample<br>8A                                                                                                                                                    | 6.45                                                                                                                              | Sample<br>2A                                                                                                                                            | <b>kg/m</b><br>7.69                                                                                                                                                                    | Sample<br>1A                                                                                                                                                       | 15.49                                                                                                                                       | (mm)<br>9.5                                                                                                                        |
| 7A<br>7B                                                                                                                                        | 2.00                                                                                                                                                       | 8A<br>8B                                                                                                                                                        | 6.43<br>4.20                                                                                                                      | 2A<br>2B                                                                                                                                                | 2.48                                                                                                                                                                                   | 1A<br>1B                                                                                                                                                           | 5.58                                                                                                                                        | 9.3<br>28.6                                                                                                                        |
| 7D<br>7C                                                                                                                                        | 0.21                                                                                                                                                       | 8D<br>8C                                                                                                                                                        | 2.89                                                                                                                              | 2D<br>2C                                                                                                                                                | 0.26                                                                                                                                                                                   | 1D<br>1C                                                                                                                                                           | 4.67                                                                                                                                        | 47.6                                                                                                                               |
| 70<br>7D                                                                                                                                        | 0.08                                                                                                                                                       | 8D                                                                                                                                                              | 2.23                                                                                                                              | 20<br>2D                                                                                                                                                | 0.13                                                                                                                                                                                   | 10<br>1D                                                                                                                                                           | 4.38                                                                                                                                        | 66.7                                                                                                                               |
| 7E                                                                                                                                              | 0.00                                                                                                                                                       | 8E                                                                                                                                                              | 1.33                                                                                                                              | 2E                                                                                                                                                      | 0.13                                                                                                                                                                                   | 1E                                                                                                                                                                 | 3.14                                                                                                                                        | 85.7                                                                                                                               |
| 9A                                                                                                                                              | 7.47                                                                                                                                                       | 10A                                                                                                                                                             | 6.83                                                                                                                              | 4A                                                                                                                                                      | 5.54                                                                                                                                                                                   | 3A                                                                                                                                                                 | 6.66                                                                                                                                        | 9.5                                                                                                                                |
| 9B                                                                                                                                              | 3.36                                                                                                                                                       | 10B                                                                                                                                                             | 3.47                                                                                                                              | 4B                                                                                                                                                      | 3.06                                                                                                                                                                                   | 3B                                                                                                                                                                 | 4.73                                                                                                                                        | 28.6                                                                                                                               |
| 9C                                                                                                                                              | 0.57                                                                                                                                                       | 10C                                                                                                                                                             | 1.87                                                                                                                              | 4C                                                                                                                                                      | 1.63                                                                                                                                                                                   | 3C                                                                                                                                                                 | 3.60                                                                                                                                        | 47.6                                                                                                                               |
| 9D                                                                                                                                              | 0.15                                                                                                                                                       | 10D                                                                                                                                                             | 0.73                                                                                                                              | 4D                                                                                                                                                      | 0.36                                                                                                                                                                                   | 3D                                                                                                                                                                 | 2.44                                                                                                                                        | 66.7                                                                                                                               |
| 9E                                                                                                                                              | 0.12                                                                                                                                                       | 10E                                                                                                                                                             | 0.27                                                                                                                              | 4E                                                                                                                                                      | 0.11                                                                                                                                                                                   | 3E                                                                                                                                                                 | 1.86                                                                                                                                        | 85.7                                                                                                                               |
| 11A                                                                                                                                             | 8.71                                                                                                                                                       | 12A                                                                                                                                                             | 8.21                                                                                                                              | 6A                                                                                                                                                      | 7.16                                                                                                                                                                                   | 5A                                                                                                                                                                 | 6.95                                                                                                                                        | 9.5                                                                                                                                |
| 11B                                                                                                                                             | 3.39                                                                                                                                                       | 12B                                                                                                                                                             | 5.20                                                                                                                              | 6B                                                                                                                                                      | 3.04                                                                                                                                                                                   | 5B                                                                                                                                                                 | 4.01                                                                                                                                        | 28.6                                                                                                                               |
| 11C                                                                                                                                             | 0.52                                                                                                                                                       | 12C                                                                                                                                                             | 3.22                                                                                                                              | 6C                                                                                                                                                      | 0.61                                                                                                                                                                                   | 5C                                                                                                                                                                 | 2.66                                                                                                                                        | 47.6                                                                                                                               |
| 11D                                                                                                                                             | 0.20                                                                                                                                                       | 12D                                                                                                                                                             | 3.94                                                                                                                              | 6D                                                                                                                                                      | 0.14                                                                                                                                                                                   | 5D                                                                                                                                                                 | 1.92                                                                                                                                        | 66.7                                                                                                                               |
| 445                                                                                                                                             | 0.16                                                                                                                                                       | 100                                                                                                                                                             | 3.25                                                                                                                              | 6E                                                                                                                                                      | 0.17                                                                                                                                                                                   | 5E                                                                                                                                                                 | 0.49                                                                                                                                        | 85.7                                                                                                                               |
| 11E                                                                                                                                             | 0.16                                                                                                                                                       | 12E                                                                                                                                                             | 5.25                                                                                                                              | 0E                                                                                                                                                      | 0.17                                                                                                                                                                                   | JL                                                                                                                                                                 | 0.49                                                                                                                                        | 00.1                                                                                                                               |
| Bridge:                                                                                                                                         | 0.16                                                                                                                                                       | 89-196                                                                                                                                                          | 5.25                                                                                                                              | Bridge:                                                                                                                                                 | 0.17                                                                                                                                                                                   | <b>89-196</b>                                                                                                                                                      | 0.49                                                                                                                                        |                                                                                                                                    |
| Bridge:<br>Placement                                                                                                                            | t:                                                                                                                                                         | <b>89-196</b><br>Rt. Side                                                                                                                                       | 5.23                                                                                                                              | Bridge:<br>Placement                                                                                                                                    | :                                                                                                                                                                                      | <b>89-196</b><br>Lt. Side                                                                                                                                          | 0.49                                                                                                                                        |                                                                                                                                    |
| Bridge:<br>Placement<br>Placement                                                                                                               | t:<br>t Date:                                                                                                                                              | <b>89-196</b><br>Rt. Side<br>05/01/92                                                                                                                           | 3.23                                                                                                                              | Bridge:<br>Placement<br>Placement                                                                                                                       | :<br>Date:                                                                                                                                                                             | <b>89-196</b><br>Lt. Side<br>05/05/92                                                                                                                              | 0.47                                                                                                                                        |                                                                                                                                    |
| Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                  | t:<br>t Date:<br>hte:                                                                                                                                      | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02                                                                                                               |                                                                                                                                   | Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                          | :<br>Date:<br>ite:                                                                                                                                                                     | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02                                                                                                                  |                                                                                                                                             | Mean                                                                                                                               |
| Bridge:<br>Placement<br>Placement                                                                                                               | t:<br>t Date:<br>hte:                                                                                                                                      | <b>89-196</b><br>Rt. Side<br>05/01/92                                                                                                                           | rack                                                                                                                              | Bridge:<br>Placement<br>Placement                                                                                                                       | :<br>Date:<br>ite:<br>rack                                                                                                                                                             | <b>89-196</b><br>Lt. Side<br>05/05/92                                                                                                                              |                                                                                                                                             |                                                                                                                                    |
| Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                  | t:<br>t Date:<br>hte:<br>rack                                                                                                                              | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02                                                                                                               | rack                                                                                                                              | Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                          | :<br>Date:<br>ite:<br>rack                                                                                                                                                             | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02                                                                                                                  | rack                                                                                                                                        | Mean                                                                                                                               |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C                                                                                         | t:<br>t Date:<br>hte:                                                                                                                                      | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On C</b>                                                                                                |                                                                                                                                   | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C                                                                                                 | :<br>Date:<br>ite:                                                                                                                                                                     | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On C</b>                                                                                                   |                                                                                                                                             | Mean<br>Depth                                                                                                                      |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off Ca<br>Sample                                                                              | t:<br>t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                         | 89-196<br>Rt. Side<br>05/01/92<br>09/18/02<br>On Ca<br>Sample                                                                                                   | rack<br>kg/m <sup>3</sup>                                                                                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                       | :<br>Date:<br>ite:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                        | 89-196<br>Lt. Side<br>05/05/92<br>09/18/02<br>On Ca<br>Sample                                                                                                      | rack<br>kg/m <sup>3</sup>                                                                                                                   | Mean<br>Depth<br>(mm)                                                                                                              |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12                                                                                                 | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On Ca</b><br><b>Sample</b><br>1A                                                                        | rack<br>kg/m <sup>3</sup><br>7.90                                                                                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                 | t<br>Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>8.37                                                                                                                                | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On Ca</b><br><b>Sample</b><br>7A                                                                           | rack<br>kg/m <sup>3</sup><br>10.81                                                                                                          | Mean<br>Depth<br>(mm)<br>9.5                                                                                                       |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30                                                                                         | 89-196<br>Rt. Side<br>05/01/92<br>09/18/02<br>On Cr<br>Sample<br>1A<br>1B                                                                                       | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.90<br>4.59                                                                            | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                           | <b>:</b><br><b>Date:</b><br><b>nte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>8.37<br>3.16                                                                                      | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On Ca</b><br><b>Sample</b><br>7A<br>7B                                                                     | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37                                                                                                  | <b>Mean</b><br><b>Depth</b><br>(mm)<br>9.5<br>28.6                                                                                 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51                                                                                 | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C                                                             | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.90<br>4.59<br>3.08                                                                    | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                     | <b>::</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                          | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C                                                                | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62                                                                                          | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                       |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12                                                         | 89-196<br>Rt. Side<br>05/01/92<br>09/18/02<br>On Cr<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                                               | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99                                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                  | <b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                           | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                  | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17                                                                  | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12<br>1.53                                                 | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On Cr</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                    | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99<br>5.25                                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                           | <b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                           | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                        | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17<br>5.64                                                          | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                                        |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12<br>1.53<br>0.17                                         | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99<br>5.25<br>3.82                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                        | <b>c:</b><br><b>c</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b><br><b>t</b>                                                                  | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                      | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17<br>5.64<br>4.54                                                  | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12<br>1.53<br>0.17<br>0.00                                 | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99<br>5.25<br>3.82<br>2.44                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                             | <b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b><br><b>:</b>                                                                                           | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                            | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17<br>5.64<br>4.54<br>4.04                                          | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                        |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12<br>1.53<br>0.17<br>0.00<br>0.18                         | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99<br>5.25<br>3.82<br>2.44<br>1.02                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                      | <b>:</b><br><b>Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>8.37<br>3.16<br>0.49<br>0.00<br>0.00<br>9.71<br>4.90<br>1.71<br>0.36<br>0.16                      | <b>89-196</b> Lt. Side 05/05/92 09/18/02 <b>On C Sample</b> 7A 7B 7C 7D 7E 9A 9B 9C 9D 9E                                                                          | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17<br>5.64<br>4.54<br>4.54<br>4.04<br>2.00                          | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12<br>1.53<br>0.17<br>0.00<br>0.18<br>5.74                 | 89-196<br>Rt. Side<br>05/01/92<br>09/18/02<br>On Cr<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A                                 | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99<br>5.25<br>3.82<br>2.44<br>1.02<br>6.82                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A               | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>8.37<br>3.16<br>0.49<br>0.00<br>0.00<br>9.71<br>4.90<br>1.71<br>0.36<br>0.16<br>5.22                                                         | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A   | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17<br>5.64<br>4.54<br>4.04<br>2.00<br>10.61                         | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12<br>1.53<br>0.17<br>0.00<br>0.18<br>5.74<br>2.09         | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99<br>5.25<br>3.82<br>2.44<br>1.02<br>6.82<br>4.68         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B        | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>8.37<br>3.16<br>0.49<br>0.00<br>0.00<br>9.71<br>4.90<br>1.71<br>0.36<br>0.16<br>5.22<br>1.31                                                 | <b>89-196</b> Lt. Side 05/05/92 09/18/02 <b>On C Sample</b> 7A 7B 7C 7D 7E 9A 9B 9C 9B 9C 9D 9E 11A 11B                                                            | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17<br>5.64<br>4.54<br>4.04<br>2.00<br>10.61<br>6.65                 | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12<br>1.53<br>0.17<br>0.00<br>0.18<br>5.74<br>2.09<br>0.14 | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99<br>5.25<br>3.82<br>2.44<br>1.02<br>6.82<br>4.68<br>3.60 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | <b>c:</b><br><b>c:</b><br><b>te:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>8.37<br>3.16<br>0.49<br>0.00<br>0.00<br>9.71<br>4.90<br>1.71<br>0.36<br>0.16<br>5.22<br>1.31<br>0.27 | <b>89-196</b><br>Lt. Side<br>05/05/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17<br>5.64<br>4.54<br>4.54<br>4.04<br>2.00<br>10.61<br>6.65<br>6.21 | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>64.7 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.12<br>2.30<br>0.51<br>0.13<br>0.28<br>4.12<br>1.53<br>0.17<br>0.00<br>0.18<br>5.74<br>2.09         | <b>89-196</b><br>Rt. Side<br>05/01/92<br>09/18/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>7.90<br>4.59<br>3.08<br>1.96<br>0.98<br>5.99<br>5.25<br>3.82<br>2.44<br>1.02<br>6.82<br>4.68         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B        | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>8.37<br>3.16<br>0.49<br>0.00<br>0.00<br>9.71<br>4.90<br>1.71<br>0.36<br>0.16<br>5.22<br>1.31                                                 | <b>89-196</b> Lt. Side 05/05/92 09/18/02 <b>On C Sample</b> 7A 7B 7C 7D 7E 9A 9B 9C 9D 9E 11A 11B                                                                  | rack<br>kg/m <sup>3</sup><br>10.81<br>8.37<br>6.62<br>6.08<br>5.00<br>8.17<br>5.64<br>4.54<br>4.04<br>2.00<br>10.61<br>6.65                 | Mean<br>Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                 |

| Table D.1 | (con't | ) – Chloride | <b>Concentration Data</b> |
|-----------|--------|--------------|---------------------------|
|-----------|--------|--------------|---------------------------|

| Bridge:                                                                                                                 |                                                                                                                                                                      | 89-198                                                                                                                 |                                                                                                                           | Bridge:                                                                                                                          |                                                                                                                                   | 89-198                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                     | t Date:                                                                                                                                                              | Lt. Side<br>08/24/91<br>09/16/02                                                                                       |                                                                                                                           | Placement<br>Placement<br>Survey Da                                                                                              | Date:                                                                                                                             | Rt. Side<br>08/27/91<br>09/16/02                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Off C                                                                                                                   | rack                                                                                                                                                                 | <b>On C</b>                                                                                                            | rack                                                                                                                      | Off C                                                                                                                            | rack                                                                                                                              | <b>On C</b>                                                                                                     | rack                                                                                                                      | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Sample                                                                                                                  | kg/m <sup>3</sup>                                                                                                                                                    | Sample                                                                                                                 | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                                                           | kg/m <sup>3</sup>                                                                                                                 | Sample                                                                                                          | kg/m <sup>3</sup>                                                                                                         | (mm)                                                                                                                                                                                                                                                                            |
| 8A                                                                                                                      | 7.79                                                                                                                                                                 | 7A                                                                                                                     | 10.06                                                                                                                     | 2A                                                                                                                               | 4.81                                                                                                                              | 1A                                                                                                              | 10.00                                                                                                                     | 9.5                                                                                                                                                                                                                                                                             |
| 8B                                                                                                                      | 2.40                                                                                                                                                                 | 7B                                                                                                                     | 5.97                                                                                                                      | 2B                                                                                                                               | 0.88                                                                                                                              | 1B                                                                                                              | 4.72                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 8C                                                                                                                      | 0.16                                                                                                                                                                 | 7C                                                                                                                     | 4.69                                                                                                                      | 2C                                                                                                                               | 0.00                                                                                                                              | 1C                                                                                                              | 4.72                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 8D                                                                                                                      | 0.00                                                                                                                                                                 | 7D                                                                                                                     | 2.97                                                                                                                      | 2D                                                                                                                               | 0.12                                                                                                                              | 1D                                                                                                              | 4.76                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 8E                                                                                                                      | 0.14                                                                                                                                                                 | 7E                                                                                                                     | 1.52                                                                                                                      | 2E                                                                                                                               | 0.19                                                                                                                              | 1E                                                                                                              | 3.21                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| 10A                                                                                                                     | 6.74                                                                                                                                                                 | 9A                                                                                                                     | 9.57                                                                                                                      | 4A                                                                                                                               | 5.46                                                                                                                              | 3A                                                                                                              | 7.05                                                                                                                      | 9.5                                                                                                                                                                                                                                                                             |
| 10B                                                                                                                     | 2.39                                                                                                                                                                 | 9B                                                                                                                     | 5.42                                                                                                                      | 4B                                                                                                                               | 1.55                                                                                                                              | 3B                                                                                                              | 4.75                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 10C                                                                                                                     | 0.19                                                                                                                                                                 | 9C                                                                                                                     | 2.46                                                                                                                      | 4C                                                                                                                               | 0.00                                                                                                                              | 3C                                                                                                              | 3.58                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 10D                                                                                                                     | 0.11                                                                                                                                                                 | 9D                                                                                                                     | 0.97                                                                                                                      | 4D                                                                                                                               | 0.00                                                                                                                              | 3D                                                                                                              | 2.40                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 10E                                                                                                                     | 0.13                                                                                                                                                                 | 9E                                                                                                                     | 0.24                                                                                                                      | 4E                                                                                                                               | 0.15                                                                                                                              | 3E                                                                                                              | 1.39                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| 12A                                                                                                                     | 9.01                                                                                                                                                                 | 11A                                                                                                                    | 9.61                                                                                                                      | 6A                                                                                                                               | 6.23                                                                                                                              | 5A                                                                                                              | 6.88                                                                                                                      | 9.5                                                                                                                                                                                                                                                                             |
| 12B                                                                                                                     | 4.51                                                                                                                                                                 | 11B                                                                                                                    | 5.71                                                                                                                      | 6B                                                                                                                               | 3.27                                                                                                                              | 5B                                                                                                              | 4.41                                                                                                                      | 28.6                                                                                                                                                                                                                                                                            |
| 12C                                                                                                                     | 0.90                                                                                                                                                                 | 11C                                                                                                                    | 4.18                                                                                                                      | 6C                                                                                                                               | 0.57                                                                                                                              | 5C                                                                                                              | 2.84                                                                                                                      | 47.6                                                                                                                                                                                                                                                                            |
| 12D                                                                                                                     | 0.12                                                                                                                                                                 | 11D                                                                                                                    | 2.88                                                                                                                      | 6D                                                                                                                               | 0.12                                                                                                                              | 5D                                                                                                              | 2.59                                                                                                                      | 66.7                                                                                                                                                                                                                                                                            |
| 12E                                                                                                                     | 0.16                                                                                                                                                                 | 11E                                                                                                                    | 1.95                                                                                                                      | 6E                                                                                                                               | 0.15                                                                                                                              | 5E                                                                                                              | 1.46                                                                                                                      | 85.7                                                                                                                                                                                                                                                                            |
| Bridge:                                                                                                                 |                                                                                                                                                                      | 89-199                                                                                                                 |                                                                                                                           | Bridge:                                                                                                                          |                                                                                                                                   | 89-199                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Diagara                                                                                                                 | <b>.</b>                                                                                                                                                             | Lt. Side                                                                                                               |                                                                                                                           | Placement                                                                                                                        | :                                                                                                                                 | Rt. Side                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                               |                                                                                                                                                                      |                                                                                                                        |                                                                                                                           |                                                                                                                                  |                                                                                                                                   |                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                               | t Date:                                                                                                                                                              | 08/26/91                                                                                                               |                                                                                                                           | Placement                                                                                                                        |                                                                                                                                   | 08/28/91                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
|                                                                                                                         | t Date:                                                                                                                                                              | 08/26/91<br>09/12/02                                                                                                   |                                                                                                                           | Placement<br>Survey Da                                                                                                           |                                                                                                                                   | 08/28/91<br>09/12/02                                                                                            |                                                                                                                           |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                               | t Date:<br>ate:                                                                                                                                                      |                                                                                                                        | rack                                                                                                                      |                                                                                                                                  | ite:                                                                                                                              |                                                                                                                 | rack                                                                                                                      | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Placement<br>Survey Da<br>Off C                                                                                         | t Date:<br>ate:<br>rack                                                                                                                                              | 09/12/02<br>On C                                                                                                       |                                                                                                                           | Survey Da<br>Off Ci                                                                                                              | ite:<br>rack                                                                                                                      | 09/12/02<br>On C                                                                                                |                                                                                                                           | Depth                                                                                                                                                                                                                                                                           |
| Placement<br>Survey Da                                                                                                  | t Date:<br>ate:                                                                                                                                                      | 09/12/02                                                                                                               | rack<br>kg/m <sup>3</sup><br>6.92                                                                                         | Survey Da                                                                                                                        | ite:                                                                                                                              | 09/12/02                                                                                                        | rack<br>kg/m <sup>3</sup><br>8.64                                                                                         |                                                                                                                                                                                                                                                                                 |
| Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                         | 09/12/02<br>On Ca<br>Sample                                                                                            | kg/m <sup>3</sup>                                                                                                         | Survey Da<br>Off Ca<br>Sample                                                                                                    | nte:<br>rack<br>kg/m <sup>3</sup>                                                                                                 | 09/12/02<br>On Ca<br>Sample                                                                                     | kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                                                                                                                                                                                                   |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87                                                                                                                 | 09/12/02<br>On C<br>Sample<br>1A                                                                                       | <b>kg/m<sup>3</sup></b><br>6.92                                                                                           | Survey Da<br>Off C<br>Sample<br>8A                                                                                               | nte:<br>rack<br>kg/m <sup>3</sup><br>7.18                                                                                         | 09/12/02<br>On Ca<br>Sample<br>7A                                                                               | <b>kg/m<sup>3</sup></b><br>8.64                                                                                           | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42                                                                                                         | 09/12/02<br>On C<br>Sample<br>1A<br>1B                                                                                 | <b>kg/m<sup>3</sup></b><br>6.92<br>3.50                                                                                   | Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                         | nte:<br>rack<br>kg/m <sup>3</sup><br>7.18<br>1.85                                                                                 | 09/12/02<br>On C<br>Sample<br>7A<br>7B                                                                          | <b>kg/m<sup>3</sup></b><br>8.64<br>5.53                                                                                   | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                    |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00                                                                                                 | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C                                                                           | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88                                                                                 | Survey Da<br>Off Ca<br>Sample<br>8A<br>8B<br>8C                                                                                  | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00                                                                                 | 09/12/02<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                    | <b>kg/m<sup>3</sup></b><br>8.64<br>5.53<br>3.83                                                                           | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00                                                                                 | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                                     | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24                                                                         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                                             | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00                                                                         | 09/12/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D                                                              | <b>kg/m<sup>3</sup></b><br>8.64<br>5.53<br>3.83<br>1.99                                                                   | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                             |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00<br>0.00                                                                         | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1D<br>1E                                                         | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24<br>2.35                                                                 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                                       | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00<br>0.19                                                                 | 09/12/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7D<br>7E                                                  | kg/m <sup>3</sup><br>8.64<br>5.53<br>3.83<br>1.99<br>1.19                                                                 | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00<br>0.00<br>7.64                                                                 | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                                         | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24<br>2.35<br>6.55                                                         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                                | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00<br>0.19<br>7.86                                                         | 09/12/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>9A                                                  | kg/m <sup>3</sup><br>8.64<br>5.53<br>3.83<br>1.99<br>1.19<br>8.27                                                         | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>7.64<br>2.92<br>0.83<br>0.00                                 | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                                       | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24<br>2.35<br>6.55<br>4.20                                                 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                         | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00<br>0.00<br>0.19<br>7.86<br>4.30                                         | 09/12/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                    | kg/m <sup>3</sup><br>8.64<br>5.53<br>3.83<br>1.99<br>1.19<br>8.27<br>5.05                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>7.64<br>2.92<br>0.83                                         | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                                             | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24<br>2.35<br>6.55<br>4.20<br>3.14                                         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                  | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00<br>0.00<br>0.19<br>7.86<br>4.30<br>0.89                                 | 09/12/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                          | kg/m <sup>3</sup><br>8.64<br>5.53<br>3.83<br>1.99<br>1.19<br>8.27<br>5.05<br>4.41                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                     |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>7.64<br>2.92<br>0.83<br>0.00                                 | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                                       | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24<br>2.35<br>6.55<br>4.20<br>3.14<br>2.85                                 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                           | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00<br>0.19<br>7.86<br>4.30<br>0.89<br>0.00                                 | 09/12/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                    | kg/m <sup>3</sup><br>8.64<br>5.53<br>3.83<br>1.99<br>1.19<br>8.27<br>5.05<br>4.41<br>3.02                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00<br>7.64<br>2.92<br>0.83<br>0.00<br>0.00<br>6.65<br>2.85                         | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B                     | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24<br>2.35<br>6.55<br>4.20<br>3.14<br>2.85<br>2.67<br>7.94<br>5.24         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00<br>0.19<br>7.86<br>4.30<br>0.89<br>0.00<br>0.19<br>6.91<br>1.85         | 09/12/02<br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B | kg/m <sup>3</sup><br>8.64<br>5.53<br>3.83<br>1.99<br>1.19<br>8.27<br>5.05<br>4.41<br>3.02<br>1.98<br>6.24<br>3.70         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00<br>0.00<br>7.64<br>2.92<br>0.83<br>0.00<br>0.00<br>0.00<br>6.65<br>2.85<br>0.29 | 09/12/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24<br>2.35<br>6.55<br>4.20<br>3.14<br>2.85<br>2.67<br>7.94<br>5.24<br>3.85 | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00<br>0.19<br>7.86<br>4.30<br>0.89<br>0.00<br>0.19<br>6.91<br>1.85<br>0.00 | 09/12/02  Con Con Sample 7A 7B 7C 7D 7C 7D 7E 9A 9B 9C 9D 9E 11A 11B 11C                                        | kg/m <sup>3</sup><br>8.64<br>5.53<br>3.83<br>1.99<br>1.19<br>8.27<br>5.05<br>4.41<br>3.02<br>1.98<br>6.24<br>3.70<br>2.64 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>3.87<br>0.42<br>0.00<br>0.00<br>0.00<br>7.64<br>2.92<br>0.83<br>0.00<br>0.00<br>6.65<br>2.85                         | 09/12/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B                     | kg/m <sup>3</sup><br>6.92<br>3.50<br>2.88<br>3.24<br>2.35<br>6.55<br>4.20<br>3.14<br>2.85<br>2.67<br>7.94<br>5.24         | Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B                      | rack<br>kg/m <sup>3</sup><br>7.18<br>1.85<br>0.00<br>0.00<br>0.19<br>7.86<br>4.30<br>0.89<br>0.00<br>0.19<br>6.91<br>1.85         | 09/12/02<br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B | kg/m <sup>3</sup><br>8.64<br>5.53<br>3.83<br>1.99<br>1.19<br>8.27<br>5.05<br>4.41<br>3.02<br>1.98<br>6.24<br>3.70         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |

| Table D.1 | (con't | ) – Chloride | <b>Concentration Data</b> |
|-----------|--------|--------------|---------------------------|
|-----------|--------|--------------|---------------------------|

| Bridge:                                                                                                                                                               | idge: 89-200                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                       | Bridge:                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89-200                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                                                   | ement Date: 08/17/91                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                       | Placement<br>Placement<br>Survey Da                                                                                                             | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lt. Side<br>08/20/91<br>09/17/02                                                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Off C                                                                                                                                                                 | rack                                                                                                                                                       | On C                                                                                                                                                                                       | rack                                                                                                                                  | Off C                                                                                                                                           | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | On C                                                                                                                                                            | rack                                                                                                                              | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Sample                                                                                                                                                                | kg/m <sup>3</sup>                                                                                                                                          | Sample                                                                                                                                                                                     | kg/m <sup>3</sup>                                                                                                                     | Sample                                                                                                                                          | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample                                                                                                                                                          | kg/m <sup>3</sup>                                                                                                                 | (mm)                                                                                                                                                                                                                                                                            |
| 8A                                                                                                                                                                    | 5.90                                                                                                                                                       | 7A                                                                                                                                                                                         | 8.60                                                                                                                                  | 2A                                                                                                                                              | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1A                                                                                                                                                              | 11.47                                                                                                                             | 9.5                                                                                                                                                                                                                                                                             |
| 8B                                                                                                                                                                    | 1.61                                                                                                                                                       | 7B                                                                                                                                                                                         | 4.40                                                                                                                                  | 2B                                                                                                                                              | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1B                                                                                                                                                              | 5.97                                                                                                                              | 28.6                                                                                                                                                                                                                                                                            |
| 8C                                                                                                                                                                    | 0.19                                                                                                                                                       | 7C                                                                                                                                                                                         | 3.40                                                                                                                                  | 2C                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1C                                                                                                                                                              | 3.83                                                                                                                              | 47.6                                                                                                                                                                                                                                                                            |
| 8D                                                                                                                                                                    | 0.11                                                                                                                                                       | 7D                                                                                                                                                                                         | 2.49                                                                                                                                  | 2D                                                                                                                                              | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1D                                                                                                                                                              | 4.52                                                                                                                              | 66.7                                                                                                                                                                                                                                                                            |
| 8E                                                                                                                                                                    | 0.14                                                                                                                                                       | 7E                                                                                                                                                                                         | 1.41                                                                                                                                  | 2E                                                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1E                                                                                                                                                              | 3.05                                                                                                                              | 85.7                                                                                                                                                                                                                                                                            |
| 10A                                                                                                                                                                   | 6.56                                                                                                                                                       | 9A                                                                                                                                                                                         | 6.40                                                                                                                                  | 4A                                                                                                                                              | 6.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3A                                                                                                                                                              | 7.75                                                                                                                              | 9.5                                                                                                                                                                                                                                                                             |
| 10B                                                                                                                                                                   | 1.64                                                                                                                                                       | 9B                                                                                                                                                                                         | 4.64                                                                                                                                  | 4B                                                                                                                                              | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3B                                                                                                                                                              | 5.59                                                                                                                              | 28.6                                                                                                                                                                                                                                                                            |
| 10C                                                                                                                                                                   | 0.00                                                                                                                                                       | 9C                                                                                                                                                                                         | 1.90                                                                                                                                  | 4C                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3C                                                                                                                                                              | 4.90                                                                                                                              | 47.6                                                                                                                                                                                                                                                                            |
| 10D                                                                                                                                                                   | 0.00                                                                                                                                                       | 9D                                                                                                                                                                                         | 0.52                                                                                                                                  | 4D                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3D                                                                                                                                                              | 3.80                                                                                                                              | 66.7                                                                                                                                                                                                                                                                            |
| 10E                                                                                                                                                                   | 0.00                                                                                                                                                       | 9E                                                                                                                                                                                         | 0.50                                                                                                                                  | 4E                                                                                                                                              | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3E                                                                                                                                                              | 2.55                                                                                                                              | 85.7                                                                                                                                                                                                                                                                            |
| 12A                                                                                                                                                                   | 7.37                                                                                                                                                       | 11A                                                                                                                                                                                        | 8.00                                                                                                                                  | 6A                                                                                                                                              | 7.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5A                                                                                                                                                              | 7.56                                                                                                                              | 9.5                                                                                                                                                                                                                                                                             |
| 12B                                                                                                                                                                   | 1.57                                                                                                                                                       | 11B                                                                                                                                                                                        | 7.09                                                                                                                                  | 6B                                                                                                                                              | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5B                                                                                                                                                              | 6.02                                                                                                                              | 28.6                                                                                                                                                                                                                                                                            |
| 12C                                                                                                                                                                   | 0.00                                                                                                                                                       | 11C                                                                                                                                                                                        | 5.17                                                                                                                                  | 6C                                                                                                                                              | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5C                                                                                                                                                              | 4.82                                                                                                                              | 47.6                                                                                                                                                                                                                                                                            |
| 12D<br>12E                                                                                                                                                            | 0.00                                                                                                                                                       | 11D                                                                                                                                                                                        | 4.47                                                                                                                                  | 6D                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5D                                                                                                                                                              | 3.49                                                                                                                              | 66.7                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                       |                                                                                                                                                            | 11E                                                                                                                                                                                        | 2.80                                                                                                                                  | 6E                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5E                                                                                                                                                              | 2.01                                                                                                                              | 85.7                                                                                                                                                                                                                                                                            |
| 1212                                                                                                                                                                  | 0.61                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Bridge:                                                                                                                                                               | 0.01                                                                                                                                                       | 89-201                                                                                                                                                                                     |                                                                                                                                       | Bridge:                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89-201                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                       | t:                                                                                                                                                         |                                                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Bridge:<br>Placement                                                                                                                                                  | t:<br>t Date:                                                                                                                                              | <b>89-201</b><br>Rt. Side                                                                                                                                                                  |                                                                                                                                       | Bridge:<br>Placement                                                                                                                            | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>89-201</b><br>Lt. Side                                                                                                                                       |                                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Bridge:<br>Placement<br>Placement                                                                                                                                     | t:<br>t Date:<br>ate:                                                                                                                                      | <b>89-201</b><br>Rt. Side<br>08/19/91                                                                                                                                                      |                                                                                                                                       | Bridge:<br>Placement<br>Placement                                                                                                               | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>89-201</b><br>Lt. Side<br>08/21/91                                                                                                                           |                                                                                                                                   | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                                        | t:<br>t Date:<br>ate:                                                                                                                                      | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02                                                                                                                                          | rack                                                                                                                                  | Bridge:<br>Placement<br>Placement<br>Survey Da                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02                                                                                                               | rack                                                                                                                              |                                                                                                                                                                                                                                                                                 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C                                                                                                               | t:<br>t Date:<br>nte:<br>rack                                                                                                                              | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b>                                                                                                                           |                                                                                                                                       | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C                                                                                         | Date:<br>hte:<br>rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b>                                                                                                |                                                                                                                                   | Depth                                                                                                                                                                                                                                                                           |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                                     | t:<br>t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                         | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br>On Ca<br>Sample                                                                                                                       | rack<br>kg/m <sup>3</sup>                                                                                                             | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                               | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89-201<br>Lt. Side<br>08/21/91<br>09/11/02<br>On C<br>Sample                                                                                                    | rack<br>kg/m <sup>3</sup>                                                                                                         | Depth<br>(mm)                                                                                                                                                                                                                                                                   |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                                               | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76                                                                                                 | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A                                                                                                    | rack<br>kg/m <sup>3</sup><br>16.37                                                                                                    | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A                                                                         | rack<br>kg/m <sup>3</sup><br>7.26                                                                                                 | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                     |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                                         | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72                                                                                         | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B                                                                                              | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>16.37<br>10.97                                                                              | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | <b>t Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.79<br>0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B                                                                   | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86                                                                                         | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                    |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                                                   | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62                                                                                 | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E                                                                            | <b>rack</b><br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96                                                                           | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.79<br>0.64<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C                                                             | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>7.26<br>3.86<br>3.75                                                                    | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                            |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A                                                                | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95                                                         | 89-201<br>Rt. Side<br>08/19/91<br>09/11/02<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A                                                                               | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32                                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>4.79<br>0.64<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89-201<br>Lt. Side<br>08/21/91<br>09/11/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                                                | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37                                                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5                                                                                                                                                                    |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B                                                         | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95<br>1.72                                                 | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B                                                                | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32<br>4.12                                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.79<br>0.64<br>0.00<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37<br>3.70                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                     |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C                                                  | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95<br>1.72<br>0.13                                         | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C                                              | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32<br>4.12<br>3.92                                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | <b>t</b> Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>4.79<br>0.64<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37<br>3.70<br>3.27                                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                      |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D                                           | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95<br>1.72<br>0.13<br>0.00                                 | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D                                                    | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32<br>4.12<br>3.92<br>2.88                                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.79<br>0.64<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37<br>3.70<br>3.27<br>2.97                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                             |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E                                    | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95<br>1.72<br>0.13<br>0.00<br>0.17                         | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E                                              | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32<br>4.12<br>3.92<br>2.88<br>1.26                         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | <b>a Date:</b><br><b>inte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.79<br>0.64<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.00<br>0.00<br>0.00<br>0.17                                                                                                                                                                                                                                                                                                                                                                               | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37<br>3.70<br>3.27<br>2.97<br>1.86                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                     |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A                             | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95<br>1.72<br>0.13<br>0.00<br>0.17<br>6.42                 | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>111A                          | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32<br>4.12<br>3.92<br>2.88<br>1.26<br>7.56                 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | <b>a</b> Date:<br>htte:<br><b>b b c c c c c c c c c c</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A             | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37<br>3.70<br>3.27<br>2.97<br>1.86<br>6.75                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5                |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B        | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95<br>1.72<br>0.13<br>0.00<br>0.17<br>6.42<br>1.82         | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>9D<br>9E<br>11A<br>11B        | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32<br>4.12<br>3.92<br>2.88<br>1.26<br>7.56<br>4.59         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | <b>bate:</b><br><b>track</b><br><b>kg/m<sup>3</sup></b><br>4.79<br>0.64<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.00<br>0.17<br>5.52<br>1.82                                                                                                                                                                                                                                                                                                                                                                                                | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37<br>3.70<br>3.27<br>2.97<br>1.86<br>6.75<br>4.89         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95<br>1.72<br>0.13<br>0.00<br>0.17<br>6.42<br>1.82<br>0.15 | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32<br>4.12<br>3.92<br>2.88<br>1.26<br>7.56<br>4.59<br>4.08 | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | <b>bate:</b><br><b>inte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.79<br>0.64<br>0.00<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.52<br>0.14                                                                                                                                                                                                                                                 | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37<br>3.70<br>3.27<br>2.97<br>1.86<br>6.75<br>4.89<br>3.71 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>47.6                                                                                                                                                      |
| Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>10A<br>10B<br>10C<br>10D<br>10C<br>10D<br>10E<br>12A<br>12B        | t:<br>t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.76<br>2.72<br>0.62<br>0.12<br>0.13<br>6.95<br>1.72<br>0.13<br>0.00<br>0.17<br>6.42<br>1.82         | <b>89-201</b><br>Rt. Side<br>08/19/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>7A<br>7B<br>7C<br>7D<br>7E<br>9A<br>9B<br>9C<br>9D<br>9E<br>9D<br>9E<br>11A<br>11B                    | rack<br>kg/m <sup>3</sup><br>16.37<br>10.97<br>11.96<br>15.87<br>2.80<br>7.32<br>4.12<br>3.92<br>2.88<br>1.26<br>7.56<br>4.59         | Bridge:<br>Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>4.79<br>0.64<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.53<br>0.77<br>0.00<br>0.17<br>5.02<br>1.82 | <b>89-201</b><br>Lt. Side<br>08/21/91<br>09/11/02<br><b>On C</b><br><b>Sample</b><br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | rack<br>kg/m <sup>3</sup><br>7.26<br>3.86<br>3.75<br>3.20<br>3.06<br>6.37<br>3.70<br>3.27<br>2.97<br>1.86<br>6.75<br>4.89         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |

| Bridge:                                                                                                                                    | lge: 56-142                                                                                                                                                   |                                                                                                                                    |                                                                                                                                    | Bridge:                                                                                                                                    |                                                                                                                                                                                    | 56-142                                                                                                                             |                                                                                                                                    |                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                        | t Date:                                                                                                                                                       | South End<br>10/01/87<br>09/25/03                                                                                                  |                                                                                                                                    | Placement<br>Placement<br>Survey Da                                                                                                        | Date:                                                                                                                                                                              | South Pier<br>10/06/87<br>09/25/03                                                                                                 |                                                                                                                                    |                                                                                                                                                                                                                                                                                 |
| Survey Da                                                                                                                                  |                                                                                                                                                               | 0)125105                                                                                                                           |                                                                                                                                    | Survey Da                                                                                                                                  | ite.                                                                                                                                                                               | 0)/25/05                                                                                                                           |                                                                                                                                    | Mean                                                                                                                                                                                                                                                                            |
| Off C                                                                                                                                      | rack                                                                                                                                                          | <b>On C</b>                                                                                                                        | rack                                                                                                                               | Off C                                                                                                                                      | rack                                                                                                                                                                               | <b>On C</b>                                                                                                                        | rack                                                                                                                               | Depth                                                                                                                                                                                                                                                                           |
| Sample                                                                                                                                     | kg/m <sup>3</sup>                                                                                                                                             | Sample                                                                                                                             | kg/m <sup>3</sup>                                                                                                                  | Sample                                                                                                                                     | kg/m <sup>3</sup>                                                                                                                                                                  | Sample                                                                                                                             | kg/m <sup>3</sup>                                                                                                                  | (mm)                                                                                                                                                                                                                                                                            |
| 2A                                                                                                                                         | 7.79                                                                                                                                                          | 1A                                                                                                                                 | 8.35                                                                                                                               | 6A                                                                                                                                         | 8.29                                                                                                                                                                               | 5A                                                                                                                                 | 7.01                                                                                                                               | 9.5                                                                                                                                                                                                                                                                             |
| 2B                                                                                                                                         | 3.69                                                                                                                                                          | 1B                                                                                                                                 | 5.72                                                                                                                               | 6B                                                                                                                                         | 5.10                                                                                                                                                                               | 5B                                                                                                                                 | 3.98                                                                                                                               | 28.6                                                                                                                                                                                                                                                                            |
| 2C                                                                                                                                         | 1.90                                                                                                                                                          | 1C                                                                                                                                 | 2.86                                                                                                                               | 6C                                                                                                                                         | 2.03                                                                                                                                                                               | 5C                                                                                                                                 | 1.86                                                                                                                               | 47.6                                                                                                                                                                                                                                                                            |
| 2D                                                                                                                                         | 0.43                                                                                                                                                          | 1D                                                                                                                                 | 0.87                                                                                                                               | 6D                                                                                                                                         | 0.46                                                                                                                                                                               | 5D                                                                                                                                 | 0.62                                                                                                                               | 66.7                                                                                                                                                                                                                                                                            |
| 2E                                                                                                                                         | 0.11                                                                                                                                                          | 1E                                                                                                                                 | 0.21                                                                                                                               | 6E                                                                                                                                         | 0.31                                                                                                                                                                               | 5E                                                                                                                                 | 0.31                                                                                                                               | 85.7                                                                                                                                                                                                                                                                            |
| 4A                                                                                                                                         | 10.17                                                                                                                                                         | 3A                                                                                                                                 | 10.56                                                                                                                              | 8A                                                                                                                                         | 7.62                                                                                                                                                                               | 7A                                                                                                                                 | 8.18                                                                                                                               | 9.5                                                                                                                                                                                                                                                                             |
| 4B                                                                                                                                         | 4.05                                                                                                                                                          | 3B                                                                                                                                 | 5.85                                                                                                                               | 8B                                                                                                                                         | 2.77                                                                                                                                                                               | 7B                                                                                                                                 | 4.49                                                                                                                               | 28.6                                                                                                                                                                                                                                                                            |
| 4C                                                                                                                                         | 1.07                                                                                                                                                          | 3C                                                                                                                                 | 1.82                                                                                                                               | 8C                                                                                                                                         | 0.98                                                                                                                                                                               | 7C                                                                                                                                 | 3.74                                                                                                                               | 47.6                                                                                                                                                                                                                                                                            |
| 4D                                                                                                                                         | 0.19                                                                                                                                                          | 3D                                                                                                                                 | 0.65                                                                                                                               | 8D                                                                                                                                         | 0.22                                                                                                                                                                               | 7D                                                                                                                                 | 2.40                                                                                                                               | 66.7                                                                                                                                                                                                                                                                            |
| 4E                                                                                                                                         | 0.55                                                                                                                                                          | 3E                                                                                                                                 | 0.18                                                                                                                               | 8E                                                                                                                                         | 0.24                                                                                                                                                                               | 7E                                                                                                                                 | 1.00                                                                                                                               | 85.7                                                                                                                                                                                                                                                                            |
| 12A                                                                                                                                        | 6.96                                                                                                                                                          | 11A                                                                                                                                | 6.69                                                                                                                               | 10A                                                                                                                                        | 10.19                                                                                                                                                                              | 9A                                                                                                                                 | 10.08                                                                                                                              | 9.5                                                                                                                                                                                                                                                                             |
| 12B                                                                                                                                        | 2.07                                                                                                                                                          | 11B                                                                                                                                | 3.13                                                                                                                               | 10B                                                                                                                                        | 4.14                                                                                                                                                                               | 9B                                                                                                                                 | 6.36                                                                                                                               | 28.6                                                                                                                                                                                                                                                                            |
| 12C                                                                                                                                        | 0.32                                                                                                                                                          | 11C                                                                                                                                | 1.13                                                                                                                               | 10C                                                                                                                                        | 1.03                                                                                                                                                                               | 9C                                                                                                                                 | 4.11                                                                                                                               | 47.6                                                                                                                                                                                                                                                                            |
| 12D                                                                                                                                        | 0.13                                                                                                                                                          | 11D                                                                                                                                | 0.25                                                                                                                               | 10D                                                                                                                                        | 0.17                                                                                                                                                                               | 9D                                                                                                                                 | 2.07                                                                                                                               | 66.7                                                                                                                                                                                                                                                                            |
| 12E                                                                                                                                        | 0.17                                                                                                                                                          | 11E                                                                                                                                | 0.30                                                                                                                               | 10E                                                                                                                                        | 0.19                                                                                                                                                                               | 9E                                                                                                                                 | 1.00                                                                                                                               | 85.7                                                                                                                                                                                                                                                                            |
| Bridge:                                                                                                                                    |                                                                                                                                                               | 56-148                                                                                                                             |                                                                                                                                    | Bridge:                                                                                                                                    |                                                                                                                                                                                    | 70-95                                                                                                                              |                                                                                                                                    |                                                                                                                                                                                                                                                                                 |
| 0                                                                                                                                          |                                                                                                                                                               | 00110                                                                                                                              |                                                                                                                                    | Diluge.                                                                                                                                    |                                                                                                                                                                                    | 70-75                                                                                                                              |                                                                                                                                    |                                                                                                                                                                                                                                                                                 |
| C                                                                                                                                          | t:                                                                                                                                                            |                                                                                                                                    |                                                                                                                                    | 0                                                                                                                                          | :                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                    |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                                                  |                                                                                                                                                               | Deck<br>07/18/91                                                                                                                   |                                                                                                                                    | Placement<br>Placement                                                                                                                     |                                                                                                                                                                                    | Deck<br>10/31/95                                                                                                                   |                                                                                                                                    |                                                                                                                                                                                                                                                                                 |
| Placement                                                                                                                                  | t Date:                                                                                                                                                       | Deck                                                                                                                               |                                                                                                                                    | Placement                                                                                                                                  | Date:                                                                                                                                                                              | Deck                                                                                                                               |                                                                                                                                    |                                                                                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da                                                                                                        | t Date:<br>ate:                                                                                                                                               | Deck<br>07/18/91<br>08/27/02                                                                                                       |                                                                                                                                    | Placement<br>Placement<br>Survey Da                                                                                                        | Date:<br>nte:                                                                                                                                                                      | Deck<br>10/31/95<br>11/12/03                                                                                                       |                                                                                                                                    | Mean                                                                                                                                                                                                                                                                            |
| Placement                                                                                                                                  | t Date:<br>ate:<br>rack                                                                                                                                       | Deck<br>07/18/91                                                                                                                   |                                                                                                                                    | Placement<br>Placement                                                                                                                     | t Date:<br>hte:<br>rack                                                                                                                                                            | Deck<br>10/31/95                                                                                                                   |                                                                                                                                    | Mean<br>Depth                                                                                                                                                                                                                                                                   |
| Placement<br>Placement<br>Survey Da                                                                                                        | t Date:<br>ate:                                                                                                                                               | Deck<br>07/18/91<br>08/27/02                                                                                                       | rack<br>kg/m <sup>3</sup>                                                                                                          | Placement<br>Placement<br>Survey Da                                                                                                        | Date:<br>nte:                                                                                                                                                                      | Deck<br>10/31/95<br>11/12/03                                                                                                       | kg/m <sup>3</sup>                                                                                                                  |                                                                                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                               | t Date:<br>ate:<br>rack                                                                                                                                       | Deck<br>07/18/91<br>08/27/02<br>On C                                                                                               |                                                                                                                                    | Placement<br>Placement<br>Survey Da<br>Off C                                                                                               | t Date:<br>hte:<br>rack                                                                                                                                                            | Deck<br>10/31/95<br>11/12/03<br>On C                                                                                               | <b>kg/m<sup>3</sup></b><br>12.06                                                                                                   | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75                                                                                                 | Deck<br>07/18/91<br>08/27/02<br>On Ca<br>Sample<br>1A<br>1B                                                                        | <b>kg/m<sup>3</sup></b><br>10.27<br>4.75                                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                         | <b>t Date:</b><br>htte:<br>rack<br>kg/m <sup>3</sup><br>13.39<br>8.95                                                                                                              | Deck<br>10/31/95<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B                                                                        | <b>kg/m<sup>3</sup></b><br>12.06<br>6.01                                                                                           | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                    |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75                                                                                         | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C                                                                   | <b>kg/m<sup>3</sup></b><br>10.27<br>4.75<br>2.77                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                                   | <b>t Date:</b><br><b>track</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47                                                                                                 | Deck<br>10/31/95<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C                                                                  | <b>kg/m<sup>3</sup></b><br>12.06<br>6.01<br>4.66                                                                                   | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19                                                                                 | Deck<br>07/18/91<br>08/27/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D                                                            | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60                                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                             | <b>t</b> Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>13.39<br>8.95<br>3.47<br>0.90                                                                                              | Deck<br>10/31/95<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B                                                                        | <b>kg/m<sup>3</sup></b><br>12.06<br>6.01<br>4.66<br>1.95                                                                           | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                                    |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12                                                                         | Deck<br>07/18/91<br>08/27/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1D<br>1E                                                | <b>kg/m<sup>3</sup></b><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96                                                                   | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                       | <b>Date:</b><br><b>track</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22                                                                                   | Deck<br>10/31/95<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1D<br>1E                                                | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77                                                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                            |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                                 | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68                                                                 | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                                 | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39                                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                                 | <b>back:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73                                                                           | Deck<br>10/31/95<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                                | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64                                                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85                                                         | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                           | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                           | <b>bate:</b><br><b>te:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73<br>11.04                                                    | Deck<br>10/31/95<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                           | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06                                                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85<br>3.45                                                 | Deck<br>07/18/91<br>08/27/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                                    | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23<br>3.69                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                                     | <b>bate:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73<br>11.04<br>5.95                                                          | Deck<br>10/31/95<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                                    | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06<br>4.39                                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                      |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85<br>3.45<br>0.87                                         | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                               | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23<br>3.69<br>3.17                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                               | <b>bate:</b><br><b>track</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73<br>11.04<br>5.95<br>4.71                                                 | Deck<br>10/31/95<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                               | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06<br>4.39<br>5.29                                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                             |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85<br>3.45<br>0.87<br>0.23                                 | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                         | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23<br>3.69<br>3.17<br>1.34                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                         | <b>a Date:</b><br><b>nte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73<br>11.04<br>5.95<br>4.71<br>0.33                         | Deck<br>10/31/95<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                         | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06<br>4.39<br>5.29<br>2.19                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                     |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85<br>3.45<br>0.87<br>0.23<br>9.78                         | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A                   | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23<br>3.69<br>3.17<br>1.34<br>6.22                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A                   | <b>basis Date:</b><br><b>inte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73<br>11.04<br>5.95<br>4.71<br>0.33<br>10.12           | Deck<br>10/31/95<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A                   | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06<br>4.39<br>5.29<br>2.19<br>8.75                         | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7                                             |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85<br>3.45<br>0.87<br>0.23<br>9.78<br>5.80                 | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B             | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23<br>3.69<br>3.17<br>1.34<br>6.22<br>2.89                 | Placement<br>Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B                       | <b>a Date:</b><br><b>nte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73<br>11.04<br>5.95<br>4.71<br>0.33<br>10.12<br>7.00        | Deck<br>10/31/95<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B             | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06<br>4.39<br>5.29<br>2.19<br>8.75<br>6.74                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85<br>3.45<br>0.87<br>0.23<br>9.78<br>5.80<br>2.44         | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C       | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23<br>3.69<br>3.17<br>1.34<br>6.22<br>2.89<br>2.19         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | <b>bate:</b><br><b>inte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73<br>11.04<br>5.95<br>4.71<br>0.33<br>10.12<br>7.00<br>3.51 | Deck<br>10/31/95<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C       | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06<br>4.39<br>5.29<br>2.19<br>8.75<br>6.74<br>5.44         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                              |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C<br>6D | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85<br>3.45<br>0.87<br>0.23<br>9.78<br>5.80<br>2.44<br>0.59 | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C<br>5D | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23<br>3.69<br>3.17<br>1.34<br>6.22<br>2.89<br>2.19<br>1.65 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C<br>6D | <b>a</b> Date:<br>htte:<br><b>b b c b c c c b c c c c c c c c c c</b>                                                                                                              | Deck<br>10/31/95<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C<br>5D | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06<br>4.39<br>5.29<br>2.19<br>8.75<br>6.74<br>5.44<br>3.87 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                      |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>13.19<br>5.75<br>1.75<br>0.19<br>0.12<br>9.68<br>7.85<br>3.45<br>0.87<br>0.23<br>9.78<br>5.80<br>2.44         | Deck<br>07/18/91<br>08/27/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C       | kg/m <sup>3</sup><br>10.27<br>4.75<br>2.77<br>2.60<br>0.96<br>9.39<br>5.23<br>3.69<br>3.17<br>1.34<br>6.22<br>2.89<br>2.19         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | <b>bate:</b><br><b>inte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>13.39<br>8.95<br>3.47<br>0.90<br>0.22<br>12.73<br>11.04<br>5.95<br>4.71<br>0.33<br>10.12<br>7.00<br>3.51 | Deck<br>10/31/95<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C       | kg/m <sup>3</sup><br>12.06<br>6.01<br>4.66<br>1.95<br>0.77<br>0.64<br>8.06<br>4.39<br>5.29<br>2.19<br>8.75<br>6.74<br>5.44         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                                                                                                                                              |

| Bridge:                                                                                                                                    |                                                                                                                                                                 | 70-103 Bridge:                                                                                                                     |                                                                                                                                     |                                                                                                                                            |                                                                                                                                                                   | 70-103                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                        | t Date:                                                                                                                                                         | Right<br>03/14/85<br>11/13/03                                                                                                      |                                                                                                                                     | Placement<br>Placement<br>Survey Da                                                                                                        | t Date:                                                                                                                                                           | Left<br>03/19/85<br>11/13/03                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |
| Off C                                                                                                                                      | rack                                                                                                                                                            | On C                                                                                                                               | rack                                                                                                                                | Off C                                                                                                                                      | rack                                                                                                                                                              | On C                                                                                                                               | rack                                                                                                                                | Mean<br>Depth                                                                                                                                                                                                                                                                                                                              |
| Sample                                                                                                                                     | kg/m <sup>3</sup>                                                                                                                                               | Sample                                                                                                                             | kg/m <sup>3</sup>                                                                                                                   | Sample                                                                                                                                     | kg/m <sup>3</sup>                                                                                                                                                 | Sample                                                                                                                             | kg/m <sup>3</sup>                                                                                                                   | (mm)                                                                                                                                                                                                                                                                                                                                       |
| 2A                                                                                                                                         | 10.09                                                                                                                                                           | 1A                                                                                                                                 | 10.02                                                                                                                               | 8A                                                                                                                                         | 9.53                                                                                                                                                              | 7A                                                                                                                                 | 11.51                                                                                                                               | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 2B                                                                                                                                         | 8.27                                                                                                                                                            | 1B                                                                                                                                 | 9.73                                                                                                                                | 8B                                                                                                                                         | 6.28                                                                                                                                                              | 7B                                                                                                                                 | 8.28                                                                                                                                | 28.6                                                                                                                                                                                                                                                                                                                                       |
| 2C                                                                                                                                         | 4.47                                                                                                                                                            | 1C                                                                                                                                 | 4.30                                                                                                                                | 8C                                                                                                                                         | 3.84                                                                                                                                                              | 7C                                                                                                                                 | 4.39                                                                                                                                | 47.6                                                                                                                                                                                                                                                                                                                                       |
| 2D                                                                                                                                         | 2.31                                                                                                                                                            | 1D                                                                                                                                 | 2.41                                                                                                                                | 8D                                                                                                                                         | 2.08                                                                                                                                                              | 7D                                                                                                                                 | 2.30                                                                                                                                | 66.7                                                                                                                                                                                                                                                                                                                                       |
| 2E                                                                                                                                         | 0.98                                                                                                                                                            | 1E                                                                                                                                 | 2.61                                                                                                                                | 8E                                                                                                                                         | 1.68                                                                                                                                                              | 7E                                                                                                                                 | 1.05                                                                                                                                | 85.7                                                                                                                                                                                                                                                                                                                                       |
| 4A                                                                                                                                         | 9.33                                                                                                                                                            | 3A                                                                                                                                 | 7.72                                                                                                                                | 10A                                                                                                                                        | 9.91                                                                                                                                                              | 9A                                                                                                                                 | 11.11                                                                                                                               | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 4B                                                                                                                                         | 7.60                                                                                                                                                            | 3B                                                                                                                                 | 4.14                                                                                                                                | 10B                                                                                                                                        | 9.58                                                                                                                                                              | 9B                                                                                                                                 | 8.39                                                                                                                                | 28.6                                                                                                                                                                                                                                                                                                                                       |
| 4C                                                                                                                                         | 4.69                                                                                                                                                            | 3C                                                                                                                                 | 2.68                                                                                                                                | 10C                                                                                                                                        | 5.54                                                                                                                                                              | 9C                                                                                                                                 | 5.15                                                                                                                                | 47.6                                                                                                                                                                                                                                                                                                                                       |
| 4D                                                                                                                                         | 2.62                                                                                                                                                            | 3D                                                                                                                                 | 2.40                                                                                                                                | 10D                                                                                                                                        | 2.62                                                                                                                                                              | 9D                                                                                                                                 | 2.43                                                                                                                                | 66.7                                                                                                                                                                                                                                                                                                                                       |
| 4E                                                                                                                                         | 1.16                                                                                                                                                            | 3E                                                                                                                                 | 1.53                                                                                                                                | 10E                                                                                                                                        | 0.92                                                                                                                                                              | 9E                                                                                                                                 | 0.83                                                                                                                                | 85.7                                                                                                                                                                                                                                                                                                                                       |
| 6A                                                                                                                                         | 9.31                                                                                                                                                            | 5A                                                                                                                                 | 11.91                                                                                                                               | 12A                                                                                                                                        | 8.55                                                                                                                                                              | 11A                                                                                                                                | 8.16                                                                                                                                | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 6B                                                                                                                                         | 10.49                                                                                                                                                           | 5B                                                                                                                                 | 7.57                                                                                                                                | 12B                                                                                                                                        | 7.81                                                                                                                                                              | 11B                                                                                                                                | 6.09                                                                                                                                | 28.6                                                                                                                                                                                                                                                                                                                                       |
| 6C                                                                                                                                         | 6.63                                                                                                                                                            | 5C                                                                                                                                 | 5.38                                                                                                                                | 12C                                                                                                                                        | 4.02                                                                                                                                                              | 11C                                                                                                                                | 3.88                                                                                                                                | 47.6                                                                                                                                                                                                                                                                                                                                       |
| 6D                                                                                                                                         | 4.42                                                                                                                                                            | 5D                                                                                                                                 | 4.75                                                                                                                                | 12D                                                                                                                                        | 1.99                                                                                                                                                              | 11D                                                                                                                                | 2.98                                                                                                                                | 66.7                                                                                                                                                                                                                                                                                                                                       |
| 6E                                                                                                                                         | 2.02                                                                                                                                                            | 5E                                                                                                                                 | 5.00                                                                                                                                | 12E                                                                                                                                        | 0.53                                                                                                                                                              | 11E                                                                                                                                | 2.87                                                                                                                                | 85.7                                                                                                                                                                                                                                                                                                                                       |
| D.11                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                    |                                                                                                                                     |                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                    |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:                                                                                                                                    |                                                                                                                                                                 | 70-104                                                                                                                             |                                                                                                                                     | Bridge:                                                                                                                                    |                                                                                                                                                                   | 70-107                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:<br>Placement                                                                                                                       | t:                                                                                                                                                              | 7 <b>0-104</b><br>Deck                                                                                                             |                                                                                                                                     | Bridge:<br>Placement                                                                                                                       | t <b>:</b>                                                                                                                                                        | 7 <b>0-107</b><br>Deck                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |
| C                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                    |                                                                                                                                     | 0                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                    |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |
| Placement                                                                                                                                  | t Date:                                                                                                                                                         | Deck                                                                                                                               |                                                                                                                                     | Placement                                                                                                                                  | t Date:                                                                                                                                                           | Deck                                                                                                                               |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |
| Placement                                                                                                                                  | t Date:<br>ate:                                                                                                                                                 | Deck<br>10/17/85                                                                                                                   | rack                                                                                                                                | Placement<br>Placement                                                                                                                     | t Date:<br>nte:                                                                                                                                                   | Deck<br>10/25/91                                                                                                                   | rack                                                                                                                                | Mean<br>Depth                                                                                                                                                                                                                                                                                                                              |
| Placement<br>Placement<br>Survey Da<br>Off C                                                                                               | t Date:<br>ate:<br>rack                                                                                                                                         | Deck<br>10/17/85<br>11/12/03<br>On C                                                                                               |                                                                                                                                     | Placement<br>Placement<br>Survey Da<br>Off C                                                                                               | t Date:<br>hte:<br>rack                                                                                                                                           | Deck<br>10/25/91<br>08/26/02<br>On C                                                                                               |                                                                                                                                     | Depth                                                                                                                                                                                                                                                                                                                                      |
| Placement<br>Placement<br>Survey Da                                                                                                        | t Date:<br>ate:                                                                                                                                                 | Deck<br>10/17/85<br>11/12/03                                                                                                       | rack<br>kg/m <sup>3</sup><br>0.35                                                                                                   | Placement<br>Placement<br>Survey Da                                                                                                        | t Date:<br>nte:                                                                                                                                                   | Deck<br>10/25/91<br>08/26/02                                                                                                       | rack<br>kg/m <sup>3</sup><br>13.75                                                                                                  |                                                                                                                                                                                                                                                                                                                                            |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                    | Deck<br>10/17/85<br>11/12/03<br>On Ca<br>Sample                                                                                    | kg/m <sup>3</sup>                                                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample                                                                                     | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                      | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample                                                                                     | kg/m <sup>3</sup>                                                                                                                   | Depth<br>(mm)                                                                                                                                                                                                                                                                                                                              |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61                                                                                                           | Deck<br>10/17/85<br>11/12/03<br>On Ca<br>Sample<br>1A                                                                              | <b>kg/m<sup>3</sup></b><br>0.35                                                                                                     | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                               | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>12.10                                                                                                             | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A                                                                               | <b>kg/m<sup>3</sup></b><br>13.75                                                                                                    | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26                                                                                                   | Deck<br>10/17/85<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B                                                                        | <b>kg/m<sup>3</sup></b><br>0.35<br>4.24                                                                                             | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                         | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67                                                                                                     | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B                                                                         | <b>kg/m<sup>3</sup></b><br>13.75<br>6.61                                                                                            | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                                                                               |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71                                                                                           | Deck<br>10/17/85<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C                                                                  | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12                                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64                                                                                            | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C                                                                   | <b>kg/m<sup>3</sup></b><br>13.75<br>6.61<br>3.31                                                                                    | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35                                                                                   | Deck<br>10/17/85<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D                                                            | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D                                                             | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23                                                                                    | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D                                                             | <b>kg/m<sup>3</sup></b><br>13.75<br>6.61<br>3.31<br>1.61                                                                            | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                                                                                        |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23                                                                           | Deck<br>10/17/85<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                      | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12                                                                            | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1C<br>1D<br>1E                                           | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34                                                                          | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                                                                       |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                                 | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23<br>11.52                                                                  | Deck<br>10/17/85<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                                 | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21<br>10.14                                                                  | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                                 | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12<br>11.38                                                                    | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                                 | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34<br>8.43                                                                  | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23<br>11.52<br>9.16                                                          | Deck<br>10/17/85<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                           | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21<br>10.14<br>7.95                                                          | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                           | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12<br>11.38<br>6.69                                                           | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                           | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34<br>8.43<br>12.86                                                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23<br>11.52<br>9.16<br>4.96                                                  | Deck<br>10/17/85<br>11/12/03<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                                    | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21<br>10.14<br>7.95<br>5.64                                                  | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                                     | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12<br>11.38<br>6.69<br>3.16                                                   | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                                     | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34<br>8.43<br>12.86<br>3.99<br>2.03<br>0.51                                 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23<br>11.52<br>9.16<br>4.96<br>1.93<br>0.47<br>11.74                         | Deck<br>10/17/85<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A                   | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21<br>10.14<br>7.95<br>5.64<br>4.08<br>1.98<br>12.59                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12<br>11.38<br>6.69<br>3.16<br>0.67                                           | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A                   | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34<br>8.43<br>12.86<br>3.99<br>2.03<br>0.51<br>9.76                         | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23<br>11.52<br>9.16<br>4.96<br>1.93<br>0.47<br>11.74<br>8.36                 | Deck<br>10/17/85<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B             | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21<br>10.14<br>7.95<br>5.64<br>4.08<br>1.98<br>12.59<br>6.36                 | Placement<br>Placement<br>Survey Da<br>Off C<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B                       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12<br>11.38<br>6.69<br>3.16<br>0.67<br>0.21<br>12.56<br>9.31                  | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B             | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34<br>8.43<br>12.86<br>3.99<br>2.03<br>0.51                                 | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                           |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23<br>11.52<br>9.16<br>4.96<br>1.93<br>0.47<br>11.74<br>8.36<br>3.81         | Deck<br>10/17/85<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C       | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21<br>10.14<br>7.95<br>5.64<br>4.08<br>1.98<br>12.59<br>6.36<br>4.99         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12<br>11.38<br>6.69<br>3.16<br>0.67<br>0.21<br>12.56<br>9.31<br>13.76         | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C       | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34<br>8.43<br>12.86<br>3.99<br>2.03<br>0.51<br>9.76<br>5.17<br>3.41         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>64.7                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C<br>6D | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23<br>11.52<br>9.16<br>4.96<br>1.93<br>0.47<br>11.74<br>8.36<br>3.81<br>1.01 | Deck<br>10/17/85<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C<br>5D | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21<br>10.14<br>7.95<br>5.64<br>4.08<br>1.98<br>12.59<br>6.36<br>4.99<br>2.79 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C<br>6D | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12<br>11.38<br>6.69<br>3.16<br>0.67<br>0.21<br>12.56<br>9.31<br>13.76<br>0.16 | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C<br>5D | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34<br>8.43<br>12.86<br>3.99<br>2.03<br>0.51<br>9.76<br>5.17<br>3.41<br>1.63 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>10.61<br>6.26<br>1.71<br>0.35<br>0.23<br>11.52<br>9.16<br>4.96<br>1.93<br>0.47<br>11.74<br>8.36<br>3.81         | Deck<br>10/17/85<br>11/12/03<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C       | kg/m <sup>3</sup><br>0.35<br>4.24<br>3.12<br>0.45<br>0.21<br>10.14<br>7.95<br>5.64<br>4.08<br>1.98<br>12.59<br>6.36<br>4.99         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C       | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>12.10<br>6.67<br>0.64<br>0.23<br>0.12<br>11.38<br>6.69<br>3.16<br>0.67<br>0.21<br>12.56<br>9.31<br>13.76         | Deck<br>10/25/91<br>08/26/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C       | kg/m <sup>3</sup><br>13.75<br>6.61<br>3.31<br>1.61<br>0.34<br>8.43<br>12.86<br>3.99<br>2.03<br>0.51<br>9.76<br>5.17<br>3.41         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>64.7                                                                                                                                                                                                                 |

| Bridge:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75-44                                                                                                                        |                                                                                                                           | Bridge:                                                                                                                              |                                                                                                                                                       | 75-45                                                                                                                        |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement<br>Survey Da                                                                                                  | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deck<br>07/12/90<br>09/16/03                                                                                                 |                                                                                                                           | Placement<br>Placement<br>Survey Da                                                                                                  | t Date:                                                                                                                                               | Deck<br>08/10/90<br>09/17/03                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |
| Off C                                                                                                                                | rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | On C                                                                                                                         | rack                                                                                                                      | Off C                                                                                                                                | rack                                                                                                                                                  | On C                                                                                                                         | rack                                                                                                                     | Mean<br>Depth                                                                                                                                                                                                                                                                                                                              |
| Sample                                                                                                                               | kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                                       | kg/m <sup>3</sup>                                                                                                         | Sample                                                                                                                               | kg/m <sup>3</sup>                                                                                                                                     | Sample                                                                                                                       | kg/m <sup>3</sup>                                                                                                        | (mm)                                                                                                                                                                                                                                                                                                                                       |
| 2A                                                                                                                                   | 4.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1A                                                                                                                           | 7.69                                                                                                                      | 2A                                                                                                                                   | 9.41                                                                                                                                                  | 1A                                                                                                                           | 8.32                                                                                                                     | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 2B                                                                                                                                   | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1B                                                                                                                           | 4.46                                                                                                                      | 2B                                                                                                                                   | 4.72                                                                                                                                                  | 1B                                                                                                                           | 5.56                                                                                                                     | 28.6                                                                                                                                                                                                                                                                                                                                       |
| 2C                                                                                                                                   | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1C                                                                                                                           | 2.26                                                                                                                      | 2C                                                                                                                                   | 2.44                                                                                                                                                  | 1C                                                                                                                           | 3.40                                                                                                                     | 47.6                                                                                                                                                                                                                                                                                                                                       |
| 2D                                                                                                                                   | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1D                                                                                                                           | 1.43                                                                                                                      | 2D                                                                                                                                   | 0.93                                                                                                                                                  | 1D                                                                                                                           | 1.18                                                                                                                     | 66.7                                                                                                                                                                                                                                                                                                                                       |
| 2E                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1E                                                                                                                           | 0.83                                                                                                                      | 2E                                                                                                                                   | 0.25                                                                                                                                                  | 1E                                                                                                                           | 0.49                                                                                                                     | 85.7                                                                                                                                                                                                                                                                                                                                       |
| 4A                                                                                                                                   | 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3A                                                                                                                           | 9.83                                                                                                                      | 4A                                                                                                                                   | 8.52                                                                                                                                                  | 3A                                                                                                                           | 10.13                                                                                                                    | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 4B                                                                                                                                   | 5.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3B                                                                                                                           | 8.33                                                                                                                      | 4B                                                                                                                                   | 5.58                                                                                                                                                  | 3B                                                                                                                           | 7.13                                                                                                                     | 28.6                                                                                                                                                                                                                                                                                                                                       |
| 4C                                                                                                                                   | 2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3C                                                                                                                           | 4.19                                                                                                                      | 4C                                                                                                                                   | 3.26                                                                                                                                                  | 3C                                                                                                                           | 4.91                                                                                                                     | 47.6                                                                                                                                                                                                                                                                                                                                       |
| 4D                                                                                                                                   | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3D                                                                                                                           | 2.13                                                                                                                      | 4D                                                                                                                                   | 1.51                                                                                                                                                  | 3D                                                                                                                           | 3.97                                                                                                                     | 66.7                                                                                                                                                                                                                                                                                                                                       |
| 4E                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3E                                                                                                                           | 0.58                                                                                                                      | 4E                                                                                                                                   | 0.71                                                                                                                                                  | 3E                                                                                                                           | 1.04                                                                                                                     | 85.7                                                                                                                                                                                                                                                                                                                                       |
| 6A                                                                                                                                   | 6.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5A                                                                                                                           | 6.55                                                                                                                      | 6A                                                                                                                                   | 5.19                                                                                                                                                  | 5A                                                                                                                           | 5.68                                                                                                                     | 9.5                                                                                                                                                                                                                                                                                                                                        |
| 6B                                                                                                                                   | 4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5B                                                                                                                           | 4.99                                                                                                                      | 6B                                                                                                                                   | 3.11                                                                                                                                                  | 5B                                                                                                                           | 3.25                                                                                                                     | 28.6                                                                                                                                                                                                                                                                                                                                       |
| 6C                                                                                                                                   | 2.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5C                                                                                                                           | 3.54                                                                                                                      | 6C                                                                                                                                   | 1.24                                                                                                                                                  | 5C                                                                                                                           | 1.91                                                                                                                     | 47.6                                                                                                                                                                                                                                                                                                                                       |
| 6D                                                                                                                                   | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5D                                                                                                                           | 1.97                                                                                                                      | 6D                                                                                                                                   | 0.70                                                                                                                                                  | 5D                                                                                                                           | 1.18                                                                                                                     | 66.7                                                                                                                                                                                                                                                                                                                                       |
| 6E                                                                                                                                   | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5E                                                                                                                           | 1.25                                                                                                                      | 6E                                                                                                                                   | 0.12                                                                                                                                                  | 5E                                                                                                                           | 0.62                                                                                                                     | 85.7                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                                                                                                                           |                                                                                                                                      |                                                                                                                                                       |                                                                                                                              |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |
| Bridge:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89-204                                                                                                                       |                                                                                                                           | Bridge:                                                                                                                              |                                                                                                                                                       | 89-208                                                                                                                       |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |
| Placement<br>Placement                                                                                                               | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deck<br>10/03/91                                                                                                             |                                                                                                                           | Placement<br>Placement                                                                                                               | t Date:                                                                                                                                               | Deck<br>06/15/95                                                                                                             |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |
| Placement                                                                                                                            | t Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deck                                                                                                                         |                                                                                                                           | Placement                                                                                                                            | t Date:                                                                                                                                               | Deck                                                                                                                         |                                                                                                                          | Mean                                                                                                                                                                                                                                                                                                                                       |
| Placement<br>Placement                                                                                                               | t Date:<br>ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deck<br>10/03/91                                                                                                             | rack                                                                                                                      | Placement<br>Placement                                                                                                               | t Date:<br>nte:                                                                                                                                       | Deck<br>06/15/95                                                                                                             | rack                                                                                                                     | Mean<br>Depth                                                                                                                                                                                                                                                                                                                              |
| Placement<br>Placement<br>Survey Da                                                                                                  | t Date:<br>ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deck<br>10/03/91<br>09/19/02                                                                                                 | rack<br>kg/m <sup>3</sup>                                                                                                 | Placement<br>Placement<br>Survey Da                                                                                                  | t Date:<br>nte:                                                                                                                                       | Deck<br>06/15/95<br>07/03/01                                                                                                 | rack<br>kg/m <sup>3</sup>                                                                                                |                                                                                                                                                                                                                                                                                                                                            |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deck<br>10/03/91<br>09/19/02<br>On Ca<br>Sample<br>1A                                                                        | <b>kg/m<sup>3</sup></b><br>8.53                                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A                                                                         | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>5.38                                                                                                  | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A                                                                         |                                                                                                                          | <b>Depth</b><br>(mm)<br>9.5                                                                                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B                                                                   | kg/m <sup>3</sup>                                                                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52                                                                                          | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B                                                                   | kg/m <sup>3</sup>                                                                                                        | Depth<br>(mm)                                                                                                                                                                                                                                                                                                                              |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C                                                             | <b>kg/m<sup>3</sup></b><br>8.53<br>5.51<br>4.47                                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C                                                             | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52<br>0.47                                                                                 | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C                                                             | <b>kg/m<sup>3</sup></b><br>1.19<br>1.11<br>0.75                                                                          | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B                                                                   | <b>kg/m<sup>3</sup></b><br>8.53<br>5.51                                                                                   | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B                                                                   | t Date:<br>hte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52                                                                                          | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B                                                                   | <b>kg/m<sup>3</sup></b><br>1.19<br>1.11                                                                                  | Depth<br>(mm)<br>9.5<br>28.6                                                                                                                                                                                                                                                                                                               |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33<br>0.00<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E                                                 | <b>kg/m<sup>3</sup></b><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49                                                           | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E                                                 | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52<br>0.47<br>0.00<br>0.00                                                                  | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1D<br>1E                                           | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91                                                                | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                                                                       |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33<br>0.00<br>0.16<br>8.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78                                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A                                           | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52<br>0.47<br>0.00<br>0.00<br>0.00<br>6.19                                                 | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A                                           | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78                                                        | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5                                                                                                                                                                                                                               |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | t Date:<br>nte:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33<br>0.00<br>0.16<br>8.56<br>4.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78<br>7.00                                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B                                     | t Date:<br>tte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52<br>0.47<br>0.00<br>0.00<br>6.19<br>2.55                                                  | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B                                     | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78<br>1.88                                                | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33<br>0.00<br>0.16<br>8.56<br>4.39<br>1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Deck<br>10/03/91<br>09/19/02<br>On Ca<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                              | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78<br>7.00<br>5.91                                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C                               | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52<br>0.47<br>0.00<br>0.00<br>0.00<br>6.19<br>2.55<br>0.37                                 | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C                               | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78<br>1.88<br>1.26                                        | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33<br>0.00<br>0.16<br>8.56<br>4.39<br>1.51<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78<br>7.00<br>5.91<br>4.83                                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D                         | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52<br>0.47<br>0.00<br>0.00<br>0.00<br>6.19<br>2.55<br>0.37<br>0.00                         | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D                         | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78<br>1.88<br>1.26<br>LIP                                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           66.7                                                                                                                                                                   |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33<br>0.00<br>0.16<br>8.56<br>4.39<br>1.51<br>0.17<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78<br>7.00<br>5.91<br>4.83<br>5.34                         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E                   | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52<br>0.47<br>0.00<br>0.00<br>6.19<br>2.55<br>0.37<br>0.00<br>0.23                         | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E                   | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78<br>1.88<br>1.26<br>LIP<br>0.66                         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                                                                                                                                                                                                                |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33<br>0.00<br>0.16<br>8.56<br>4.39<br>1.51<br>0.17<br>0.11<br>8.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A             | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78<br>7.00<br>5.91<br>4.83<br>5.34<br>8.79                 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A             | t Date:<br>http://www.new.org/states/file/file/file/file/file/file/file/file                                                                          | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A             | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78<br>1.88<br>1.26<br>LIP<br>0.66<br>6.32                 | Depth           (mm)           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>http://www.new.org/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/sc | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78<br>7.00<br>5.91<br>4.83<br>5.34<br>8.79<br>5.49         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>http://www.new.org/states/file/file/file/file/file/file/file/file                                                                          | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78<br>1.88<br>1.26<br>LIP<br>0.66<br>6.32<br>2.79         | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                           |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>6.30<br>2.44<br>0.33<br>0.00<br>0.16<br>8.56<br>4.39<br>1.51<br>0.17<br>0.11<br>8.82<br>5.06<br>1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78<br>7.00<br>5.91<br>4.83<br>5.34<br>8.79<br>5.49<br>4.04 | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B<br>6C | t Date:<br>htte:<br>rack<br>kg/m <sup>3</sup><br>5.38<br>2.52<br>0.47<br>0.00<br>0.00<br>6.19<br>2.55<br>0.37<br>0.00<br>0.23<br>6.38<br>2.94<br>0.63 | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B<br>5C | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78<br>1.88<br>1.26<br>LIP<br>0.66<br>6.32<br>2.79<br>1.94 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>47.6                                                                                                                                                                                                                 |
| Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>http://www.new.org/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/science/sc | Deck<br>10/03/91<br>09/19/02<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>8.53<br>5.51<br>4.47<br>2.30<br>3.49<br>9.78<br>7.00<br>5.91<br>4.83<br>5.34<br>8.79<br>5.49         | Placement<br>Placement<br>Survey Da<br>Off C<br>Sample<br>2A<br>2B<br>2C<br>2D<br>2E<br>4A<br>4B<br>4C<br>4D<br>4E<br>6A<br>6B       | t Date:<br>http://www.new.org/states/file/file/file/file/file/file/file/file                                                                          | Deck<br>06/15/95<br>07/03/01<br>On C<br>Sample<br>1A<br>1B<br>1C<br>1D<br>1E<br>3A<br>3B<br>3C<br>3D<br>3E<br>5A<br>5B       | kg/m <sup>3</sup><br>1.19<br>1.11<br>0.75<br>0.55<br>0.91<br>3.78<br>1.88<br>1.26<br>LIP<br>0.66<br>6.32<br>2.79         | Depth           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6           47.6           66.7           85.7           9.5           28.6                                                                           |

| Table D.1 ( | (con't) | - Chloride | Concentration | Data |
|-------------|---------|------------|---------------|------|
|-------------|---------|------------|---------------|------|

| Bridge:                                                                                                                   |                                                                                                                                               | 99-76                                                                                                                             |                                                                                                                            | Bridge:                                                                                                                                                                                                                                 |                                                                                                                                                                        | 99-76                                                                                                                 |                                                                                                                            |                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Placement<br>Placement                                                                                                    |                                                                                                                                               | South End 09/01/89                                                                                                                |                                                                                                                            | Placement<br>Placement                                                                                                                                                                                                                  |                                                                                                                                                                        | Placement<br>09/15/89                                                                                                 | 2                                                                                                                          |                                                                                                            |
| Survey Da                                                                                                                 | ate:                                                                                                                                          | 09/17/03                                                                                                                          |                                                                                                                            | Survey Da                                                                                                                                                                                                                               | te:                                                                                                                                                                    | 09/17/03                                                                                                              |                                                                                                                            |                                                                                                            |
| Off C                                                                                                                     | rack                                                                                                                                          | On C                                                                                                                              | rack                                                                                                                       | Off C                                                                                                                                                                                                                                   | rack                                                                                                                                                                   | <b>On C</b>                                                                                                           | rack                                                                                                                       | Mean<br>Depth                                                                                              |
| Sample                                                                                                                    | kg/m <sup>3</sup>                                                                                                                             | Sample                                                                                                                            | kg/m <sup>3</sup>                                                                                                          | Sample                                                                                                                                                                                                                                  | kg/m <sup>3</sup>                                                                                                                                                      | Sample                                                                                                                | kg/m <sup>3</sup>                                                                                                          | (mm)                                                                                                       |
| 2A                                                                                                                        | 6.84                                                                                                                                          | 1A                                                                                                                                | 8.01                                                                                                                       | 6A                                                                                                                                                                                                                                      | 8.45                                                                                                                                                                   | 5A                                                                                                                    | 8.97                                                                                                                       | 9.5                                                                                                        |
| 2B                                                                                                                        | 4.31                                                                                                                                          | 1B                                                                                                                                | 5.21                                                                                                                       | 6B                                                                                                                                                                                                                                      | 4.54                                                                                                                                                                   | 5B                                                                                                                    | 6.83                                                                                                                       | 28.6                                                                                                       |
| 2C                                                                                                                        | 1.73                                                                                                                                          | 1C                                                                                                                                | 2.72                                                                                                                       | 6C                                                                                                                                                                                                                                      | 2.65                                                                                                                                                                   | 5C                                                                                                                    | 4.16                                                                                                                       | 47.6                                                                                                       |
| 2D                                                                                                                        | 0.53                                                                                                                                          | 1D                                                                                                                                | 1.66                                                                                                                       | 6D                                                                                                                                                                                                                                      | 0.94                                                                                                                                                                   | 5D                                                                                                                    | 1.08                                                                                                                       | 66.7                                                                                                       |
| 2E                                                                                                                        | 0.10                                                                                                                                          | 1E                                                                                                                                | 0.25                                                                                                                       | 6E                                                                                                                                                                                                                                      | 0.14                                                                                                                                                                   | 5E                                                                                                                    | 0.25                                                                                                                       | 85.7                                                                                                       |
| 4A                                                                                                                        | 5.55                                                                                                                                          | 3A                                                                                                                                | 8.58                                                                                                                       | 20A                                                                                                                                                                                                                                     | 10.20                                                                                                                                                                  | 19A                                                                                                                   | 9.52                                                                                                                       | 9.5                                                                                                        |
| 4B                                                                                                                        | 0.52                                                                                                                                          | 3B                                                                                                                                | 4.43                                                                                                                       | 20B                                                                                                                                                                                                                                     | 7.78                                                                                                                                                                   | 19B                                                                                                                   | 6.42                                                                                                                       | 28.6                                                                                                       |
| 4C                                                                                                                        | 0.16                                                                                                                                          | 3C                                                                                                                                | 1.47                                                                                                                       | 20C                                                                                                                                                                                                                                     | 3.77                                                                                                                                                                   | 19C                                                                                                                   | 5.19                                                                                                                       | 47.6                                                                                                       |
| 4D                                                                                                                        | 0.12                                                                                                                                          | 3D                                                                                                                                | 0.66                                                                                                                       | 20D                                                                                                                                                                                                                                     | 1.57                                                                                                                                                                   | 19D                                                                                                                   | 3.30                                                                                                                       | 66.7                                                                                                       |
| 4E                                                                                                                        | 0.20                                                                                                                                          | 3E                                                                                                                                | 0.17                                                                                                                       | 20E                                                                                                                                                                                                                                     | 0.36                                                                                                                                                                   | 19E                                                                                                                   | 1.37                                                                                                                       | 85.7                                                                                                       |
| 24A                                                                                                                       | 5.81                                                                                                                                          | 23A                                                                                                                               | 9.12                                                                                                                       | 22A                                                                                                                                                                                                                                     | 6.97                                                                                                                                                                   | 21A                                                                                                                   | 9.14                                                                                                                       | 9.5                                                                                                        |
| 24B                                                                                                                       | 1.86                                                                                                                                          | 23B                                                                                                                               | 4.15                                                                                                                       | 22B                                                                                                                                                                                                                                     | 1.51                                                                                                                                                                   | 21B                                                                                                                   | 5.74                                                                                                                       | 28.6                                                                                                       |
| 24C                                                                                                                       | 0.34                                                                                                                                          | 23C                                                                                                                               | 1.27                                                                                                                       | 22C                                                                                                                                                                                                                                     | 0.22                                                                                                                                                                   | 21C                                                                                                                   | 2.05                                                                                                                       | 47.6                                                                                                       |
| 24D                                                                                                                       | 0.15                                                                                                                                          | 23D                                                                                                                               | 0.26                                                                                                                       | 22D                                                                                                                                                                                                                                     | 0.15                                                                                                                                                                   | 21D                                                                                                                   | 1.08                                                                                                                       | 66.7                                                                                                       |
| 24E                                                                                                                       | 0.11                                                                                                                                          | 23E                                                                                                                               | 0.11                                                                                                                       | 22E                                                                                                                                                                                                                                     | 0.14                                                                                                                                                                   | 21E                                                                                                                   | 0.15                                                                                                                       | 85.7                                                                                                       |
| Bridge:                                                                                                                   |                                                                                                                                               | 99-76                                                                                                                             |                                                                                                                            | Bridge:                                                                                                                                                                                                                                 |                                                                                                                                                                        | 99-76                                                                                                                 |                                                                                                                            |                                                                                                            |
|                                                                                                                           |                                                                                                                                               | D1                                                                                                                                | •                                                                                                                          |                                                                                                                                                                                                                                         |                                                                                                                                                                        |                                                                                                                       | 4                                                                                                                          |                                                                                                            |
| Placement                                                                                                                 | t:                                                                                                                                            | Placement                                                                                                                         | 3                                                                                                                          | Placement                                                                                                                                                                                                                               | :                                                                                                                                                                      | Placement                                                                                                             | 4                                                                                                                          |                                                                                                            |
| Placement<br>Placement                                                                                                    |                                                                                                                                               | Placement 10/13/89                                                                                                                | 3                                                                                                                          | Placement<br>Placement                                                                                                                                                                                                                  |                                                                                                                                                                        | Placement 11/07/89                                                                                                    | 4                                                                                                                          |                                                                                                            |
| Placement                                                                                                                 | t Date:                                                                                                                                       |                                                                                                                                   | 3                                                                                                                          |                                                                                                                                                                                                                                         | Date:                                                                                                                                                                  |                                                                                                                       | 4                                                                                                                          |                                                                                                            |
|                                                                                                                           | t Date:                                                                                                                                       | 10/13/89                                                                                                                          | 3                                                                                                                          | Placement                                                                                                                                                                                                                               | Date:                                                                                                                                                                  | 11/07/89                                                                                                              | 4                                                                                                                          | Mean                                                                                                       |
| Placement                                                                                                                 | t Date:<br>ate:                                                                                                                               | 10/13/89                                                                                                                          |                                                                                                                            | Placement                                                                                                                                                                                                                               | Date:<br>ite:                                                                                                                                                          | 11/07/89                                                                                                              |                                                                                                                            | Mean<br>Depth                                                                                              |
| Placement<br>Survey Da                                                                                                    | t Date:<br>ate:                                                                                                                               | 10/13/89<br>09/17/03                                                                                                              |                                                                                                                            | Placement<br>Survey Da                                                                                                                                                                                                                  | Date:<br>ite:                                                                                                                                                          | 11/07/89<br>09/17/03                                                                                                  |                                                                                                                            |                                                                                                            |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81                                                                                          | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A                                                                                      | rack                                                                                                                       | Placement<br>Survey Da<br>Off C<br>Sample<br>10A                                                                                                                                                                                        | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20                                                                                         | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A                                                                          | rack<br>kg/m <sup>3</sup><br>8.54                                                                                          | <b>Depth</b><br>(mm)<br>9.5                                                                                |
| Placement<br><u>Survey Da</u><br>Off C<br>Sample                                                                          | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup>                                                                                                  | 10/13/89<br>09/17/03<br>On C<br>Sample                                                                                            | rack<br>kg/m <sup>3</sup>                                                                                                  | Placement<br>Survey Da<br>Off Ca<br>Sample<br>10A<br>10B                                                                                                                                                                                | Date:<br>hte:<br>rack<br>kg/m <sup>3</sup>                                                                                                                             | 11/07/89<br>09/17/03<br>On Ca<br>Sample                                                                               | rack<br>kg/m <sup>3</sup>                                                                                                  | Depth<br>(mm)                                                                                              |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A                                                                           | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81                                                                                          | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A                                                                                      | rack<br>kg/m <sup>3</sup><br>10.63                                                                                         | Placement<br>Survey Da<br>Off C<br>Sample<br>10A                                                                                                                                                                                        | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20                                                                                         | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A                                                                          | rack<br>kg/m <sup>3</sup><br>8.54                                                                                          | <b>Depth</b><br>(mm)<br>9.5                                                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B                                                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07                                                                                  | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B                                                                                | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.63<br>5.74                                                                    | Placement<br>Survey Da<br>Off Ca<br>Sample<br>10A<br>10B                                                                                                                                                                                | <b>Date:</b><br><b>te:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60                                                                                  | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A<br>9B                                                                    | <b>rack</b><br>kg/m <sup>3</sup><br>8.54<br>9.68                                                                           | Depth<br>(mm)<br>9.5<br>28.6                                                                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C                                                               | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02                                                                          | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C                                                                          | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98                                                                         | Placement<br>Survey Da<br>Off Ca<br>Sample<br>10A<br>10B<br>10C                                                                                                                                                                         | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73                                                                         | 11/07/89<br>09/17/03<br>On Ca<br>Sample<br>9A<br>9B<br>9C                                                             | <b>rack</b><br><b>kg/m<sup>3</sup></b><br>8.54<br>9.68<br>5.46                                                             | <b>Depth</b><br>(mm)<br>9.5<br>28.6<br>47.6                                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D                                                         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48                                                                  | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D                                                                    | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54                                                                 | Placement<br>Survey Da<br>Off C<br>Sample<br>10A<br>10B<br>10C<br>10D                                                                                                                                                                   | <b>Date:</b><br><b>te:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38                                                                  | 11/07/89<br>09/17/03<br>On Ca<br>Sample<br>9A<br>9B<br>9C<br>9D                                                       | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69                                                                  | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7                                                               |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E                                                   | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48<br>0.10                                                          | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E                                                  | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54<br>0.41                                                         | Placement           Survey Da           Off C           Sample           10A           10B           10C           10D           10E                                                                                                    | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38<br>1.60                                                         | 11/07/89<br>09/17/03<br>On Ca<br>Sample<br>9A<br>9B<br>9C<br>9D<br>9E                                                 | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69<br>1.60                                                          | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                                                       |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>18A                                            | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48<br>0.10<br>7.82                                                  | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7E<br>17A                                                       | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54<br>0.41<br>8.47                                                 | Placement           Survey Da           Off C           Sample           10A           10B           10C           10D           10E           12A                                                                                      | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38<br>1.60<br>9.15                                                 | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A                               | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69<br>1.60<br>9.49                                                  | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5                                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>18A<br>18B                                     | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48<br>0.10<br>7.82<br>2.39                                          | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>17A<br>17B                                    | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54<br>0.41<br>8.47<br>9.47                                         | Placement           Survey Da           Off C           Sample           10A           10B           10C           10D           10E           12A           12B                                                                        | <b>Date:</b><br><b>tte:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38<br>1.60<br>9.15<br>4.81                                         | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B                        | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69<br>1.60<br>9.49<br>8.08                                          | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6                                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>18A<br>18B<br>18C                              | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48<br>0.10<br>7.82<br>2.39<br>0.50                                  | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>17A<br>17B<br>17C                             | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54<br>0.41<br>8.47<br>9.47<br>4.19                                 | Placement           Survey Da           Off C           Sample           10A           10B           10C           10D           10E           12A           12B           12C                                                          | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38<br>1.60<br>9.15<br>4.81<br>2.65                                 | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C                 | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69<br>1.60<br>9.49<br>8.08<br>3.86                                  | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6                                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>18A<br>18B<br>18C<br>18D                       | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48<br>0.10<br>7.82<br>2.39<br>0.50<br>0.17                          | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>17A<br>17B<br>17C<br>17D                      | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54<br>0.41<br>8.47<br>9.47<br>4.19<br>2.12                         | Placement           Survey Da           Off Cr           Sample           10A           10B           10C           10D           10E           12A           12B           12C           12D                                           | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38<br>1.60<br>9.15<br>4.81<br>2.65<br>0.88                         | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C<br>11D                      | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69<br>1.60<br>9.49<br>8.08<br>3.86<br>2.22                          | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7                        |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>18A<br>18B<br>18C<br>18D<br>18E                | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48<br>0.10<br>7.82<br>2.39<br>0.50<br>0.17<br>0.16                  | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>17A<br>17B<br>17C<br>17D<br>17C<br>17D<br>17E | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54<br>0.41<br>8.47<br>9.47<br>4.19<br>2.12<br>0.75                 | Placement<br>Survey Da<br>Off C<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C<br>12D<br>12E                                                                                                                         | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38<br>1.60<br>9.15<br>4.81<br>2.65<br>0.88<br>0.32                 | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A<br>9B<br>9C<br>9D<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C<br>11D<br>11E   | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69<br>1.60<br>9.49<br>8.08<br>3.86<br>2.22<br>0.91                  | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7                |
| Placement<br>Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>18A<br>18B<br>18C<br>18D<br>18E<br>16A         | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48<br>0.10<br>7.82<br>2.39<br>0.50<br>0.17<br>0.16<br>10.26         | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>17A<br>17B<br>17C<br>17D<br>17C<br>17D<br>17E | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54<br>0.41<br>8.47<br>9.47<br>4.19<br>2.12<br>0.75<br>7.29         | Placement<br>Survey Da<br>Off C<br>Sample<br>10A<br>10B<br>10C<br>10D<br>10E<br>12A<br>12B<br>12C<br>12D<br>12E<br>14A                                                                                                                  | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38<br>1.60<br>9.15<br>4.81<br>2.65<br>0.88<br>0.32<br>6.67         | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C<br>11D<br>11E<br>13A        | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69<br>1.60<br>9.49<br>8.08<br>3.86<br>2.22<br>0.91<br>10.10         | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.5 |
| Survey Da<br>Off C<br>Sample<br>8A<br>8B<br>8C<br>8D<br>8E<br>18A<br>18B<br>18C<br>18B<br>18C<br>18D<br>18E<br>16A<br>16B | t Date:<br>ate:<br>rack<br>kg/m <sup>3</sup><br>9.81<br>5.07<br>2.02<br>0.48<br>0.10<br>7.82<br>2.39<br>0.50<br>0.17<br>0.16<br>10.26<br>7.14 | 10/13/89<br>09/17/03<br>On C<br>Sample<br>7A<br>7B<br>7C<br>7D<br>7C<br>7D<br>7E<br>17A<br>17B<br>17C<br>17D<br>17E<br>15A<br>15B | rack<br>kg/m <sup>3</sup><br>10.63<br>5.74<br>1.98<br>1.54<br>0.41<br>8.47<br>9.47<br>4.19<br>2.12<br>0.75<br>7.29<br>8.93 | Placement           Survey Da           Off Cr           Sample           10A           10B           10C           10D           10E           12A           12B           12C           12D           12E           14A           14B | <b>Date:</b><br><b>ite:</b><br><b>rack</b><br><b>kg/m<sup>3</sup></b><br>10.20<br>9.60<br>5.73<br>2.38<br>1.60<br>9.15<br>4.81<br>2.65<br>0.88<br>0.32<br>6.67<br>5.32 | 11/07/89<br>09/17/03<br>On C<br>Sample<br>9A<br>9B<br>9C<br>9D<br>9E<br>11A<br>11B<br>11C<br>11D<br>11E<br>13A<br>13B | rack<br>kg/m <sup>3</sup><br>8.54<br>9.68<br>5.46<br>2.69<br>1.60<br>9.49<br>8.08<br>3.86<br>2.22<br>0.91<br>10.10<br>7.27 | Depth<br>(mm)<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6<br>47.6<br>66.7<br>85.7<br>9.5<br>28.6 |

|                  |                |                      |                                                            | Calc  | ulated u             | using curr    | ing current study data |                        |                                              | culated | using N              | Miller and    | Darwin (20             | 00) data               |
|------------------|----------------|----------------------|------------------------------------------------------------|-------|----------------------|---------------|------------------------|------------------------|----------------------------------------------|---------|----------------------|---------------|------------------------|------------------------|
| Bridge<br>Number | Portion Placed | Date of<br>Placement | Apparent Surface<br>Concentrations<br>(kg/m <sup>3</sup> ) |       | Base Cl <sup>-</sup> | $D_{\it eff}$ | $D_{e\!f\!f}^{*}$      | Cor                    | arent Su<br>ncentrat<br>(kg/m <sup>3</sup> ) | ions    | Base Cl <sup>-</sup> | $D_{e\!f\!f}$ | $D_{e\!f\!f}^{*}$      |                        |
|                  |                |                      | 1                                                          | 2     | 3                    | $(kg/m^3)$    | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) | 1                                            | 2       | 3                    | $(kg/m^3)$    | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) |
|                  |                |                      |                                                            |       | 7%                   | Silica Fu     | me Overlay             | Bridges                |                                              |         |                      |               |                        |                        |
| 30-93            | Deck           | 08/04/01             | 2.78                                                       | 6.20  | 0.00                 | 0.23          | 0.03                   | 0.04                   |                                              |         |                      |               |                        |                        |
| 40-92            | Deck           | 10/26/01             | 4.07                                                       | 7.97  | 5.03                 | 0.00          | 0.10                   | 0.10                   |                                              |         |                      |               |                        |                        |
| 40-93            | Deck           | 10/16/01             | 4.94                                                       | 4.55  | 3.75                 | 0.02          | 0.38                   | 0.38                   |                                              |         |                      |               |                        |                        |
| 46-332           | Deck           | 05/15/02             | 1.74                                                       | 0.05  | 0.87                 | 0.23          | 0.08                   | 0.07                   |                                              |         |                      |               |                        |                        |
| 81-53            | Deck           | 02/21/00             | 10.19                                                      | 10.03 | 6.86                 | 0.09          | 0.09                   | 0.11                   |                                              |         |                      |               |                        |                        |
| 85-148           | West 32 ft     | 10/30/01             | 10.62                                                      | 12.50 | 9.23                 | 0.11          | 0.31                   | 0.31                   |                                              |         |                      |               |                        |                        |
| 85-148           | East 18 ft SFO | 10/27/01             |                                                            |       |                      |               |                        |                        |                                              |         |                      |               |                        |                        |
| 85-149           | Deck           | 09/26/02             | 4.65                                                       | 8.78  | 6.15                 | 0.00          | 0.25                   | 0.23                   |                                              |         |                      |               |                        |                        |
| 89-269           | West 1/2 SFO   | 07/26/01             | 9.30                                                       | 8.66  | 4.00                 | 0.13          | 0.11                   | 0.11                   |                                              |         |                      |               |                        |                        |
| 89-269           | East 1/2 SFO   | 07/31/01             | 7.24                                                       | 2.99  | 3.92                 | 0.10          | 0.23                   | 0.23                   |                                              |         |                      |               |                        |                        |
| 89-272           | West 1/2 SFO   | 04/04/02             | 2.11                                                       | 2.76  | 6.94                 | 0.10          | 0.29                   | 0.29                   |                                              |         |                      |               |                        |                        |
| 89-272           | East 1/2 SFO   | 04/10/02             | 4.99                                                       | 5.39  | 5.36                 | 0.17          | 0.10                   | 0.10                   |                                              |         |                      |               |                        |                        |
| 103-56           | North 1/2 SFO  | 10/17/01             | 0.99                                                       | 0.00  | 0.00                 | 0.35          | 0.02                   | 0.02                   |                                              |         |                      |               |                        |                        |
| 103-56           | South 1/2 SFO  | 10/12/01             | 8.77                                                       | 4.97  | 1.17                 | 0.13          | 0.18                   | 0.18                   |                                              |         |                      |               |                        |                        |
|                  |                |                      |                                                            |       | 5%                   | Silica Fu     | me Overlay             | Bridges                |                                              |         |                      |               |                        |                        |
| 23-85            | East 1/2 SFO   | 03/29/96             | 9.62                                                       | 7.82  | 6.00                 | 0.12          | 0.06                   | 0.06                   | 5.58                                         | 5.41    | 4.19                 | 0.20          | 0.09                   | 0.10                   |
| 23-85            | West 1/2 SFO   | 04/03/96             | 4.44                                                       | 5.42  | 6.43                 | 0.03          | 0.08                   | 0.08                   | 9.09                                         | 4.68    | 4.58                 | 0.23          | 0.03                   | 0.04                   |
|                  |                |                      |                                                            |       |                      |               |                        |                        |                                              |         |                      |               |                        |                        |

|                  |                |                      |              | Calc                                          | ulated ı | using curr           | ent study da           |                        |       |                                               | Calculated using Miller and Darwin (2000) data |                      |                        |                        |
|------------------|----------------|----------------------|--------------|-----------------------------------------------|----------|----------------------|------------------------|------------------------|-------|-----------------------------------------------|------------------------------------------------|----------------------|------------------------|------------------------|
| Bridge<br>Number | Portion Placed | Date of<br>Placement | Cor          | irent Su<br>icentrati<br>(kg/m <sup>3</sup> ) | ions     | Base Cl <sup>-</sup> | $D_{\mathit{eff}}$     | $D_{e\!f\!f}^{*}$      | Cor   | arent Su<br>acentrati<br>(kg/m <sup>3</sup> ) | ions                                           | Base Cl <sup>-</sup> | $D_{\mathit{eff}}$     | $D_{e\!f\!f}^{}^{*}$   |
|                  |                |                      | 1            | 2                                             | 3        | $(kg/m^3)$           | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) | 1     | 2                                             | 3                                              | (kg/m <sup>3</sup> ) | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) |
| 46-302           | Lt. 1/2 SFO    | 04/09/96             | 1.55         | 2.14                                          | 1.74     | 0.02                 | 0.06                   | 0.07                   | 1.42  | 2.63                                          | 0.58                                           | 0.02                 | 0.18                   | 0.19                   |
| 46-302           | Rt. 1/2 SFO    | 04/09/90             | 1.55         | 1.03                                          | 2.17     | 0.02                 | 0.06                   | 0.07                   | 1.42  | 1.21                                          | 2.24                                           | 0.02                 | 0.18                   | 0.19                   |
| 46-302           | Rt. 1/2 SFO    | 10/20/95             | 12.85        | 10.55                                         | 8.30     | 0.00                 | 0.06                   | 0.00                   | 10.06 | 8.35                                          | 7.15                                           | 0.07                 | 0.02                   | 0.03                   |
| 46-309           | Lt 1/2 SFO     | 10/20/95             | 9.19         | 10.33                                         | 12.35    | 0.00                 | 0.00                   | 0.07                   | 6.88  | 5.83                                          | 6.90                                           | 0.17                 | 0.19                   | 0.20                   |
| 46-317           | North 12 ft    | 06/28/96             | 4.93         | 7.46                                          | 5.24     | 0.13                 | 0.03                   | 0.03                   | 5.42  | 5.92                                          | 5.84                                           | 0.20                 | 0.05                   | 0.05                   |
| 46-317           | South 16 ft    | 07/01/96             | 4.95<br>8.71 | 7.91                                          | 6.24     | 0.00                 | 0.03                   | 0.03                   | 3.44  | 6.88                                          | 6.09                                           | 0.20                 | 0.03                   | 0.03                   |
| 81-50            | SFO Rt. Unit 1 | 11/15/95             |              |                                               |          |                      |                        |                        |       | 0.88                                          |                                                |                      |                        |                        |
| 81-50<br>81-50   | SFO Lt. Unit 1 | 11/18/95             |              |                                               |          |                      |                        |                        |       |                                               |                                                |                      |                        |                        |
| 81-50            | SFO Rt. Unit 2 | 11/21/95             | 9.28         | 11.96                                         | 10.85    | 0.02                 | 0.05                   | 0.06                   | 8.10  | 4.37                                          | 4.09                                           | 0.14                 | 0.06                   | 0.07                   |
| 81-50            | SFO Lt. Unit 2 | 11/21/95             | 5.73         | 7.26                                          | 15.80    | 0.02                 | 0.05                   | 0.05                   | 8.07  | 7.07                                          | 8.85                                           | 0.14                 | 0.00                   | 0.07                   |
| 87-453           | North 22 ft    | 06/30/97             | 10.61        | 12.74                                         | 10.34    | 0.00                 | 0.09                   | 0.26                   | 4.66  | 7.37                                          | 6.59                                           | 0.23                 | 0.23                   | 0.22                   |
| 87-453           | South 18 ft    | 07/03/97             | 10.10        | 15.02                                         | 11.56    | 0.00                 | 0.27                   | 0.08                   | 6.95  | 6.52                                          | 6.67                                           | 0.25                 | 0.08                   | 0.07                   |
| 87-454           | Left of CL     | 09/10/96             | 10.60        | 9.84                                          | 8.49     | 0.00                 | 0.11                   | 0.10                   | 3.90  | 5.66                                          | 7.22                                           | 0.25                 | 0.16                   | 0.16                   |
| 87-454           | Right of CL    | 10/16/96             |              | 12.14                                         | 15.80    | 0.00                 | 0.12                   | 0.11                   | 7.81  | 6.63                                          | 5.49                                           | 0.23                 | 0.14                   | 0.14                   |
| 89-184           | Inside         | 09/26/90             | 10.92        | 10.78                                         | 9.35     | 0.00                 | 0.24                   | 0.31                   | 13.33 | 16.46                                         | 8.69                                           | 0.17                 | 0.03                   | 0.10                   |
| 89-184           | Outside        | 09/28/90             | 8.63         | 7.68                                          | 6.67     | 0.00                 | 0.13                   | 0.20                   | 8.96  | 13.24                                         | 11.11                                          | 0.17                 | 0.02                   | 0.09                   |
| 89-187           | Inside         | 06/26/90             | 12.59        | 8.05                                          | 6.70     | 0.10                 | 0.04                   | 0.10                   | 6.69  | 5.30                                          | 9.23                                           | 0.10                 | 0.07                   | 0.15                   |
| 89-187           | Outside        | 06/28/90             | 9.22         | 5.63                                          | 7.20     | 0.05                 | 0.03                   | 0.09                   | 9.17  | 4.31                                          | 5.85                                           | 0.23                 | 0.04                   | 0.12                   |
| 89-206           | Right of CL    | 10/04/95             | 5.63         | 7.85                                          | 5.75     | 0.08                 | 0.05                   | 0.06                   | 0.96  | 1.05                                          | 1.02                                           | 0.20                 | 0.08                   | 0.10                   |
| 89-206           | Left of CL     | 10/10/95             | 2.61         | 7.84                                          | 6.42     | 0.00                 | 0.06                   | 0.07                   | 3.14  | 1.72                                          | 1.90                                           | 0.00                 | 0.08                   | 0.09                   |

|                  |                   |                      |              | Calculated using current study data Apparent Surface |       |                      |                        |                        |       | culated                                      | using N | Ailler and           | Darwin (20             | 00) data               |
|------------------|-------------------|----------------------|--------------|------------------------------------------------------|-------|----------------------|------------------------|------------------------|-------|----------------------------------------------|---------|----------------------|------------------------|------------------------|
| Bridge<br>Number | Portion Placed    | Date of<br>Placement | Con          | irent Su<br>icentrati<br>(kg/m <sup>3</sup> )        | ions  | Base Cl <sup>-</sup> | $D_{e\!f\!f}$          | $D_{e\!f\!f}^{}^{*}$   | Cor   | arent Su<br>acentrat<br>(kg/m <sup>3</sup> ) | ions    | Base Cl <sup>-</sup> | $D_{\it eff}$          | $D_{e\!f\!f}^{}^{*}$   |
|                  |                   |                      | 1            | 2                                                    | 3     | $(kg/m^3)$           | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) | 1     | 2                                            | 3       | (kg/m <sup>3</sup> ) | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) |
| 89-207           | Left of CL        | 10/24/95             | 6.48         | 7.32                                                 | 7.57  | 0.09                 | 0.03                   | 0.04                   | 1.85  | 1.53                                         | 2.33    | 0.00                 | 0.10                   | 0.11                   |
| 89-207<br>89-207 | Right of CL       | 04/19/96             | 0.48<br>9.19 | 9.12                                                 | 4.41  | 0.09                 | 0.03                   | 0.04                   | 4.28  | 2.09                                         | 2.33    | 0.00                 | 0.10                   | 0.11                   |
| 89-207           | Right of CL       | 10/12/95             | 1.05         | 6.52                                                 | 2.33  | 0.00                 | 0.03                   | 0.03                   | 0.87  | 1.00                                         | 0.87    | 0.19                 | 0.04                   | 0.04                   |
| 89-210<br>89-210 | Left of CL        | 10/12/95             | 5.32         | 0. <i>32</i><br>2.14                                 | 2.35  | 0.00                 | 0.04                   | 0.04                   | 1.63  | 2.19                                         | 4.01    | 0.10                 | 0.05                   | 0.10                   |
| 89-234           | SFO South 20 ft   | 06/20/96             | 12.20        | 11.55                                                | 10.16 | 0.02                 | 0.09                   | 0.10                   | 7.41  | 8.54                                         | 6.55    | 0.11                 | 0.03                   | 0.08                   |
| 89-234           | SFO North 18 ft   | 06/25/96             | 9.29         | 9.64                                                 | 8.13  | 0.00                 | 0.07                   | 0.07                   | 7.27  | 6.19                                         | 6.52    | 0.00                 | 0.09                   | 0.10                   |
| 89-234           | SFO Center 12 ft  | 06/28/96             | 10.58        | 8.36                                                 | 10.58 | 0.11                 | 0.08                   | 0.08                   | 10.34 | 6.88                                         | 6.24    | 0.00                 | 0.08                   | 0.09                   |
| 89-235           | SFO Left 20 ft    | 04/26/97             |              |                                                      |       |                      |                        |                        |       |                                              |         |                      |                        |                        |
| 89-235           | SFO Right 18 ft   | 05/01/97             | 8.47         | 5.22                                                 | 5.57  | 0.07                 | 0.07                   | 0.06                   | 2.77  | 1.26                                         | 2.89    | 0.15                 | 0.16                   | 0.15                   |
| 89-235           | SFO Center 12 ft  | 05/06/97             |              |                                                      |       |                      |                        |                        |       |                                              |         |                      |                        |                        |
| 89-240           | Rt. 22 ft SFO     | 08/05/97             | 10.08        | 10.75                                                | 10.70 | 0.03                 | 0.06                   | 0.05                   | 5.44  | 5.00                                         | 6.72    | 0.17                 | 0.08                   | 0.07                   |
| 89-240           | Lt. 22 ft SFO     | 08/07/97             | 7.25         | 10.51                                                | 8.21  | 0.10                 | 0.11                   | 0.10                   | 3.57  | 7.27                                         | 11.05   | 0.19                 | 0.18                   | 0.17                   |
| 89-244           | Right of CL       | 10/17/97             | 9.66         | 11.69                                                | 4.39  | 0.16                 | 0.09                   | 0.08                   | 10.11 | 10.91                                        | 9.54    | 0.17                 | 0.11                   | 0.10                   |
| 89-244           | Left of CL        | 10/21/97             | 13.45        | 13.06                                                | 6.83  | 0.13                 | 0.07                   | 0.06                   | 11.98 | 10.74                                        | 9.75    | 0.14                 | 0.16                   | 0.15                   |
| 89-245           | Lt. of CL Unit #2 | 10/20/97             | 13.57        | 10.11                                                | 9.48  | 0.20                 | 0.05                   | 0.03                   | 11.39 | 8.29                                         | 10.66   | 0.12                 | 0.17                   | 0.15                   |
| 89-245           | Lt. of CL Unit #1 | 10/22/97             | 9.69         | 11.64                                                | 8.37  | 0.04                 | 0.04                   | 0.03                   | 7.19  | 5.39                                         | 6.48    | 0.11                 | 0.20                   | 0.18                   |
| 89-245           | Rt. of CL Unit #2 | 10/23/97             | 13.50        | 9.11                                                 | 10.56 | 0.14                 | 0.06                   | 0.05                   | 7.34  | 9.36                                         | 10.37   | 0.17                 | 0.19                   | 0.17                   |
| 89-245           | Rt. of CL Unit #1 | 10/24/97             | 11.44        | 10.58                                                | 15.23 | 0.20                 | 0.05                   | 0.03                   | 7.19  | 8.64                                         | 7.04    | 0.11                 | 0.21                   | 0.19                   |
| 89-246           | East 1/2 SFO      | 09/08/97             | 4.75         | 6.49                                                 | 4.29  | 0.10                 | 0.09                   | 0.07                   | 2.84  | 2.94                                         | 2.15    | 0.17                 | 0.07                   | 0.06                   |
| 89-246           | West 1/2 SFO      | 09/10/97             | 12.32        | 8.06                                                 | 6.22  | 0.05                 | 0.04                   | 0.03                   | 1.81  | 2.28                                         | 2.59    | 0.09                 | 0.23                   | 0.22                   |

|                  |                  |          |      | Calc       | ulated ı | using curre          | ent study da           | ta                     | Cal  | culated                                       | using N | /liller and          | Darwin (20             | 00) data               |
|------------------|------------------|----------|------|------------|----------|----------------------|------------------------|------------------------|------|-----------------------------------------------|---------|----------------------|------------------------|------------------------|
| Bridge<br>Number | - Portion Placed |          | Cor  | $(kg/m^3)$ |          | Base Cl <sup>-</sup> | $D_{\mathit{eff}}$     | $D_{e\!f\!f}^{}^{*}$   | Cor  | irent Su<br>icentrati<br>(kg/m <sup>3</sup> ) |         | Base Cl <sup>-</sup> | $D_{e\!f\!f}$          | $D_{e\!f\!f}^{}^{*}$   |
|                  |                  |          | 1    | 2          | 3        | $(kg/m^3)$           | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) | 1    | 2                                             | 3       | (kg/m <sup>3</sup> ) | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) |
|                  |                  |          |      |            |          |                      |                        |                        |      |                                               |         |                      |                        |                        |
| 89-247           | SFO West 13 ft   | 05/05/97 | 4.06 | 3.63       | 3.48     | 0.01                 | 0.03                   | 0.02                   | 0.00 | 1.88                                          | 1.18    | 0.00                 | 0.32                   | 0.31                   |
| 89-247           | SFO East 26 ft   | 05/07/97 | 6.59 | 2.92       | 3.90     | 0.08                 | 0.06                   | 0.05                   | 1.03 | 2.81                                          | 1.52    | 0.00                 | 0.19                   | 0.19                   |
| 89-248           | Westbound Lane   | 04/24/98 | 2.50 | 4.97       | 2.29     | 0.29                 | 0.14                   | 0.12                   | 0.00 | 0.22                                          | 0.10    | 0.29                 | 0.06                   | 0.05                   |
| 89-248           | Eastbound Lane   | 05/01/98 | 3.42 | 2.88       | 4.45     | 0.08                 | 0.05                   | 0.03                   | 0.00 | 0.21                                          | 0.11    | 0.36                 | 0.20                   | 0.18                   |

| S |  |
|---|--|
| 4 |  |
| 9 |  |

| _      | Conventional Overlay Bridges                                                                    |          |       |       |       |      |      |      |       |       |       |      |      |      |
|--------|-------------------------------------------------------------------------------------------------|----------|-------|-------|-------|------|------|------|-------|-------|-------|------|------|------|
| 46-289 | Inside 24 ft                                                                                    | 09/02/92 | 6.40  | 8.02  | 9.57  | 0.00 | 0.05 | 0.05 | 10.69 | 7.78  | 11.68 | 0.27 | 0.04 | 0.04 |
| 46-289 | Outside 20 ft                                                                                   | 09/11/92 | 5.60  | 8.34  | 9.87  | 0.00 | 0.03 | 0.03 | 10.12 | 11.94 | 9.07  | 0.23 | 0.03 | 0.03 |
| 46-290 | Inside 24 ft                                                                                    | 09/08/92 | 10.80 | 9.38  | 10.27 | 0.02 | 0.04 | 0.04 | 10.14 | 12.06 | 10.22 | 0.26 | 0.07 | 0.07 |
| 46-290 | Outside 10 ft                                                                                   | 09/15/92 | 5.99  | 13.34 | 9.93  | 0.00 | 0.06 | 0.06 |       |       |       |      |      |      |
| 46-299 | Rt. of CL 22 ft                                                                                 | 07/28/94 | 8.32  | 6.29  | 5.96  | 0.00 | 0.06 | 0.05 | 7.93  | 6.74  | 8.77  | 0.17 | 0.05 | 0.03 |
| 46-299 | Lt. of CL 18 ft                                                                                 | 07/30/94 | 6.62  | 7.25  | 5.05  | 0.00 | 0.12 | 0.11 | 5.08  | 6.77  | 4.61  | 0.17 | 0.22 | 0.20 |
| 46-300 | Lt. of CL 22 ft                                                                                 | 08/14/95 | 5.90  | 6.98  | 7.75  | 0.05 | 0.15 | 0.15 | 7.25  | 6.12  | 7.38  | 0.06 | 0.20 | 0.18 |
| 46-300 | Rt. of CL 18 ft                                                                                 | 08/10/95 | 8.13  | 7.50  | 8.85  | 0.07 | 0.17 | 0.17 | 6.54  | 5.42  | 8.65  | 0.16 | 0.21 | 0.19 |
| 46-301 | Rt. of CL 24 ft                                                                                 | 08/03/94 | 9.71  | 8.33  | 6.76  | 0.00 | 0.07 | 0.06 | 9.06  | 7.85  | 7.05  | 0.32 | 0.08 | 0.06 |
| 46-301 | Lt. of CL 24 to 38 ft                                                                           | 08/06/94 | 4.50  | 9.20  | 6.85  | 0.02 | 0.08 | 0.07 | 4.14  | 2.28  | 8.84  | 0.34 | 0.12 | 0.17 |
| 46-301 | Rt. of CL 24 to 38 ft $% \left( {{{\left( {{\left( {{\left( {{\left( {{\left( {{\left( {{\left$ | 08/05/94 | 7.39  | 9.41  | 5.51  | 0.00 | 0.10 | 0.09 | 6.34  | 8.53  | 7.34  | 0.37 | 0.14 | 0.11 |
| 46-301 | Lt. of CL 24 ft                                                                                 | 08/06/94 | 10.27 | 3.60  | 8.30  | 0.00 | 0.12 | 0.11 | 7.04  | 7.13  | 8.01  | 0.27 | 0.18 | 0.13 |
| 75-1   | Lt. of CL                                                                                       | 10/17/91 | 5.59  | 10.28 | 12.28 | 0.06 | 0.08 | 0.08 | 5.31  | 5.94  | 14.34 | 0.33 | 0.10 | 0.10 |
| 75-1   | Rt. of CL                                                                                       | 10/19/91 | 10.23 | 17.83 | 13.93 | 0.07 | 0.04 | 0.04 | 10.97 | 14.17 | 9.46  | 0.33 | 0.03 | 0.04 |

|                  |                 |                      |       | Calc                                          | ulated u | using curr           | ent study da           | ta                     | Cal   | culated                                      | using N | Ailler and           | Darwin (20             | 00) data               |
|------------------|-----------------|----------------------|-------|-----------------------------------------------|----------|----------------------|------------------------|------------------------|-------|----------------------------------------------|---------|----------------------|------------------------|------------------------|
| Bridge<br>Number | Portion Placed  | Date of<br>Placement | Cor   | arent Su<br>acentrati<br>(kg/m <sup>3</sup> ) | ions     | Base Cl <sup>-</sup> | $D_{\it eff}$          | $D_{e\!f\!f}^{*}$      | Cor   | arent Su<br>acentrat<br>(kg/m <sup>3</sup> ) | ions    | Base Cl <sup>-</sup> | $D_{\mathit{eff}}$     | $D_{e\!f\!f}^{}^{*}$   |
|                  |                 |                      | 1     | 2                                             | 3        | $(kg/m^3)$           | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) | 1     | 2                                            | 3       | (kg/m <sup>3</sup> ) | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) |
| 75-49            | Eastbound       | 06/04/91             | 10.14 | 8.84                                          | 11.02    | 0.00                 | 0.20                   | 0.21                   | 9.77  | 8.15                                         | 10.22   | 0.20                 | 0.26                   | 0.27                   |
| 75-49            | Westbound       | 06/07/91             | 9.85  | 11.05                                         | 8.88     | 0.00                 | 0.12                   | 0.13                   | 7.83  | 7.93                                         | 7.02    | 0.29                 | 0.17                   | 0.17                   |
| 81-49            | Rt. 22 ft       | 04/08/92             | 10.89 | 9.35                                          | 8.23     | 0.02                 | 0.03                   | 0.03                   | 7.12  | 3.63                                         | 5.18    | 0.10                 | 0.03                   | 0.03                   |
| 81-49            | Rt. of CL 12 ft | 04/13/92             | 7.91  | 9.82                                          | 10.53    | 0.04                 | 0.05                   | 0.05                   | 8.59  | 7.73                                         | 7.14    | 0.13                 | 0.05                   | 0.05                   |
| 81-49            | Lt. 22 ft       | 10/21/92             | 7.50  | 9.60                                          | 11.66    | 0.00                 | 0.03                   | 0.03                   | 6.40  | 7.54                                         | 6.05    | 0.08                 | 0.07                   | 0.07                   |
| 81-49            | Lt. of CL 12 ft | 10/23/92             | 8.96  | 12.55                                         | 13.26    | 0.02                 | 0.04                   | 0.04                   | 6.41  | 5.92                                         | 5.05    | 0.07                 | 0.09                   | 0.09                   |
| 89-183           | Rt. Side        | 09/21/90             | 7.36  | 7.05                                          | 9.71     | 0.00                 | 0.08                   | 0.09                   | 8.78  | 6.90                                         | 7.41    | 0.15                 | 0.09                   | 0.10                   |
| 89-183           | Lt. Side        | 09/25/90             | 7.62  | 9.94                                          | 7.28     | 0.00                 | 0.10                   | 0.11                   | 9.15  | 5.95                                         | 8.15    | 0.15                 | 0.06                   | 0.07                   |
| 89-185           | Outside         | 06/23/90             | 11.82 | 11.90                                         | 8.08     | 0.00                 | 0.02                   | 0.26                   | 9.67  | 11.01                                        | 7.23    | 0.23                 | 0.26                   | 0.24                   |
| 89-185           | Inside          | 06/21/90             | 6.20  | 5.38                                          | 10.75    | 0.02                 | 0.03                   | 0.04                   | 9.08  | 6.82                                         | 7.49    | 0.08                 | 0.12                   | 0.10                   |
| 89-186           | Inside          | 09/14/90             | 9.18  | 10.76                                         | 12.34    | 0.16                 | 0.07                   | 0.08                   | 9.71  | 10.35                                        | 9.71    | 0.23                 | 0.05                   | 0.06                   |
| 89-186           | Outside         | 09/17/90             | 10.11 | 7.98                                          | 9.78     | 0.14                 | 0.09                   | 0.09                   | 7.23  | 8.30                                         | 10.08   | 0.21                 | 0.08                   | 0.09                   |
| 89-196           | Rt. Side        | 05/01/92             | 8.76  | 5.80                                          | 8.15     | 0.13                 | 0.07                   | 0.07                   | 8.71  | 5.07                                         | 3.72    | 0.08                 | 0.08                   | 0.09                   |
| 89-196           | Lt. Side        | 05/05/92             | 11.12 | 13.66                                         | 6.57     | 0.07                 | 0.10                   | 0.10                   | 0.09  | 10.41                                        | 6.61    | 0.25                 | 0.19                   | 0.19                   |
| 89-198           | Lt. Side        | 08/24/91             | 10.55 | 9.25                                          | 13.10    | 0.12                 | 0.08                   | 0.08                   | 9.28  | 10.68                                        | 10.27   | 0.23                 | 0.05                   | 0.06                   |
| 89-198           | Rt. Side        | 08/27/91             | 6.45  | 7.58                                          | 9.37     | 0.09                 | 0.07                   | 0.07                   | 5.80  | 9.05                                         | 5.88    | 0.11                 | 0.07                   | 0.08                   |
| 89-199           | Lt. Side        | 08/26/91             | 5.03  | 10.96                                         | 9.64     | 0.00                 | 0.07                   | 0.08                   | 7.88  | 6.90                                         | 9.03    | 0.20                 | 0.07                   | 0.07                   |
| 89-199           | Rt. Side        | 08/28/91             | 9.83  | 11.86                                         | 9.49     | 0.05                 | 0.07                   | 0.08                   | 12.43 | 11.21                                        | 11.32   | 0.17                 | 0.04                   | 0.04                   |
| 89-200           | Rt. Side        | 08/17/91             | 9.37  | 10.39                                         | 11.61    | 0.12                 | 0.04                   | 0.05                   | 6.17  | 10.80                                        | 8.52    | 0.15                 | 0.06                   | 0.06                   |
| 89-200           | Lt. Side        | 08/20/91             | 9.39  | 9.45                                          | 11.83    | 0.07                 | 0.06                   | 0.06                   | 9.46  | 12.25                                        | 10.56   | 0.17                 | 0.04                   | 0.04                   |

|                  |                |                      |       | Calc                                          | ulated u | using curr           | ent study da           | ta                     | Cal   | culated                                      | using N | Ailler and           | Darwin (20             | 00) data               |
|------------------|----------------|----------------------|-------|-----------------------------------------------|----------|----------------------|------------------------|------------------------|-------|----------------------------------------------|---------|----------------------|------------------------|------------------------|
| Bridge<br>Number | Portion Placed | Date of<br>Placement | Con   | irent Su<br>icentrati<br>(kg/m <sup>3</sup> ) | ions     | Base Cl <sup>-</sup> | $D_{\it eff}$          | $D_{e\!f\!f}^{*}$      | Cor   | arent Su<br>ncentrat<br>(kg/m <sup>3</sup> ) | ions    | Base Cl <sup>-</sup> | $D_{\mathit{eff}}$     | $D_{e\!f\!f}^{}^{*}$   |
|                  |                |                      | 1     | 2                                             | 3        | $(kg/m^3)$           | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) | 1     | 2                                            | 3       | $(kg/m^3)$           | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) |
| 00.001           |                | 00/10/01             | 10.00 | 10.10                                         | 0.41     | 0.07                 | 0.07                   | 0.07                   | 0.04  | 11.01                                        | 0.70    | 0.17                 | 0.05                   | 0.05                   |
| 89-201           | Rt. Side       | 08/19/91             | 10.28 | 10.10                                         | 9.41     | 0.07                 | 0.06                   | 0.06                   | 8.36  | 11.31                                        | 9.79    | 0.17                 | 0.05                   | 0.05                   |
| 89-201           | Lt. Side       | 08/21/91             | 7.70  | 8.91                                          | 8.44     | 0.05                 | 0.04                   | 0.04                   | 4.90  | 9.65                                         | 9.28    | 0.11                 | 0.04                   | 0.05                   |
|                  |                |                      |       |                                               |          | Monol                | ithic Bridg            | es                     |       |                                              |         |                      |                        |                        |
| 56-142           | North End      | 10/01/87             |       |                                               |          |                      |                        |                        |       |                                              |         |                      |                        |                        |
| 56-142           | N. + Moment    | 10/01/87             |       |                                               |          |                      |                        |                        |       |                                              |         |                      |                        |                        |
| 56-142           | S. + Moment    | 10/01/87             |       |                                               |          |                      |                        |                        |       |                                              |         |                      |                        |                        |
| 56-142           | South End      | 10/01/87             | 10.93 | 13.81                                         | 8.98     | 0.15                 | 0.06                   | 0.06                   |       |                                              |         |                      |                        |                        |
| 56-142           | N. Pier        | 10/06/87             |       |                                               |          |                      |                        |                        |       |                                              |         |                      |                        |                        |
| 56-142           | Ctr. Pier      | 10/06/87             |       |                                               |          |                      |                        |                        |       |                                              |         |                      |                        |                        |
| 56-142           | South Pier     | 10/06/87             | 11.64 | 9.59                                          | 13.12    | 0.21                 | 0.07                   | 0.08                   |       |                                              |         |                      |                        |                        |
| 56-148           | Deck           | 07/18/91             | 15.52 | 13.62                                         | 12.46    | 0.00                 | 0.15                   | 0.13                   | 10.56 | 13.56                                        | 9.90    | 0.22                 | 0.18                   | 0.15                   |
| 70-95            | Deck           | 10/31/85             | 15.22 | 16.95                                         | 11.94    | 0.16                 | 0.16                   | 0.18                   |       |                                              |         |                      |                        |                        |
| 70-103           | Right          | 03/14/85             | 11.33 | 10.75                                         | 13.00    | 0.00                 | 0.29                   | 0.30                   |       |                                              |         |                      |                        |                        |
| 70-103           | Left           | 03/19/85             | 10.68 | 12.94                                         | 10.67    | 0.00                 | 0.22                   | 0.24                   |       |                                              |         |                      |                        |                        |
| 70-104           | Deck           | 10/17/85             | 12.11 | 15.31                                         | 14.69    | 0.16                 | 0.13                   | 0.14                   |       |                                              |         |                      |                        |                        |
| 70-107           | Deck           | 10/25/91             | 15.50 | 15.32                                         | 12.07    | 0.00                 | 0.14                   | 0.11                   | 10.77 | 12.76                                        | 12.07   | 0.22                 | 0.19                   | 0.16                   |
| 75-44            | Deck           | 07/12/90             | 6.00  | 8.50                                          | 8.00     | 0.00                 | 0.26                   | 0.25                   |       |                                              |         |                      |                        |                        |
| 75-45            | Deck           | 08/10/90             | 10.92 | 10.89                                         | 6.27     | 0.00                 | 0.17                   | 0.17                   |       |                                              |         |                      |                        |                        |
| 89-204           | Deck           | 10/03/91             | 7.71  | 11.27                                         | 11.91    | 0.12                 | 0.12                   | 0.10                   | 5.12  | 9.93                                         | 11.03   | 0.10                 | 0.14                   | 0.10                   |

|                  |                  |               |       | Calc       | ulated u | using curre          | ent study da           | ta                     | Cal   | culated                                       | using N | Ailler and           | d Darwin (2000) data   |                        |
|------------------|------------------|---------------|-------|------------|----------|----------------------|------------------------|------------------------|-------|-----------------------------------------------|---------|----------------------|------------------------|------------------------|
| Bridge<br>Number | Portion Placed   |               | Con   | $(kg/m^3)$ |          | Base Cl <sup>-</sup> | $D_{\mathit{eff}}$     | $D_{e\!f\!f}^{*}$      | Cor   | arent Su<br>ncentrati<br>(kg/m <sup>3</sup> ) | ons     | Base Cl <sup>-</sup> | $D_{\mathit{eff}}$     | $D_{e\!f\!f}^{}^{*}$   |
|                  |                  |               | 1     | 2          | 3        | $(kg/m^3)$           | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) | 1     | 2                                             | 3       | $(kg/m^3)$           | (mm <sup>2</sup> /day) | (mm <sup>2</sup> /day) |
|                  |                  | 0 ( 1 5 / 0 5 |       | 0.00       | 0.02     | 0.0 <b>7</b>         | 0.16                   | 0.10                   | ( ) ] |                                               | 6.00    | 0.10                 | 0.00                   | 0.04                   |
| 89-208           | Deck             | 06/15/95      | 7.44  | 8.39       | 8.83     | 0.05                 | 0.16                   | 0.13                   | 6.35  | 7.53                                          | 6.90    | 0.10                 | 0.09                   | 0.04                   |
| 99-76            | South End        | 09/01/89      | 10.02 | 6.50       | 7.47     | 0.15                 | 0.07                   | 0.07                   |       |                                               |         |                      |                        |                        |
| 99-76            | Placement 2      | 09/15/89      | 6.65  | 13.61      | 10.12    | 0.15                 | 0.15                   | 0.14                   |       |                                               |         |                      |                        |                        |
| 99-76            | Placement 3      | 10/13/89      | 12.19 | 8.58       | 13.93    | 0.17                 | 0.11                   | 0.11                   |       |                                               |         |                      |                        |                        |
| 99-76            | Placement 4      | 11/07/89      | 13.29 | 9.12       | 8.34     | 0.12                 | 0.27                   | 0.27                   |       |                                               |         |                      |                        |                        |
| 99-76            | Placement 5      | 11/21/89      |       |            |          |                      |                        |                        |       |                                               |         |                      |                        |                        |
| 99-76            | North (West Ln.) | 01/09/90      |       |            |          |                      |                        |                        |       |                                               |         |                      |                        |                        |
| 99-76            | North (East Ln.) | 05/11/90      |       |            |          |                      |                        |                        |       |                                               |         |                      |                        |                        |

#### **APPENDIX E**

#### FIELD SURVEY RESULTS AND AGE-CORRECTED CRACK DENSITIES

|                  |           |                     | Current Study       |                                | Miller and D        | arwin (2000)                   | Schmitt and I       | Darwin (1995)                  | All Studies                             |
|------------------|-----------|---------------------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Deck Type | Delaminated<br>Area | Crack Density       | Age-Corrected<br>Crack Density | Crack Density       | Age-Corrected<br>Crack Density | Crack Density       | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |           | $[m^2(\%)]$         | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> )                     |
|                  |           |                     |                     | 7% Silica I                    | Fume Overlay B      | Bridges                        |                     |                                |                                         |
| 30-93            | 7% SFO    | 0.0                 | 0.06                | 0.21                           |                     |                                |                     |                                | 0.21                                    |
| 40-92            | 7% SFO    | 0.0                 | 0.90                | 1.06                           |                     |                                |                     |                                | 1.06                                    |
| 40-93            | 7% SFO    | 0.1 (0.0)           | 0.43                | 0.60                           |                     |                                |                     |                                | 0.60                                    |
| 46-332           | 7% SFO    | 0.0                 | 0.63                | 0.81                           |                     |                                |                     |                                | 0.81                                    |
| 81-53            | 7% SFO    | 2.4 (0.5)           | 0.15                | 0.26                           |                     |                                |                     |                                | 0.26                                    |
| 85-148           | 7% SFO    | 0.0                 | 0.57                | 0.73                           |                     |                                |                     |                                | 0.73                                    |
| 85-149           | 7% SFO    | 0.1 (0.0)           | 0.14                | 0.33                           |                     |                                |                     |                                | 0.33                                    |
| 89-269           | 7% SFO    | 0.0                 | 0.02                | 0.18                           |                     |                                |                     |                                | 0.18                                    |
| 89-272           | 7% SFO    | 0.1 (0.0)           | 0.05                | 0.23                           |                     |                                |                     |                                | 0.23                                    |
| 103-56           | 7% SFO    | 1.5 (0.2)           | 0.23                | 0.39                           |                     |                                |                     |                                | 0.39                                    |
|                  |           |                     |                     | 5% Silica I                    | Fume Overlay B      | Bridges                        |                     |                                |                                         |
| 23-85            | 5% SFO    | 0.0                 | 0.57                | 0.57                           | 0.37                | 0.51                           |                     |                                | 0.54                                    |
| 46-302           | 5% SFO    | 0.0                 | 0.78                | 0.79                           | 0.51                | 0.65                           |                     |                                | 0.72                                    |
| 46-309           | 5% SFO    | 0.0                 | 0.53                | 0.52                           | 0.35                | 0.48                           |                     |                                | 0.50                                    |
| 46-317           | 5% SFO    | 0.0                 | 0.30                | 0.32                           | 0.08                | 0.23                           |                     |                                | 0.27                                    |
| 81-50            | 5% SFO    | 0.6 (0.0)           | 1.09                | 1.05                           | 0.69                | 0.82                           |                     |                                | 0.94                                    |
| 87-453           | 5% SFO    | 0.0                 | 0.81                | 0.86                           | 0.25                | 0.42                           |                     |                                | 0.64                                    |
| 87-454           | 5% SFO    | 0.0                 | 0.86                | 0.89                           | 0.68                | 0.83                           |                     |                                | 0.86                                    |

Table E.1 – Field Survey Results for All Bridges Decks

|                  |           |                     | Current Study |                                | Miller and D        | arwin (2000)                   | Schmitt and I       | Darwin (1995)                  | All Studies                             |
|------------------|-----------|---------------------|---------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Deck Type | Delaminated<br>Area | Crack Density | Age-Corrected<br>Crack Density | Crack Density       | Age-Corrected<br>Crack Density | Crack Density       | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |           | (%)                 | $(m/m^2)$     | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> )                     |
|                  |           |                     |               |                                |                     |                                |                     |                                |                                         |
| 89-184           | 5% SFO    | 0.0                 | 0.88          | 0.70                           | 1.01                | 0.96                           | 0.69                | 0.80                           | 0.82                                    |
| 89-187           | 5% SFO    |                     | 0.88          | 0.73                           | 0.97                | 0.91                           | 1.02                | 1.13                           | 0.92                                    |
| 89-206           | 5% SFO    | 0.0                 | 0.45          | 0.41                           | 0.43                | 0.55                           |                     |                                | 0.48                                    |
| 89-207           | 5% SFO    | 0.0                 | 0.42          | 0.39                           | 0.37                | 0.50                           |                     |                                | 0.44                                    |
| 89-210           | 5% SFO    |                     | 0.57          | 0.60                           | 0.16                | 0.29                           |                     |                                | 0.45                                    |
| 89-234           | 5% SFO    | 0.0                 | 0.29          | 0.27                           | 0.27                | 0.43                           |                     |                                | 0.35                                    |
| 89-235           | 5% SFO    | 0.0                 | 0.21          | 0.22                           | 0.38                | 0.57                           |                     |                                | 0.39                                    |
| 89-240           | 5% SFO    | 0.0                 | 0.21          | 0.24                           | 0.20                | 0.39                           |                     |                                | 0.31                                    |
| 89-244           | 5% SFO    | 0.0                 | 0.30          | 0.33                           | 0.02                | 0.22                           |                     |                                | 0.27                                    |
| 89-245           | 5% SFO    | 0.0                 | 0.46          | 0.49                           | 0.05                | 0.25                           |                     |                                | 0.37                                    |
| 89-246           | 5% SFO    | 0.0                 | 0.33          | 0.38                           | 0.07                | 0.27                           |                     |                                | 0.32                                    |
| 89-247           | 5% SFO    | 0.0                 | 0.55          | 0.57                           | 0.50                | 0.68                           |                     |                                | 0.62                                    |
| 89-248           | 5% SFO    | 2.7 (0.3)           | 0.51          | 0.56                           | 0.02                | 0.23                           |                     |                                | 0.40                                    |
|                  |           |                     |               | Conventio                      | onal Overlay Br     | ridges                         |                     |                                |                                         |
| 46-289           | СО        | 1.1 (0.1)           | 0.71          | 0.68                           | 0.65                | 0.66                           |                     |                                | 0.67                                    |
| 46-290           | СО        | 0                   | 0.68          | 0.65                           | 0.62                | 0.62                           |                     |                                | 0.64                                    |
| 46-294           | CO        |                     |               |                                |                     |                                | 0.30                | 0.34                           | 0.34                                    |
| 46-295           | СО        |                     |               |                                |                     |                                | 0.28                | 0.32                           | 0.32                                    |
| 46-299           | СО        | 0                   | 0.81          | 0.80                           | 0.88                | 0.91                           |                     |                                | 0.85                                    |

Table E.1 (con't) – Field Survey Results for All Bridges Decks

|                  |           |                     | Current Study |                                | Miller and D  | arwin (2000)                   | Schmitt and I | Darwin (1995)                  | All Studies                             |
|------------------|-----------|---------------------|---------------|--------------------------------|---------------|--------------------------------|---------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Deck Type | Delaminated<br>Area | Crack Density | Age-Corrected<br>Crack Density | Crack Density | Age-Corrected<br>Crack Density | Crack Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |           | (%)                 | $(m/m^2)$     | $(m/m^2)$                      | $(m/m^2)$     | $(m/m^2)$                      | $(m/m^2)$     | $(m/m^2)$                      | $(m/m^2)$                               |
| 46-300           | СО        |                     | 0.65          | 0.66                           | 0.88          | 0.92                           |               |                                | 0.79                                    |
| 46-301           | CO        | 0.0                 | 0.84          | 0.83                           | 0.73          | 0.75                           |               |                                | 0.79                                    |
| 75-1             | CO        | 0.0                 | 0.49          | 0.44                           | 0.37          | 0.36                           |               |                                | 0.40                                    |
| 75-49            | CO        | 0.1 (0.0)           | 0.40          | 0.35                           | 0.45          | 0.44                           |               |                                | 0.39                                    |
| 81-49            | CO        | 0.0                 | 0.80          | 0.76                           | 0.73          | 0.74                           |               |                                | 0.75                                    |
| 89-179           | СО        |                     |               |                                |               |                                | 0.23          | 0.25                           | 0.25                                    |
| 89-180           | СО        |                     |               |                                |               |                                | 0.36          | 0.38                           | 0.38                                    |
| 89-183           | СО        | 0.0                 | 0.61          | 0.56                           | 0.51          | 0.50                           |               |                                | 0.53                                    |
| 89-185           | СО        | 0.0                 | 0.81          | 0.76                           | 0.70          | 0.69                           | 0.72          | 0.75                           | 0.73                                    |
| 89-186           | СО        |                     | 0.72          | 0.68                           | 0.72          | 0.71                           | 0.52          | 0.55                           | 0.65                                    |
| 89-196           | CO        | 0.0                 | 0.59          | 0.56                           | 0.54          | 0.54                           |               |                                | 0.55                                    |
| 89-198           | СО        | 0.0                 | 0.48          | 0.44                           | 0.39          | 0.38                           | 0.54          | 0.57                           | 0.47                                    |
| 89-199           | СО        | 0.0                 | 0.71          | 0.67                           | 0.66          | 0.65                           | 0.67          | 0.70                           | 0.67                                    |
| 89-200           | СО        |                     | 0.65          | 0.61                           | 0.52          | 0.52                           | 0.51          | 0.54                           | 0.56                                    |
| 89-201           | СО        |                     | 0.71          | 0.67                           | 0.63          | 0.63                           | 0.67          | 0.70                           | 0.67                                    |
| 105-021          | CO        |                     |               |                                |               |                                | 0.09          | 0.09                           | 0.09                                    |
| 105-225          | CO        |                     |               |                                |               |                                | 0.18          | 0.17                           | 0.17                                    |
| 105-226          | CO        |                     |               |                                |               |                                | 0.17          | 0.16                           | 0.16                                    |
| 105-230          | CO        |                     |               |                                |               |                                | 0.09          | 0.07                           | 0.07                                    |
| 105-231          | CO        |                     |               |                                |               |                                | 0.11          | 0.09                           | 0.09                                    |

Table E.1 (con't) – Field Survey Results for All Bridges Decks

|                    |           |                     | Current Study |                                | Miller and D  | arwin (2000)                   | Schmitt and I | Darwin (1995)                  | All Studies                             |  |  |  |  |
|--------------------|-----------|---------------------|---------------|--------------------------------|---------------|--------------------------------|---------------|--------------------------------|-----------------------------------------|--|--|--|--|
| Bridge<br>Number   | Deck Type | Delaminated<br>Area | Crack Density | Age-Corrected<br>Crack Density | Crack Density | Age-Corrected<br>Crack Density | Crack Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |  |  |  |  |
|                    |           | (%)                 | $(m/m^2)$     | $(m/m^2)$                      | $(m/m^2)$     | $(m/m^2)$                      | $(m/m^2)$     | $(m/m^2)$                      | $(m/m^2)$                               |  |  |  |  |
| 105.000            |           |                     |               |                                |               |                                | 0.10          | 0.16                           | 0.1.6                                   |  |  |  |  |
| 105-262            | СО        |                     |               |                                |               |                                | 0.18          | 0.16                           | 0.16                                    |  |  |  |  |
| 105-263            | СО        |                     |               |                                |               |                                | 0.13          | 0.09                           | 0.09                                    |  |  |  |  |
| 105-265            | CO        |                     |               |                                |               |                                | 0.01          | 0.00                           | 0.00                                    |  |  |  |  |
| 105-268            | CO        |                     |               |                                |               |                                | 0.61          | 0.60                           | 0.60                                    |  |  |  |  |
| 105-269            | CO        |                     |               |                                |               |                                | 0.45          | 0.44                           | 0.44                                    |  |  |  |  |
| Monolithic Bridges |           |                     |               |                                |               |                                |               |                                |                                         |  |  |  |  |
| 3-45               | MONO      |                     | 0.29          | 0.11                           |               |                                | 0.19          | 0.15                           | 0.13                                    |  |  |  |  |
| 3-46               | MONO      |                     | 0.41          | 0.25                           |               |                                | 0.24          | 0.21                           | 0.23                                    |  |  |  |  |
| 56-142             | MONO      |                     | 0.17          | 0.03                           |               |                                | 0.08          | 0.08                           | 0.06                                    |  |  |  |  |
| 56-148             | MONO      |                     | 0.53          | 0.46                           | 0.31          | 0.30                           | 0.28          | 0.33                           | 0.37                                    |  |  |  |  |
| 70-95              | MONO      |                     | 0.13          | 0.00                           |               |                                | 0.07          | 0.03                           | 0.02                                    |  |  |  |  |
| 70-101             | MONO      |                     |               |                                |               |                                | 0.06          | 0.02                           | 0.02                                    |  |  |  |  |
| 70-103             | MONO      |                     | 0.75          | 0.57                           |               |                                | 0.49          | 0.46                           | 0.52                                    |  |  |  |  |
| 70-104             | MONO      |                     | 0.10          | 0.00                           |               |                                | 0.09          | 0.05                           | 0.03                                    |  |  |  |  |
| 70-107             | MONO      |                     | 0.72          | 0.66                           | 0.42          | 0.41                           | 0.34          | 0.40                           | 0.49                                    |  |  |  |  |
| 75-44              | MONO      |                     | 0.28          | 0.19                           |               |                                | 0.19          | 0.23                           | 0.21                                    |  |  |  |  |
| 75-45              | MONO      |                     | 0.45          | 0.36                           |               |                                | 0.51          | 0.55                           | 0.45                                    |  |  |  |  |
| 89-204             | MONO      |                     | 1.05          | 0.98                           | 0.84          | 0.84                           | 0.75          | 0.81                           | 0.87                                    |  |  |  |  |
| 89-208             | MONO      |                     | 0.10          | 0.11                           | 0.03          | 0.09                           |               |                                | 0.10                                    |  |  |  |  |

Table E.1 (con't) – Field Survey Results for All Bridges Decks

|                      |           |                              | Current Study |                                | Miller and D  | arwin (2000)                   | Schmitt and I | Darwin (1995)                  | All Studies                             |
|----------------------|-----------|------------------------------|---------------|--------------------------------|---------------|--------------------------------|---------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number     | Deck Type | Delaminated<br>Area          | Crack Density | Age-Corrected<br>Crack Density | Crack Density | Age-Corrected<br>Crack Density | Crack Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                      |           | (%) (m/m <sup>2</sup> ) (m/n |               | $(m/m^2)$                      | $(m/m^2)$     | $(m/m^2)$                      | $(m/m^2)$     | $(m/m^2)$                      | $(m/m^2)$                               |
| 99-76                | MONO      |                              | 0.77          | 0.67                           |               |                                | 0.76          | 0.81                           | 0.74                                    |
| 105-000 <sup>†</sup> | MONO      |                              |               |                                |               |                                | 0.27          | 0.35                           | 0.35                                    |
| 105-46               | MONO      |                              |               |                                |               |                                | 0.87          | 0.67                           | 0.67                                    |

 Table E.1 (con't) – Field Survey Results for All Bridges Decks

<sup>†</sup>Bridge has no assigned serial number. Project No. is 105-U-1262-01.

-- Denotes bridges that were not surveyed during a particular study or missing data.

|                  |                |                      | Curre               | ent Study                      | Miller and       | Darwin (2000)                  | Schmitt and      | Darwin (1995)                  | All Studies                             |
|------------------|----------------|----------------------|---------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Portion Placed | Date of<br>Placement | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |                |                      | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | $(m/m^2)$                      | $(m/m^2)$                               |
|                  |                |                      |                     | 7% Silica Fu                   | me Overlay B     | ridges                         |                  |                                |                                         |
| 30-93            | Deck           | 08/04/01             | 0.06                | 0.21                           |                  |                                |                  |                                | 0.21                                    |
| 40-92            | Deck           | 10/26/01             | 0.90                | 1.06                           |                  |                                |                  |                                | 1.06                                    |
| 40-93            | Deck           | 10/16/01             | 0.43                | 0.60                           |                  |                                |                  |                                | 0.60                                    |
| 46-332           | Deck           | 05/15/02             | 0.63                | 0.81                           |                  |                                |                  |                                | 0.81                                    |
| 81-53            | Deck           | 02/21/00             | 0.15                | 0.26                           |                  |                                |                  |                                | 0.26                                    |
| 85-148           | West 32 ft     | 10/30/01             | 0.59                | 0.75                           |                  |                                |                  |                                | 0.75                                    |
| 85-148           | East 18 ft SFO | 10/27/01             | 0.54                | 0.70                           |                  |                                |                  |                                | 0.70                                    |
| 85-149           | Deck           | 09/26/02             | 0.14                | 0.33                           |                  |                                |                  |                                | 0.33                                    |
| 89-269           | West 1/2 SFO   | 07/26/01             | 0.02                | 0.18                           |                  |                                |                  |                                | 0.18                                    |
| 89-269           | East 1/2 SFO   | 07/31/01             | 0.02                | 0.17                           |                  |                                |                  |                                | 0.17                                    |
| 89-272           | West 1/2 SFO   | 04/04/02             | 0.05                | 0.23                           |                  |                                |                  |                                | 0.23                                    |
| 89-272           | East 1/2 SFO   | 04/10/02             | 0.04                | 0.22                           |                  |                                |                  |                                | 0.22                                    |
| 103-56           | North 1/2 SFO  | 10/17/01             | 0.16                | 0.32                           |                  |                                |                  |                                | 0.32                                    |
| 103-56           | South 1/2 SFO  | 10/12/01             | 0.28                | 0.44                           |                  |                                |                  |                                | 0.44                                    |
|                  |                |                      |                     | 5% Silica Fu                   | me Overlay B     | ridges                         |                  |                                |                                         |
| 23-85            | East 1/2 SFO   | 03/29/96             | 0.54                | 0.55                           | 0.37             | 0.51                           |                  |                                | 0.53                                    |
| 23-85            | West 1/2 SFO   | 04/03/96             | 0.59                | 0.60                           | 0.37             | 0.51                           |                  |                                | 0.56                                    |

 Table E.2 – Crack Densities for Individual Bridge Placements

|                  |                |                      | Curre            | ent Study                      | Miller and       | Darwin (2000)                  | Schmitt and      | Darwin (1995)                  | All Studies                             |
|------------------|----------------|----------------------|------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Portion Placed | Date of<br>Placement | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |                |                      | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | $(m/m^2)$                      | $(m/m^2)$                               |
|                  |                |                      | 1                |                                |                  |                                |                  |                                |                                         |
| 46-302           | Lt. 1/2 SFO    | 04/09/96             | 0.71             | 0.72                           | 0.43             | 0.57                           |                  |                                | 0.65                                    |
| 46-302           | Rt. 1/2 SFO    | 04/11/96             | 0.85             | 0.86                           | 0.56             | 0.70                           |                  |                                | 0.78                                    |
| 46-309           | Rt. 1/2 SFO    | 10/20/95             | 0.50             | 0.49                           | 0.32             | 0.44                           |                  |                                | 0.47                                    |
| 46-309           | Lt 1/2 SFO     | 10/24/95             | 0.56             | 0.55                           | 0.38             | 0.51                           |                  |                                | 0.53                                    |
| 46-317           | North 12 ft    | 06/28/96             | 0.19             | 0.20                           | 0.07             | 0.22                           |                  |                                | 0.21                                    |
| 46-317           | South 16 ft    | 07/01/96             | 0.39             | 0.41                           | 0.08             | 0.23                           |                  |                                | 0.32                                    |
| 81-50            | SFO Rt. Unit 1 | 11/15/95             |                  |                                |                  |                                |                  |                                |                                         |
| 81-50            | SFO Lt. Unit 1 | 11/18/95             |                  |                                |                  |                                |                  |                                |                                         |
| 81-50            | SFO Rt. Unit 2 | 11/21/95             | 0.90             | 0.90                           | 0.67             | 0.80                           |                  |                                | 0.85                                    |
| 81-50            | SFO Lt. Unit 2 | 11/30/95             | 1.28             | 1.28                           | 0.70             | 0.83                           |                  |                                | 1.05                                    |
| 87-453           | North 22 ft    | 06/30/97             | 0.71             | 0.76                           | 0.19             | 0.36                           |                  |                                | 0.56                                    |
| 87-453           | South 18 ft    | 07/03/97             | 0.92             | 0.97                           | 0.32             | 0.50                           |                  |                                | 0.73                                    |
| 87-454           | Left of CL     | 09/10/96             | 0.80             | 0.82                           | 0.66             | 0.81                           |                  |                                | 0.81                                    |
| 87-454           | Right of CL    | 10/16/96             | 0.93             | 0.95                           | 0.82             | 0.97                           |                  |                                | 0.96                                    |
| 89-184           | Inside         | 09/26/90             | 0.90             | 0.72                           | 0.94             | 0.89                           | 0.68             | 0.79                           | 0.80                                    |
| 89-184           | Outside        | 09/28/90             | 0.88             | 0.69                           | 1.06             | 1.01                           | 0.70             | 0.81                           | 0.84                                    |
| 89-187           | Inside         | 06/26/90             | 0.99             | 0.83                           | 1.21             | 1.15                           | 1.46             | 1.57                           | 1.18                                    |
| 89-187           | Outside        | 06/28/90             | 0.83             | 0.67                           | 0.79             | 0.73                           | 0.65             | 0.76                           | 0.72                                    |
| 89-206           | Right of CL    | 10/04/95             | 0.58             | 0.70                           | 0.41             | 0.38                           |                  |                                | 0.54                                    |
| 89-206           | Left of CL     | 10/10/95             | 0.27             | 0.40                           | 0.48             | 0.44                           |                  |                                | 0.42                                    |

Table E.2 (con't) – Crack Densities for Individual Bridge Placements

|                  |                   |                      | Curre            | ent Study                      | Miller and       | Darwin (2000)                  | Schmitt and      | Darwin (1995)                  | All Studies                             |
|------------------|-------------------|----------------------|------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Portion Placed    | Date of<br>Placement | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |                   |                      | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                  |                   |                      |                  |                                |                  |                                |                  |                                |                                         |
| 89-207           | Left of CL        | 10/24/95             | 0.40             | 0.36                           | 0.33             | 0.46                           |                  |                                | 0.41                                    |
| 89-207           | Right of CL       | 04/19/96             | 0.45             | 0.43                           | 0.39             | 0.53                           |                  |                                | 0.48                                    |
| 89-210           | Right of CL       | 10/12/95             | 0.62             | 0.64                           | 0.17             | 0.30                           |                  |                                | 0.47                                    |
| 89-210           | Left of CL        | 10/18/95             | 0.55             | 0.57                           | 0.15             | 0.29                           |                  |                                | 0.43                                    |
| 89-234           | SFO South 20 ft   | 06/20/96             | 0.18             | 0.15                           | 0.17             | 0.33                           |                  |                                | 0.24                                    |
| 89-234           | SFO North 18 ft   | 06/25/96             | 0.24             | 0.21                           | 0.23             | 0.38                           |                  |                                | 0.30                                    |
| 89-234           | SFO Center 12 ft  | 06/28/96             | 0.57             | 0.54                           | 0.51             | 0.66                           |                  |                                | 0.60                                    |
| 89-235           | SFO Left 20 ft    | 04/26/97             |                  |                                |                  |                                |                  |                                |                                         |
| 89-235           | SFO Right 18 ft   | 05/01/97             | 0.21             | 0.22                           | 0.38             | 0.56                           |                  |                                | 0.39                                    |
| 89-235           | SFO Center 12 ft  | 05/06/97             |                  |                                |                  |                                |                  |                                |                                         |
| 89-240           | Rt. 22 ft SFO     | 08/05/97             | 0.10             | 0.13                           | 0.01             | 0.20                           |                  |                                | 0.17                                    |
| 89-240           | Lt. 22 ft SFO     | 08/07/97             | 0.32             | 0.35                           | 0.41             | 0.60                           |                  |                                | 0.47                                    |
| 89-244           | Right of CL       | 10/17/97             | 0.45             | 0.48                           | 0.03             | 0.23                           |                  |                                | 0.35                                    |
| 89-244           | Left of CL        | 10/21/97             | 0.15             | 0.19                           | 0.00             | 0.20                           |                  |                                | 0.19                                    |
| 89-245           | Lt. of CL Unit #2 | 10/20/97             | 0.54             | 0.57                           | 0.03             | 0.23                           |                  |                                | 0.40                                    |
| 89-245           | Lt. of CL Unit #1 | 10/22/97             | 0.47             | 0.49                           | 0.03             | 0.23                           |                  |                                | 0.36                                    |
| 89-245           | Rt. of CL Unit #2 | 10/23/97             | 0.45             | 0.48                           | 0.05             | 0.25                           |                  |                                | 0.37                                    |
| 89-245           | Rt. of CL Unit #1 | 10/24/97             | 0.35             | 0.38                           | 0.09             | 0.28                           |                  |                                | 0.33                                    |
| 89-246           | East 1/2 SFO      | 09/08/97             | 0.37             | 0.42                           | 0.08             | 0.27                           |                  |                                | 0.35                                    |
| 89-246           | West 1/2 SFO      | 09/10/97             | 0.29             | 0.34                           | 0.06             | 0.26                           |                  |                                | 0.30                                    |

Table E.2 (con't) – Crack Densities for Individual Bridge Placements

|                  |                |                      | Curre            | nt Study                       | Miller and Darwin (2000) |                                | Schmitt and      | All Studies                    |                                         |
|------------------|----------------|----------------------|------------------|--------------------------------|--------------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Portion Placed | Date of<br>Placement | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density         | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |                |                      | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                  |                |                      |                  |                                |                          |                                |                  |                                |                                         |
| 89-247           | SFO West 13 ft | 05/05/97             | 0.62             | 0.64                           | 0.47                     | 0.65                           |                  |                                | 0.64                                    |
| 89-247           | SFO East 26 ft | 05/07/97             | 0.51             | 0.53                           | 0.52                     | 0.70                           |                  |                                | 0.62                                    |
| 89-248           | Westbound Lane | 04/24/98             | 0.48             | 0.52                           | 0.02                     | 0.23                           |                  |                                | 0.38                                    |
| 89-248           | Eastbound Lane | 05/01/98             | 0.55             | 0.59                           | 0.03                     | 0.24                           |                  |                                | 0.41                                    |

Table E.2 (con't) – Crack Densities for Individual Bridge Placements

| Conventional Overlay Bridges |                       |          |      |      |      |      |      |      |      |  |  |
|------------------------------|-----------------------|----------|------|------|------|------|------|------|------|--|--|
| 46-289                       | Inside 24 ft          | 09/02/92 | 0.75 | 0.72 | 0.66 | 0.66 |      |      | 0.69 |  |  |
| 46-289                       | Outside 20 ft         | 09/11/92 | 0.65 | 0.62 | 0.64 | 0.64 |      |      | 0.63 |  |  |
| 46-290                       | Inside 24 ft          | 09/08/92 | 0.75 | 0.72 | 0.66 | 0.66 |      |      | 0.69 |  |  |
| 46-290                       | Outside 10 ft         | 09/15/92 | 0.51 | 0.48 | 0.53 | 0.54 |      |      | 0.51 |  |  |
| 46-294                       | Left                  | 07/23/92 |      |      |      |      | 0.40 | 0.44 | 0.44 |  |  |
| 46-294                       | Right                 | 07/25/92 |      |      |      |      | 0.20 | 0.24 | 0.24 |  |  |
| 46-295                       | Left                  | 03/06/92 |      |      |      |      | 0.43 | 0.47 | 0.47 |  |  |
| 46-295                       | Right                 | 03/14/92 |      |      |      |      | 0.15 | 0.19 | 0.19 |  |  |
| 46-299                       | Rt. of CL 22 ft       | 07/28/94 | 0.67 | 0.65 | 0.69 | 0.71 |      |      | 0.68 |  |  |
| 46-299                       | Lt. of CL 18 ft       | 07/30/94 | 1.00 | 0.99 | 1.12 | 1.14 |      |      | 1.06 |  |  |
| 46-300                       | Lt. of CL 22 ft       | 08/14/95 | 0.68 | 0.69 | 0.98 | 1.01 |      |      | 0.85 |  |  |
| 46-300                       | Rt. of CL 18 ft       | 08/10/95 | 0.63 | 0.63 | 0.49 | 0.52 |      |      | 0.58 |  |  |
| 46-301                       | Rt. of CL 24 ft       | 08/03/94 | 0.72 | 0.71 | 0.98 | 1.00 |      |      | 0.85 |  |  |
| 46-301                       | Lt. of CL 24 to 38 ft | 08/06/94 | 1.12 | 1.10 | 0.92 | 0.94 |      |      | 1.02 |  |  |

|                  |                       |                      | Curre            | ent Study                      | Miller and       | Darwin (2000)                  | Schmitt and      | Darwin (1995)                  | All Studies                             |
|------------------|-----------------------|----------------------|------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Portion Placed        | Date of<br>Placement | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |                       |                      | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                  |                       |                      |                  | - <b></b>                      |                  |                                |                  |                                | 0.61                                    |
| 46-301           | Rt. of CL 24 to 38 ft | 08/05/94             | 0.78             | 0.77                           | 0.43             | 0.45                           |                  |                                | 0.61                                    |
| 46-301           | Lt. of CL 24 ft       | 08/06/94             | 0.83             | 0.82                           | 0.57             | 0.59                           |                  |                                | 0.70                                    |
| 75-1             | Lt. of CL             | 10/17/91             | 0.41             | 0.36                           | 0.35             | 0.34                           |                  |                                | 0.35                                    |
| 75-1             | Rt. of CL             | 10/19/91             | 0.58             | 0.54                           | 0.39             | 0.39                           |                  |                                | 0.46                                    |
| 75-49            | Eastbound             | 06/04/91             | 0.36             | 0.31                           | 0.41             | 0.40                           |                  |                                | 0.36                                    |
| 75-49            | Westbound             | 06/07/91             | 0.44             | 0.39                           | 0.49             | 0.49                           |                  |                                | 0.44                                    |
| 81-49            | Rt. 22 ft             | 04/08/92             | 0.69             | 0.64                           | 0.58             | 0.58                           |                  |                                | 0.61                                    |
| 81-49            | Rt. of CL 12 ft       | 04/13/92             | 1.06             | 1.02                           | 0.80             | 0.80                           |                  |                                | 0.91                                    |
| 81-49            | Lt. 22 ft             | 10/21/92             | 0.67             | 0.63                           | 0.71             | 0.72                           |                  |                                | 0.67                                    |
| 81-49            | Lt. of CL 12 ft       | 10/23/92             | 0.99             | 0.95                           | 1.01             | 1.02                           |                  |                                | 0.98                                    |
| 89-179           | Right                 | 10/30/90             |                  |                                |                  |                                | 0.19             | 0.21                           | 0.21                                    |
| 89-179           | Left                  | 11/01/90             |                  |                                |                  |                                | 0.28             | 0.30                           | 0.30                                    |
| 89-180           | Right                 | 04/18/90             |                  |                                |                  |                                | 0.37             | 0.39                           | 0.39                                    |
| 89-180           | Left                  | 04/23/90             |                  |                                |                  |                                | 0.35             | 0.37                           | 0.37                                    |
| 89-183           | Rt. Side              | 09/21/90             | 0.56             | 0.52                           | 0.44             | 0.43                           |                  |                                | 0.47                                    |
| 89-183           | Lt. Side              | 09/25/90             | 0.64             | 0.59                           | 0.58             | 0.56                           |                  |                                | 0.58                                    |
| 89-185           | Outside               | 06/21/90             | 0.95             | 0.90                           | 0.81             | 0.79                           | 0.60             | 0.63                           | 0.77                                    |
| 89-185           | Inside                | 06/23/90             | 0.63             | 0.58                           | 0.57             | 0.55                           | 0.95             | 0.98                           | 0.70                                    |
| 89-186           | Inside                | 09/14/90             | 0.79             | 0.75                           | 0.69             | 0.68                           | 0.56             | 0.59                           | 0.67                                    |
| 89-186           | Outside               | 09/17/90             | 0.70             | 0.66                           | 0.75             | 0.74                           | 0.45             | 0.48                           | 0.63                                    |

Table E.2 (con't) – Crack Densities for Individual Bridge Placements

|                  |                |                      | Curre            | ent Study                      | Miller and       | Darwin (2000)                  | Schmitt and      | Darwin (1995)                  | All Studies                             |
|------------------|----------------|----------------------|------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Portion Placed | Date of<br>Placement | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |                |                      | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | $(m/m^2)$                      | $(m/m^2)$        | $(m/m^2)$                      | $(m/m^2)$                               |
| 00.106           |                | 05/01/02             | 0.50             |                                |                  | 0.67                           |                  |                                | 0.60                                    |
| 89-196           | Rt. Side       | 05/01/92             | 0.76             | 0.72                           | 0.66             | 0.67                           |                  |                                | 0.69                                    |
| 89-196           | Lt. Side       | 05/05/92             | 0.43             | 0.40                           | 0.40             | 0.41                           |                  |                                | 0.40                                    |
| 89-198           | Lt. Side       | 08/24/91             | 0.45             | 0.40                           | 0.36             | 0.35                           | 0.70             | 0.73                           | 0.50                                    |
| 89-198           | Rt. Side       | 08/27/91             | 0.51             | 0.47                           | 0.41             | 0.41                           | 0.40             | 0.43                           | 0.44                                    |
| 89-199           | Lt. Side       | 08/26/91             | 0.67             | 0.63                           | 0.75             | 0.75                           | 0.64             | 0.67                           | 0.68                                    |
| 89-199           | Rt. Side       | 08/28/91             | 0.73             | 0.69                           | 0.54             | 0.54                           | 0.71             | 0.74                           | 0.66                                    |
| 89-200           | Rt. Side       | 08/17/91             | 0.77             | 0.73                           | 0.67             | 0.67                           | 0.57             | 0.60                           | 0.67                                    |
| 89-200           | Lt. Side       | 08/20/91             | 0.51             | 0.47                           | 0.44             | 0.43                           | 0.45             | 0.48                           | 0.46                                    |
| 89-201           | Rt. Side       | 08/19/91             | 0.69             | 0.65                           | 0.66             | 0.66                           | 0.59             | 0.62                           | 0.64                                    |
| 89-201           | Lt. Side       | 08/21/91             | 0.73             | 0.69                           | 0.59             | 0.59                           | 0.77             | 0.80                           | 0.69                                    |
| 105-021          | East           | 09/04/87             |                  |                                |                  |                                | 0.11             | 0.11                           | 0.11                                    |
| 105-021          | West           | 09/09/87             |                  |                                |                  |                                | 0.08             | 0.08                           | 0.08                                    |
| 105-225          | East           | 07/22/86             |                  |                                |                  |                                | 0.21             | 0.20                           | 0.20                                    |
| 105-225          | West           | 07/26/86             |                  |                                |                  |                                | 0.11             | 0.10                           | 0.10                                    |
| 105-225          | Center         | 07/29/86             |                  |                                |                  |                                | 0.29             | 0.28                           | 0.28                                    |
| 105-226          | East           | 07/23/86             |                  |                                |                  |                                | 0.12             | 0.11                           | 0.11                                    |
| 105-226          | West           | 07/25/86             |                  |                                |                  |                                | 0.17             | 0.16                           | 0.16                                    |
| 105-226          | Center         | 07/28/86             |                  |                                |                  |                                | 0.27             | 0.26                           | 0.26                                    |

Table E.2 (con't) – Crack Densities for Individual Bridge Placements

|                    |                |                      | Curre            | ent Study                      | Miller and       | Darwin (2000)                  | Schmitt and      | Darwin (1995)                  | All Studies                             |  |
|--------------------|----------------|----------------------|------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|--|
| Bridge<br>Number   | Portion Placed | Date of<br>Placement | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |  |
|                    |                |                      | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> )                     |  |
|                    | _              |                      |                  |                                |                  |                                |                  |                                |                                         |  |
| 105-230            | Center         |                      |                  |                                |                  |                                | 0.09             | 0.07                           | 0.07                                    |  |
| 105-230            | East           |                      |                  |                                |                  |                                | 0.10             | 0.08                           | 0.08                                    |  |
| 105-230            | West           |                      |                  |                                |                  |                                | 0.08             | 0.06                           | 0.06                                    |  |
| 105-231            | Center         |                      |                  |                                |                  |                                | 0.12             | 0.10                           | 0.10                                    |  |
| 105-231            | East           |                      |                  |                                |                  |                                | 0.13             | 0.11                           | 0.11                                    |  |
| 105-231            | West           |                      |                  |                                |                  |                                | 0.09             | 0.07                           | 0.07                                    |  |
| 105-262            | Center         | 06/12/85             |                  |                                |                  |                                | 0.15             | 0.13                           | 0.13                                    |  |
| 105-262            | Right          | 06/14/85             |                  |                                |                  |                                | 0.23             | 0.21                           | 0.21                                    |  |
| 105-262            | Left           |                      |                  |                                |                  |                                |                  |                                |                                         |  |
| 105-263            | Center         | 10/13/83             |                  |                                |                  |                                | 0.12             | 0.08                           | 0.08                                    |  |
| 105-263            | East           | 10/18/83             |                  |                                |                  |                                | 0.14             | 0.10                           | 0.10                                    |  |
| 105-263            | West           |                      |                  |                                |                  |                                |                  |                                |                                         |  |
| 105-268            | Left           | 06/14/86             |                  |                                |                  |                                | 0.67             | 0.66                           | 0.66                                    |  |
| 105-268            | Right          | 06/14/86             |                  |                                |                  |                                | 0.56             | 0.55                           | 0.55                                    |  |
| 105-269            | Deck           | 10/26/85             |                  |                                |                  |                                | 0.45             | 0.44                           | 0.44                                    |  |
|                    |                |                      |                  |                                |                  |                                |                  |                                |                                         |  |
| Monolithic Bridges |                |                      |                  |                                |                  |                                |                  |                                |                                         |  |
| 3-045              | West Deck      | 12/21/84             | 0.43             | 0.25                           |                  |                                | 0.12             | 0.08                           | 0.16                                    |  |
| 3-045              | East Deck      | 12/26/84             | 0.39             | 0.20                           |                  |                                | 0.21             | 0.17                           | 0.19                                    |  |
| 3-045              | W. Ctr. Deck   | 12/27/84             | 0.20             | 0.02                           |                  |                                | 0.18             | 0.14                           | 0.08                                    |  |

# Table E.2 (con't) – Crack Densities for Individual Bridge Placements

|                  |                |                      | Curre            | ent Study                      | Miller and       | Darwin (2000)                  | Schmitt and      | Darwin (1995)                  | All Studies                             |
|------------------|----------------|----------------------|------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Portion Placed | Date of<br>Placement | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |                |                      | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
| 2.045            |                | 00/10/05             | 0.29             | 0.10                           |                  |                                | 0.22             | 0.10                           | 0.14                                    |
| 3-045            | Ctr. Deck      | 03/13/85             | 0.28             | 0.10                           |                  |                                | 0.23             | 0.19                           | 0.14                                    |
| 3-045            | E. Ctr. Deck   | 03/14/85             | 0.31             | 0.13                           |                  |                                | 0.15             | 0.11                           | 0.12                                    |
| 3-046            | West Deck      | 12/31/85             | 0.40             | 0.24                           |                  |                                | 0.33             | 0.30                           | 0.27                                    |
| 3-046            | East Deck      | 01/02/86             | 0.53             | 0.36                           |                  |                                | 0.42             | 0.39                           | 0.38                                    |
| 3-046            | Ctr. Deck      | 01/10/86             | 0.34             | 0.18                           |                  |                                | 0.15             | 0.12                           | 0.15                                    |
| 56-142           | North End      | 10/01/87             | 0.35             | 0.21                           |                  |                                | 0.22             | 0.22                           | 0.22                                    |
| 56-142           | N. + Moment    | 10/01/87             | 0.04             | 0.00                           |                  |                                | 0.00             | 0.00                           | 0.00                                    |
| 56-142           | S. + Moment    | 10/01/87             | 0.19             | 0.05                           |                  |                                | 0.08             | 0.08                           | 0.06                                    |
| 56-142           | South End      | 10/01/87             |                  |                                |                  |                                | 0.03             | 0.03                           | 0.03                                    |
| 56-142           | N. Pier        | 10/06/87             | 0.36             | 0.22                           |                  |                                | 0.20             | 0.20                           | 0.21                                    |
| 56-142           | Ctr. Pier      | 10/06/87             | 0.07             | 0.00                           |                  |                                | 0.02             | 0.02                           | 0.01                                    |
| 56-142           | South Pier     | 10/06/87             | 0.07             | 0.00                           |                  |                                | 0.05             | 0.05                           | 0.02                                    |
| 56-148           | Deck           | 07/18/91             | 0.53             | 0.46                           | 0.31             | 0.31                           | 0.28             | 0.33                           | 0.37                                    |
| 70-95            | Deck           | 10/31/85             | 0.13             | 0.00                           |                  |                                | 0.07             | 0.03                           | 0.02                                    |
| 70-101           | North          |                      |                  |                                |                  |                                | 0.07             | 0.03                           | 0.03                                    |
| 70-101           | South          |                      |                  |                                |                  |                                | 0.04             | 0.00                           | 0.00                                    |
| 70-103           | Right          | 03/14/85             | 0.66             | 0.48                           |                  |                                | 0.40             | 0.37                           | 0.43                                    |
| 70-103           | Left           | 03/19/85             | 0.84             | 0.66                           |                  |                                | 0.57             | 0.54                           | 0.60                                    |
| 70-104           | Deck           | 10/17/85             | 0.10             | 0.00                           |                  |                                | 0.09             | 0.05                           | 0.03                                    |
| 70-107           | Deck           | 10/25/91             | 0.72             | 0.66                           | 0.42             | 0.42                           | 0.34             | 0.40                           | 0.49                                    |

Table E.2 (con't) – Crack Densities for Individual Bridge Placements

|                      |                  |                      | Curre            | nt Study                       | Miller and I     | Darwin (2000)                  | Schmitt and      | Darwin (1995)                  | All Studies                             |
|----------------------|------------------|----------------------|------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number     | Portion Placed   | Date of<br>Placement | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                      |                  |                      | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                      |                  |                      |                  |                                |                  |                                |                  |                                |                                         |
| 75-44                | Deck             | 07/12/90             | 0.28             | 0.19                           |                  |                                | 0.19             | 0.23                           | 0.21                                    |
| 75-45                | Deck             | 08/10/90             | 0.45             | 0.36                           |                  |                                | 0.51             | 0.55                           | 0.45                                    |
| 89-204               | Deck             | 10/03/91             | 1.05             | 0.98                           | 0.84             | 0.84                           | 0.75             | 0.81                           | 0.87                                    |
| 89-208               | Deck             | 06/15/95             | 0.11             | 0.11                           | 0.03             | 0.09                           |                  |                                | 0.10                                    |
| 99-76                | South End        | 09/01/89             | 1.04             | 0.93                           |                  |                                | 1.48             | 1.53                           | 1.23                                    |
| 99-76                | Placement 2      | 09/15/89             | 0.81             | 0.70                           |                  |                                | 0.95             | 1.00                           | 0.85                                    |
| 99-76                | Placement 3      | 10/13/89             | 0.93             | 0.83                           |                  |                                | 0.94             | 0.99                           | 0.91                                    |
| 99-76                | Placement 4      | 11/07/89             | 0.74             | 0.63                           |                  |                                | 0.90             | 0.95                           | 0.79                                    |
| 99-76                | Placement 5      | 11/21/89             | 0.57             | 0.47                           |                  |                                | 0.77             | 0.82                           | 0.64                                    |
| 99-76                | North (West Ln.) | 01/09/90             | 0.55             | 0.45                           |                  |                                | 0.42             | 0.47                           | 0.46                                    |
| 99-76                | North (East Ln.) | 05/11/90             | 0.48             | 0.37                           |                  |                                | 0.46             | 0.51                           | 0.44                                    |
| 105-000 <sup>†</sup> | Deck             | 06/23/93             |                  |                                |                  |                                | 0.27             | 0.32                           | 0.32                                    |

Table E.2 (con't) – Crack Densities for Individual Bridge Placements

<sup>†</sup>Bridge has no assigned serial number. Project No. is 105-U-1262-01.

-- Denotes bridges that were not surveyed during a particular study or missing data.

| End Section Crack Densities |                  |           |           |                        |           |                |                        |           |             |                        |                        |
|-----------------------------|------------------|-----------|-----------|------------------------|-----------|----------------|------------------------|-----------|-------------|------------------------|------------------------|
|                             |                  |           | Current S | Study                  | Mille     | er and Dar     | win (2000)             | Schmi     | itt and Dar | win (1995)             | All Studies            |
| Bridge<br>Number            | End<br>Condition | End 1     | End 2     | Mean Age-<br>Corrected | End 1     | End 2          | Mean Age-<br>Corrected | End 1     | End 2       | Mean Age-<br>Corrected | Mean Age-<br>Corrected |
|                             |                  | $(m/m^2)$ | $(m/m^2)$ | (m/m <sup>2</sup> )    | $(m/m^2)$ | $(m/m^2)$      | (m/m <sup>2</sup> )    | $(m/m^2)$ | $(m/m^2)$   | $(m/m^2)$              | $(m/m^2)$              |
|                             |                  |           |           | 7% Si                  | lica Fume | <b>Overlay</b> | Bridges                |           |             |                        |                        |
| 30-93                       | F                | 0.04      | 0.00      | 0.38                   |           |                |                        |           |             |                        | 0.38                   |
| 40-92                       | F                | 0.37      | 0.94      | 1.00                   |           |                |                        |           |             |                        | 1.00                   |
| 40-93                       | F                | 0.02      | 0.04      | 0.32                   |           |                |                        |           |             |                        | 0.32                   |
| 46-332                      | F                | 0.97      | 0.72      | 1.15                   |           |                |                        |           |             |                        | 1.15                   |
| 81-53                       | F                | 0.61      | 0.22      | 0.72                   |           |                |                        |           |             |                        | 0.72                   |
| 85-148                      | F                | 0.90      | 0.60      | 0.95                   |           |                |                        |           |             |                        | 0.95                   |
| 85-149                      | F                | 0.54      | 0.22      | 0.69                   |           |                |                        |           |             |                        | 0.69                   |
| 89-269                      | F                | 0.10      | 0.07      | 0.38                   |           |                |                        |           |             |                        | 0.38                   |
| 89-272                      | F                | 0.25      | 0.11      | 0.52                   |           |                |                        |           |             |                        | 0.52                   |
| 103-56                      | F                | 0.30      | 0.16      | 0.53                   |           |                |                        |           |             |                        | 0.53                   |
|                             |                  |           |           | 5% Si                  | lica Fume | <b>Overlay</b> | Bridges                |           |             |                        |                        |
| 23-85                       | F                | 1.11      | 0.77      | 0.94                   | 0.34      | 0.27           | 0.30                   |           |             |                        | 0.62                   |
| 46-302                      | F                | 0.73      | 0.79      | 0.76                   | 0.32      | 0.58           | 0.45                   |           |             |                        | 0.61                   |
| 46-309                      | F                | 0.68      | 1.25      | 0.97                   | 0.26      | 0.61           | 0.44                   |           |             |                        | 0.70                   |
| 46-317                      | Р                | 0.10      | 0.55      | 0.32                   | 0.00      | 0.00           | 0.00                   |           |             |                        | 0.16                   |
| 81-50                       | Р                |           | 1.15      | 1.15                   |           | 0.76           | 0.76                   |           |             |                        | 0.96                   |
| 87-453                      | F                | 1.74      | 1.87      | 1.80                   | 0.30      | 1.61           | 0.96                   |           |             |                        | 1.38                   |

#### Table E.3 – Crack Densities for End Sections

|                  |                  |                     |           |                        |            | End Sect   | ion Crack Dens         | ities     |            |                        |                        |
|------------------|------------------|---------------------|-----------|------------------------|------------|------------|------------------------|-----------|------------|------------------------|------------------------|
|                  |                  |                     | Current S | Study                  | Mille      | er and Dar | win (2000)             | Schmi     | tt and Dar | win (1995)             | All Studies            |
| Bridge<br>Number | End<br>Condition | End 1               | End 2     | Mean Age-<br>Corrected | End 1      | End 2      | Mean Age-<br>Corrected | End 1     | End 2      | Mean Age-<br>Corrected | Mean Age-<br>Corrected |
|                  |                  | (m/m <sup>2</sup> ) | $(m/m^2)$ | $(m/m^2)$              | $(m/m^2)$  | $(m/m^2)$  | $(m/m^2)$              | $(m/m^2)$ | $(m/m^2)$  | (m/m <sup>2</sup> )    | $(m/m^2)$              |
|                  | _                |                     |           |                        |            |            |                        |           |            |                        |                        |
| 87-454           | F                | 1.46                | 1.91      | 1.68                   | 0.89       | 2.32       | 1.61                   |           |            |                        | 1.64                   |
| 89-206           | Р                | 0.36                | 0.28      | 0.32                   | 0.32       | 0.00       | 0.16                   |           |            |                        | 0.24                   |
| 89-207           | Р                | 0.12                | 0.22      | 0.17                   | 0.12       | 0.03       | 0.08                   |           |            |                        | 0.12                   |
| 89-210           | F                | 1.07                | 1.18      | 1.13                   | 0.01       | 0.19       | 0.10                   |           |            |                        | 0.61                   |
| 89-234           | F                | 0.52                | 0.52      | 0.52                   | 0.63       | 0.52       | 0.58                   |           |            |                        | 0.55                   |
| 89-235           | F                | 0.86                |           | 0.86                   | 2.43       | 0.00       | 1.21                   |           |            |                        | 1.04                   |
| 89-240           | Р                | 0.07                | 0.10      | 0.09                   | 0.13       | 0.17       | 0.15                   |           |            |                        | 0.12                   |
| 89-244           | Р                | 0.21                | 0.13      | 0.17                   | 0.00       | 0.00       | 0.00                   |           |            |                        | 0.08                   |
| 89-245           | Р                | 0.26                | 0.27      | 0.26                   | 0.00       | 0.00       | 0.00                   |           |            |                        | 0.13                   |
| 89-246           | Р                | 0.19                | 0.00      | 0.10                   | 0.00       | 0.00       | 0.00                   |           |            |                        | 0.05                   |
| 89-247           | Р                | 0.28                | 0.49      | 0.38                   | 0.31       | 0.02       | 0.17                   |           |            |                        | 0.27                   |
| 89-248           | F                | 0.60                | 1.08      | 0.84                   | 0.00       | 0.00       | 0.00                   |           |            |                        | 0.42                   |
| 89-184           | F                | 1.35                | 1.99      | 1.67                   | 1.46       | 1.92       | 1.69                   | 1.16      | 1.16       | 1.16                   | 1.51                   |
| 89-187           | F                | 1.47                | 1.17      | 1.32                   | 1.85       | 1.57       | 1.71                   | 1.05      | 1.66       | 1.36                   | 1.46                   |
|                  |                  |                     |           | Conv                   | entional ( | Overlay B  | ridges                 |           |            |                        |                        |
| 46-294           | Р                |                     |           |                        |            |            |                        | 0.33      | 0.16       | 0.35                   | 0.35                   |
| 46-295           | P                |                     |           |                        |            |            |                        | 0.20      | 0.10       | 0.33                   | 0.33                   |
| 46-289           | P                | 0.52                | 0.19      | 0.28                   | 0.50       | 0.13       | 0.33                   |           |            |                        | 0.30                   |

## Table E.3 (con't) – Crack Densities for End Sections

|                  |                  |                     |                     |                        |                     | End Sect            | ion Crack Dens         | ities               |                     |                        |                        |
|------------------|------------------|---------------------|---------------------|------------------------|---------------------|---------------------|------------------------|---------------------|---------------------|------------------------|------------------------|
|                  |                  |                     | Current S           | Study                  | Mille               | er and Dar          | win (2000)             | Schmi               | tt and Dar          | win (1995)             | All Studies            |
| Bridge<br>Number | End<br>Condition | End 1               | End 2               | Mean Age-<br>Corrected | End 1               | End 2               | Mean Age-<br>Corrected | End 1               | End 2               | Mean Age-<br>Corrected | Mean Age-<br>Corrected |
|                  |                  | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> ) | $(m/m^2)$              | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> ) | $(m/m^2)$              | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )    | $(m/m^2)$              |
| 46-290           | Р                | 0.49                | 0.20                | 0.27                   | 0.46                | 0.17                | 0.32                   |                     |                     |                        | 0.30                   |
| 46-290<br>46-299 | г<br>Р           | 0.49                | 1.08                | 0.27                   | 0.40                | 0.17                | 0.52                   |                     |                     |                        | 0.30                   |
| 46-300           | r<br>P           | 0.80                | 0.36                | 0.35                   | 0.33                | 0.93                | 0.08                   |                     |                     |                        | 0.79                   |
| 46-300<br>46-301 | F                | 0.32<br>1.52        | 0.92                | 1.19                   | 1.75                | 1.27                | 1.56                   |                     |                     |                        | 1.37                   |
| 40-301<br>75-1   | P                | 0.35                | 0.32                | 0.26                   | 0.30                | 0.12                | 0.20                   |                     |                     |                        | 0.23                   |
| 75-49            | F                |                     | 0.39                | 0.20                   | 0.30                | 0.12                | 0.20                   |                     |                     |                        | 0.23                   |
| 81-49            | F                | 1.25                | 1.24                | 1.16                   | 0.98                | 0.92                | 0.83                   |                     |                     |                        | 1.05                   |
| 89-179           | F                |                     |                     |                        |                     |                     |                        | 1.01                | 1.19                | 1.16                   | 1.05                   |
| 89-180           | F                |                     |                     |                        |                     |                     |                        | 0.64                | 0.99                | 0.86                   | 0.86                   |
| 89-183           | F                | 1.45                | 1.24                | 1.23                   | 1.30                | 1.10                | 1.17                   |                     |                     |                        | 1.20                   |
| 89-185           | F                | 1.01                | 2.09                | 1.43                   | 1.43                | 1.99                | 1.68                   |                     |                     |                        | 1.55                   |
| 89-186           | F                | 1.09                | 1.23                | 1.07                   | 1.09                | 1.23                | 1.13                   |                     |                     |                        | 1.10                   |
| 89-196           | F                | 1.13                | 1.30                | 1.13                   | 1.06                | 1.47                | 1.27                   |                     |                     |                        | 1.20                   |
| 89-198           | Р                | 0.33                | 0.34                | 0.23                   | 0.40                | 0.19                | 0.29                   |                     |                     |                        | 0.26                   |
| 89-199           | P                | 0.33                | 0.53                | 0.33                   | 0.24                | 0.56                | 0.39                   |                     |                     |                        | 0.36                   |
| 89-200           | F                | 1.79                | 1.48                | 1.54                   | 1.64                | 1.48                | 1.55                   |                     |                     |                        | 1.54                   |
| 89-201           | F                | 1.66                | 1.61                | 1.53                   | 1.8                 | 1.59                | 1.69                   |                     |                     |                        | 1.61                   |
| 105-021          |                  |                     |                     |                        |                     |                     |                        |                     |                     |                        |                        |
| 105-225          | F                |                     |                     |                        |                     |                     |                        | 0.88                | 0.74                | 0.78                   | 0.78                   |

## Table E.3 (con't) – Crack Densities for End Sections

|                  |                  |           | End Section Crack DensitiesCurrent StudyMiller and Darwin (2000)Schmitt and Darwin (1995) |                        |           |                     |                        |           |                     |                        |                        |  |  |
|------------------|------------------|-----------|-------------------------------------------------------------------------------------------|------------------------|-----------|---------------------|------------------------|-----------|---------------------|------------------------|------------------------|--|--|
|                  |                  |           | Current S                                                                                 | Study                  | Mille     | er and Dar          | win (2000)             | Schmi     | itt and Dar         | win (1995)             | All Studies            |  |  |
| Bridge<br>Number | End<br>Condition | End 1     | End 2                                                                                     | Mean Age-<br>Corrected | End 1     | End 2               | Mean Age-<br>Corrected | End 1     | End 2               | Mean Age-<br>Corrected | Mean Age-<br>Corrected |  |  |
|                  |                  | $(m/m^2)$ | (m/m <sup>2</sup> )                                                                       | $(m/m^2)$              | $(m/m^2)$ | (m/m <sup>2</sup> ) | $(m/m^2)$              | $(m/m^2)$ | (m/m <sup>2</sup> ) | $(m/m^2)$              | $(m/m^2)$              |  |  |
|                  |                  |           |                                                                                           |                        |           |                     |                        |           |                     |                        |                        |  |  |
| 105-226          | F                |           |                                                                                           |                        |           |                     |                        | 1.02      | 1.07                | 1.02                   | 1.02                   |  |  |
| 105-230          | F                |           |                                                                                           |                        |           |                     |                        | 0.71      | 0.88                | 0.76                   | 0.76                   |  |  |
| 105-231          | F                |           |                                                                                           |                        |           |                     |                        | 0.53      | 0.63                | 0.54                   | 0.54                   |  |  |
| 105-262          | F                |           |                                                                                           |                        |           |                     |                        | 0.37      | 0.20                | 0.23                   | 0.23                   |  |  |
| 105-263          | F                |           |                                                                                           |                        |           |                     |                        | 0.08      | 0.00                | 0.00                   | 0.00                   |  |  |
| 105-265          | F                |           |                                                                                           |                        |           |                     |                        | 0.00      | 0.12                | 0.00                   | 0.00                   |  |  |
| 105-268          | F                |           |                                                                                           |                        |           |                     |                        | 1.03      | 0.98                | 0.99                   | 0.99                   |  |  |
| 105-269          | F                |           |                                                                                           |                        |           |                     |                        | 0.51      | 0.92                | 0.68                   | 0.68                   |  |  |

Table E.3 (con't) – Crack Densities for End Sections

|        |   |      |      | Monolith | ic Bridges |          |      |      |
|--------|---|------|------|----------|------------|----------|------|------|
| 3-45   | F |      | 0.39 | <br>     |            | <br>0.24 | 0.35 | <br> |
| 3-46   | F | 0.77 | 0.39 | <br>     |            | <br>0.54 | 0.17 | <br> |
| 56-142 | Р |      | 0.00 | <br>     |            | <br>0.00 | 0.00 | <br> |
| 56-148 | F | 0.89 | 0.89 | <br>0.63 | 0.30       | <br>0.41 | 0.09 | <br> |
| 70-101 | F |      |      | <br>     |            | <br>0.00 | 0.18 | <br> |
| 70-103 | F | 0.94 | 0.55 | <br>     |            | <br>0.11 | 0.29 | <br> |
| 70-104 | F | 0.16 | 0.30 | <br>     |            | <br>0.95 | 0.50 | <br> |
| 70-107 | F |      |      | <br>0.53 | 0.56       | <br>0.00 | 0.03 | <br> |
| 70-95  | F | 0.30 | 0.30 | <br>     |            | <br>0.55 | 0.20 | <br> |

|                     |                  |                     | End Section Crack Densities |                        |                     |            |                        |           |             |                        |                        |  |
|---------------------|------------------|---------------------|-----------------------------|------------------------|---------------------|------------|------------------------|-----------|-------------|------------------------|------------------------|--|
|                     |                  | Current Study       |                             |                        | Mille               | er and Dar | win (2000)             | Schmi     | itt and Dar | win (1995)             | All Studies            |  |
| Bridge<br>Number    | End<br>Condition | End 1               | End 2                       | Mean Age-<br>Corrected | End 1               | End 2      | Mean Age-<br>Corrected | End 1     | End 2       | Mean Age-<br>Corrected | Mean Age-<br>Corrected |  |
|                     |                  | (m/m <sup>2</sup> ) | $(m/m^2)$                   | (m/m <sup>2</sup> )    | (m/m <sup>2</sup> ) | $(m/m^2)$  | (m/m <sup>2</sup> )    | $(m/m^2)$ | $(m/m^2)$   | (m/m <sup>2</sup> )    | (m/m <sup>2</sup> )    |  |
|                     |                  |                     |                             |                        |                     |            |                        |           |             |                        |                        |  |
| 75-44               | F                | 0.61                | 0.46                        |                        |                     |            |                        | 0.36      | 0.13        |                        |                        |  |
| 75-45               | F                | 0.43                | 1.35                        |                        |                     |            |                        | 0.06      | 0.76        |                        |                        |  |
| 89-204              | F                | 1.01                | 1.03                        |                        | 0.72                | 0.64       |                        | 0.43      | 0.41        |                        |                        |  |
| 89-208              | F                | 0.03                | 0.08                        |                        | 0.02                | 0.04       |                        |           |             |                        |                        |  |
| 99-76               | Р                | 0.45                | 0.21                        |                        |                     |            |                        | 0.45      |             |                        |                        |  |
| $105-000^{\dagger}$ | F                |                     |                             |                        |                     |            |                        | 0.61      |             |                        |                        |  |
| 105-46              | F                |                     |                             |                        |                     |            |                        |           |             |                        |                        |  |

Table E.3 (con't) – Crack Densities for End Sections

<sup>†</sup>Bridge has no assigned serial number. Project No. is 105-U-1262-01.

-- Denotes bridges that were not surveyed during a particular study or missing data.

|                  |              |                  |        |        | Curr                | ent Study                      | Miller and          | Darwin (2000)                  | Schmitt and         | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|--------|--------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span l | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> )                     |
|                  |              |                  |        |        | 7%                  | Silica Fume Ov                 | erlay Bridg         | ges                            |                     |                                |                                         |
| 30-93            | End          | West             | 126    | 38.5   | 0.02                | 0.06                           |                     |                                |                     |                                | 0.06                                    |
| 30-93            | End          | East             | 105    | 32.0   | 0.09                | 0.13                           |                     |                                |                     |                                | 0.13                                    |
| 40-92            | End          | South            | 62     | 19.0   | 0.84                | 0.88                           |                     |                                |                     |                                | 0.88                                    |
| 40-92            | Int.         | S. Center        | 102    | 31.0   | 0.93                | 0.97                           |                     |                                |                     |                                | 0.97                                    |
| 40-92            | Int.         | N. Center        | 102    | 31.0   | 0.90                | 0.94                           |                     |                                |                     |                                | 0.94                                    |
| 40-92            | End          | North            | 62     | 19.0   | 0.89                | 0.93                           |                     |                                |                     |                                | 0.93                                    |
| 40-93            | End          | South            | 62     | 19.0   | 0.36                | 0.40                           |                     |                                |                     |                                | 0.40                                    |
| 40-93            | Int.         | S. Center        | 102    | 31.0   | 0.36                | 0.40                           |                     |                                |                     |                                | 0.40                                    |
| 40-93            | Int.         | N. Center        | 102    | 31.0   | 0.47                | 0.51                           |                     |                                |                     |                                | 0.51                                    |
| 40-93            | End          | North            | 62     | 19.0   | 0.55                | 0.59                           |                     |                                |                     |                                | 0.59                                    |
| 46-332           | End          | West             | 72     | 22.0   | 0.70                | 0.75                           |                     |                                |                     |                                | 0.75                                    |
| 46-332           | Int.         | Center           | 107    | 32.5   | 0.68                | 0.73                           |                     |                                |                     |                                | 0.73                                    |
| 46-332           | End          | East             | 72     | 22.0   | 0.38                | 0.43                           |                     |                                |                     |                                | 0.43                                    |
| 85-148           | End          | South            | 125    | 38.0   | 0.44                | 0.48                           |                     |                                |                     |                                | 0.48                                    |
| 85-148           | Int.         | Center           | 141    | 43.0   | 0.68                | 0.72                           |                     |                                |                     |                                | 0.72                                    |
| 85-148           | End          | North            | 95     | 29.0   | 0.56                | 0.60                           |                     |                                |                     |                                | 0.60                                    |
| 85-149           | End          | South            | 125    | 38.0   | 0.09                | 0.14                           |                     |                                |                     |                                | 0.14                                    |
| 85-149           | Int.         | Center           | 141    | 43.0   | 0.20                | 0.25                           |                     |                                |                     |                                | 0.25                                    |
| 85-149           | End          | North            | 95     | 29.0   | 0.10                | 0.15                           |                     |                                |                     |                                | 0.15                                    |

 Table E.4 – Crack Densities and Data for Individual Spans

|                  |              |                  | -      |        | Curi                | rent Study                     | Miller and          | Darwin (2000)                  | Schmitt and      | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|--------|--------|---------------------|--------------------------------|---------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span I | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                  |              |                  |        |        |                     |                                |                     |                                |                  |                                |                                         |
| 89-269           | End          | South            | 65     | 19.8   | 0.00                | 0.04                           |                     |                                |                  |                                | 0.04                                    |
| 89-269           | Int.         | Center           | 84     | 25.6   | 0.02                | 0.06                           |                     |                                |                  |                                | 0.06                                    |
| 89-269           | End          | North            | 65     | 19.8   | 0.02                | 0.06                           |                     |                                |                  |                                | 0.06                                    |
| 89-272           | End          | South            | 70     | 21.3   | 0.02                | 0.07                           |                     |                                |                  |                                | 0.07                                    |
| 89-272           | Int.         | S. Center        | 100    | 30.5   | 0.00                | 0.05                           |                     |                                |                  |                                | 0.05                                    |
| 89-272           | Int.         | N. Center        | 100    | 30.5   | 0.01                | 0.06                           |                     |                                |                  |                                | 0.06                                    |
| 89-272           | End          | North            | 60     | 18.3   | 0.14                | 0.19                           |                     |                                |                  |                                | 0.19                                    |
| 103-56           | End          | West             | 66     | 20.0   | 0.23                | 0.27                           |                     |                                |                  |                                | 0.27                                    |
| 103-56           | Int.         | Center           | 98     | 30.0   | 0.23                | 0.27                           |                     |                                |                  |                                | 0.27                                    |
| 103-56           | End          | East             | 66     | 20.0   | 0.21                | 0.25                           |                     |                                |                  |                                | 0.25                                    |
|                  |              |                  |        |        | 5%                  | o Silica Fume Ov               | erlay Bridg         | ges                            |                  |                                |                                         |
| 23-85            | End          | South            | 124    | 37.8   | 0.67                | 0.67                           | 0.46                | 0.50                           |                  |                                | 0.58                                    |
| 23-85            | End          | North            | 124    | 37.8   | 0.46                | 0.46                           | 0.27                | 0.31                           |                  |                                | 0.39                                    |
| 46-302           | End          | South            | 61     | 18.6   | 0.75                | 0.75                           | 0.41                | 0.44                           |                  |                                | 0.60                                    |
| 46-302           | Int.         | S. Center        | 85     | 25.9   | 0.75                | 0.75                           | 0.57                | 0.61                           |                  |                                | 0.68                                    |
| 46-302           | Int.         | N. Center        | 85     | 25.9   | 0.84                | 0.84                           | 0.50                | 0.54                           |                  |                                | 0.69                                    |
| 46-302           | End          | North            | 61     | 18.6   | 0.79                | 0.79                           | 0.48                | 0.52                           |                  |                                | 0.65                                    |
| 46-309           | End          | South            | 51     | 15.5   | 0.54                | 0.54                           | 0.40                | 0.43                           |                  |                                | 0.48                                    |
| 46-309           | Int.         | S. Center        | 85     | 25.9   | 0.46                | 0.46                           | 0.32                | 0.36                           |                  |                                | 0.41                                    |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |        | Curi   | ent Study           | Miller and                     | Darwin (2000)       | Schmitt and                    | d Darwin (1995)     | All Studies                    |                                         |
|------------------|--------------|------------------|--------|--------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span 1 | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | (m/m <sup>2</sup> ) | $(m/m^2)$                      | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> )                     |
| 16.200           | <b>T</b> .   |                  | 0.5    | 22.0   | 0.46                | 0.46                           | 0.22                | 0.25                           |                     |                                | 0.41                                    |
| 46-309           | Int.         | N. Center        | 85     | 25.9   | 0.46                | 0.46                           | 0.32                | 0.35                           |                     |                                | 0.41                                    |
| 46-309           | End          | North            | 51     | 15.5   | 0.72                | 0.72                           | 0.39                | 0.42                           |                     |                                | 0.57                                    |
| 46-317           | End          | West             | 90     | 27.4   | 0.27                | 0.27                           | 0.03                | 0.07                           |                     |                                | 0.17                                    |
| 46-317           | Int.         | W. Center        | 127    | 38.7   | 0.43                | 0.43                           | 0.07                | 0.11                           |                     |                                | 0.27                                    |
| 46-317           | Int.         | Center           | 192    | 58.5   | 0.37                | 0.37                           | 0.07                | 0.11                           |                     |                                | 0.24                                    |
| 46-317           | Int.         | E. Center        | 127    | 38.7   | 0.27                | 0.27                           | 0.11                | 0.15                           |                     |                                | 0.21                                    |
| 81-50            | End          | North            | 140    | 42.7   | 0.95                | 0.94                           | 0.67                | 0.71                           |                     |                                | 0.82                                    |
| 81-50            | Int.         | N. Center        | 175    | 53.3   | 1.11                | 1.10                           | 0.74                | 0.78                           |                     |                                | 0.94                                    |
| 81-50            | Int.         | N. Center        | 175    | 53.3   | 1.16                | 1.15                           | 0.80                | 0.83                           |                     |                                | 0.99                                    |
| 81-50            | Int.         | N. Center        | 150    | 45.7   | 1.12                | 1.11                           | 0.72                | 0.76                           |                     |                                | 0.93                                    |
| 81-50            | Int.         | Center           | 20     | 6.1    | 1.15                | 1.14                           | 0.64                | 0.67                           |                     |                                | 0.91                                    |
| 87-453           | End          | West             | 110    | 33.5   | 0.84                | 0.85                           | 0.19                | 0.23                           |                     |                                | 0.54                                    |
| 87-453           | Int.         | Center           | 158    | 48.2   | 0.65                | 0.66                           | 0.10                | 0.14                           |                     |                                | 0.40                                    |
| 87-453           | End          | East             | 110    | 33.5   | 1.00                | 1.01                           | 0.51                | 0.56                           |                     |                                | 0.79                                    |
| 87-454           | End          | West             | 102    | 31.1   | 0.93                | 0.94                           | 0.57                | 0.61                           |                     |                                | 0.77                                    |
| 87-454           | Int.         | Center           | 147    | 44.8   | 0.69                | 0.70                           | 0.54                | 0.59                           |                     |                                | 0.65                                    |
| 87-454           | End          | East             | 102    | 31.1   | 1.05                | 1.06                           | 1.21                | 1.25                           |                     |                                | 1.16                                    |
| 89-184           | End          | West             | 48     | 14.6   | 0.96                | 0.91                           | 0.99                | 0.98                           | 0.77                | 0.80                           | 0.90                                    |
| 89-184           | Int.         | W. Center        | 93     | 28.3   | 0.77                | 0.73                           | 0.83                | 0.82                           | 0.58                | 0.61                           | 0.72                                    |
| 89-184           | Int.         | E. Center        | 70     | 21.3   | 0.87                | 0.82                           | 1.06                | 1.05                           | 0.73                | 0.76                           | 0.88                                    |
|                  |              |                  |        |        |                     |                                |                     |                                |                     |                                |                                         |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |        |        | Curr                | ent Study                      | Miller and          | Darwin (2000)                  | Schmitt and         | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|--------|--------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span l | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
| 89-184           | End          | East             | 50     | 15.2   | 1.03                | 0.98                           | 1.17                | 1.16                           | 0.78                | 0.81                           | 0.98                                    |
| 89-187           | End          | West             | 45     | 13.7   | 0.73                | 0.69                           | 0.80                | 0.79                           | 0.94                | 0.97                           | 0.81                                    |
| 89-187           | Int.         | W. Center        | 60     | 18.3   | 0.95                | 0.91                           | 1.00                | 0.99                           | 1.12                | 1.15                           | 1.01                                    |
| 89-187           | Int.         | E. Center        | 60     | 18.3   | 0.88                | 0.84                           | 0.98                | 0.96                           | 0.97                | 1.00                           | 0.93                                    |
| 89-187           | End          | East             | 45     | 13.7   | 0.96                | 0.91                           | 1.08                | 1.06                           | 1.00                | 1.03                           | 1.00                                    |
| 89-206           | End          | West             | 84     | 25.6   | 0.54                | 0.53                           | 0.45                | 0.48                           |                     |                                | 0.51                                    |
| 89-206           | Int.         | W. Center        | 116    | 35.4   | 0.44                | 0.43                           | 0.43                | 0.47                           |                     |                                | 0.45                                    |
| 89-206           | Int.         | E. Center        | 116    | 35.4   | 0.45                | 0.44                           | 0.42                | 0.46                           |                     |                                | 0.45                                    |
| 89-206           | End          | East             | 84     | 25.6   | 0.34                | 0.33                           | 0.40                | 0.43                           |                     |                                | 0.38                                    |
| 89-207           | End          | West             | 84     | 25.6   | 0.34                | 0.33                           | 0.31                | 0.34                           |                     |                                | 0.33                                    |
| 89-207           | Int.         | W. Center        | 116    | 35.4   | 0.47                | 0.46                           | 0.42                | 0.45                           |                     |                                | 0.46                                    |
| 89-207           | Int.         | E. Center        | 116    | 35.4   | 0.45                | 0.44                           | 0.45                | 0.49                           |                     |                                | 0.46                                    |
| 89-207           | End          | East             | 84     | 25.6   | 0.42                | 0.41                           | 0.21                | 0.25                           |                     |                                | 0.33                                    |
| 89-210           | End          | South            | 65     | 19.8   | 0.51                | 0.52                           | 0.07                | 0.11                           |                     |                                | 0.31                                    |
| 89-210           | Int.         | Center           | 82     | 25.0   | 0.53                | 0.54                           | 0.11                | 0.15                           |                     |                                | 0.34                                    |
| 89-210           | End          | North            | 65     | 19.8   | 0.69                | 0.70                           | 0.17                | 0.21                           |                     |                                | 0.45                                    |
| 89-234           | End          | West             | 73     | 22.3   | 0.26                | 0.25                           | 0.28                | 0.32                           |                     |                                | 0.28                                    |
| 89-234           | Int.         | W. Center        | 131    | 39.9   | 0.27                | 0.26                           | 0.26                | 0.30                           |                     |                                | 0.28                                    |
| 89-234           | Int.         | E. Center        | 110    | 33.5   | 0.31                | 0.30                           | 0.28                | 0.32                           |                     |                                | 0.31                                    |
| 89-234           | End          | East             | 60     | 18.3   | 0.35                | 0.34                           | 0.29                | 0.33                           |                     |                                | 0.34                                    |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |        | Curr   | ent Study           | Miller and                     | Darwin (2000)       | Schmitt and                    | d Darwin (1995)     | All Studies                    |                                         |
|------------------|--------------|------------------|--------|--------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span l | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | $(m/m^2)$                      | $(m/m^2)$                               |
| 00.005           | <b>D</b> 1   | <b>XX</b> 7 /    | 71     | 21.6   | 0.46                | 0.46                           | 0.00                | 1.02                           |                     |                                | 0.75                                    |
| 89-235           | End          | West             | 71     | 21.6   | 0.46                | 0.46                           | 0.98                | 1.03                           |                     |                                | 0.75                                    |
| 89-235           | Int.         | W. Center        | 131    | 39.9   | 0.16                | 0.16                           | 0.27                | 0.32                           |                     |                                | 0.24                                    |
| 89-235           | Int.         | E. Center        | 110    | 33.5   | 0.28                | 0.28                           | 0.15                | 0.20                           |                     |                                | 0.24                                    |
| 89-235           | End          | East             | 51     | 15.5   | 0.38                | 0.38                           | 0.32                | 0.36                           |                     |                                | 0.37                                    |
| 89-240           | End          | South            | 70     | 21.3   | 0.26                | 0.27                           | 0.31                | 0.36                           |                     |                                | 0.32                                    |
| 89-240           | Int.         | S. Center        | 100    | 30.5   | 0.27                | 0.28                           | 0.34                | 0.39                           |                     |                                | 0.33                                    |
| 89-240           | Int.         | N. Center        | 100    | 30.5   | 0.18                | 0.19                           | 0.29                | 0.34                           |                     |                                | 0.26                                    |
| 89-240           | End          | North            | 60     | 18.3   | 0.10                | 0.11                           | 0.14                | 0.19                           |                     |                                | 0.15                                    |
| 89-244           | End          | South            | 96     | 29.3   | 0.20                | 0.21                           | 0.01                | 0.06                           |                     |                                | 0.14                                    |
| 89-244           | Int.         | S. Center        | 120    | 36.6   | 0.33                | 0.34                           | 0.01                | 0.06                           |                     |                                | 0.20                                    |
| 89-244           | Int.         | N. Center        | 124    | 37.8   | 0.37                | 0.38                           | 0.03                | 0.08                           |                     |                                | 0.23                                    |
| 89-244           | End          | North            | 110    | 33.5   | 0.27                | 0.28                           | 0.02                | 0.07                           |                     |                                | 0.18                                    |
| 89-245           | End          | West             | 110    | 33.5   | 0.48                | 0.49                           | 0.06                | 0.11                           |                     |                                | 0.30                                    |
| 89-245           | Int.         | W. Center        | 170    | 51.8   | 0.37                | 0.38                           | 0.07                | 0.12                           |                     |                                | 0.25                                    |
| 89-245           | Int.         | W. Center        | 25     | 7.6    | 0.47                | 0.48                           | 0.09                | 0.14                           |                     |                                | 0.31                                    |
| 89-245           | Int.         | Center           | 155    | 47.2   | 0.66                | 0.67                           | 0.03                | 0.09                           |                     |                                | 0.38                                    |
| 89-245           | Int.         | E. Center        | 202    | 61.6   | 0.30                | 0.31                           | 0.03                | 0.08                           |                     |                                | 0.20                                    |
| 89-245           | End          | East             | 150    | 45.7   | 0.52                | 0.53                           | 0.08                | 0.13                           |                     |                                | 0.33                                    |
| 89-246           | End          | South            | 123    | 37.5   | 0.40                | 0.41                           | 0.09                | 0.14                           |                     |                                | 0.27                                    |
| 89-246           | End          | North            | 130    | 39.6   | 0.27                | 0.28                           | 0.06                | 0.11                           |                     |                                | 0.20                                    |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  | Dridge Snon Snon |                  |        | Curr  | rent Study       | Miller and                     | Darwin (2000)       | Schmitt and                    | d Darwin (1995)     | All Studies                    |                                         |
|------------------|------------------|------------------|--------|-------|------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type     | Span<br>Location | Span L | ength | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |                  |                  | (ft)   | (m)   | $(m/m^2)$        | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                  |                  |                  |        |       |                  |                                |                     |                                |                     |                                |                                         |
| 89-247           | End              | South            | 123    | 37.5  | 0.60             | 0.60                           | 0.66                | 0.71                           |                     |                                | 0.66                                    |
| 89-247           | End              | North            | 130    | 39.6  | 0.50             | 0.50                           | 0.35                | 0.40                           |                     |                                | 0.45                                    |
| 89-248           | End              | West             | 60     | 18.3  | 0.45             | 0.46                           | 0.02                | 0.07                           |                     |                                | 0.27                                    |
| 89-248           | Int.             | Center           | 75     | 22.9  | 0.47             | 0.48                           | 0.04                | 0.10                           |                     |                                | 0.29                                    |
| 89-248           | End              | East             | 60     | 18.3  | 0.52             | 0.53                           | 0.01                | 0.07                           |                     |                                | 0.30                                    |
|                  |                  |                  |        |       |                  |                                |                     |                                |                     |                                |                                         |
|                  |                  |                  |        |       |                  | onventional Ove                | , 0                 |                                |                     |                                |                                         |
| 46-289           | End              | West             | 79     | 24.1  | 0.77             | 0.74                           | 0.68                | 0.69                           |                     |                                | 0.71                                    |
| 46-289           | Int.             | W. Center        | 137    | 41.8  | 0.79             | 0.76                           | 0.70                | 0.70                           |                     |                                | 0.73                                    |
| 46-289           | Int.             | E. Center        | 137    | 41.8  | 0.74             | 0.71                           | 0.70                | 0.71                           |                     |                                | 0.71                                    |
| 46-289           | End              | East             | 79     | 24.1  | 0.43             | 0.40                           | 0.47                | 0.48                           |                     |                                | 0.44                                    |
| 46-290           | End              | West             | 79     | 24.1  | 0.71             | 0.68                           | 0.66                | 0.67                           |                     |                                | 0.67                                    |
| 46-290           | Int.             | W. Center        | 137    | 41.8  | 0.69             | 0.66                           | 0.63                | 0.64                           |                     |                                | 0.65                                    |
| 46-290           | Int.             | E. Center        | 137    | 41.8  | 0.73             | 0.70                           | 0.65                | 0.66                           |                     |                                | 0.68                                    |
| 46-290           | End              | East             | 79     | 24.1  | 0.54             | 0.51                           | 0.49                | 0.50                           |                     |                                | 0.50                                    |
| 46-294           | End              | South            | 150    | 45.7  |                  |                                |                     |                                | 0.27                | 0.31                           | 0.31                                    |
| 46-294           | End              | North            | 150    | 45.7  |                  |                                |                     |                                | 0.32                | 0.36                           | 0.36                                    |
| 46-295           | End              | South            | 150    | 45.7  |                  |                                |                     |                                | 0.25                | 0.29                           | 0.29                                    |
| 46-295           | End              | North            | 150    | 45.7  |                  |                                |                     |                                | 0.31                | 0.35                           | 0.35                                    |
| 46-299           | End              | South            | 40     | 12.2  | 1.01             | 1.00                           | 0.81                | 0.83                           |                     |                                | 0.91                                    |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |        | Curr   | ent Study        | Miller and                     | Darwin (2000)       | Schmitt and                    | d Darwin (1995)     | All Studies                    |                                         |
|------------------|--------------|------------------|--------|--------|------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span I | Length | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | $(m/m^2)$        | $(m/m^2)$                      | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> )                     |
| 46.200           | T.           |                  | 6.4    | 10.5   | 0.02             | 0.01                           | 0.02                | 0.04                           |                     |                                | 0.02                                    |
| 46-299           | Int.         | S. Center        | 64     | 19.5   | 0.92             | 0.91                           | 0.92                | 0.94                           |                     |                                | 0.92                                    |
| 46-299           | Int.         | N. Center        | 64     | 19.5   | 0.64             | 0.63                           | 0.79                | 0.82                           |                     |                                | 0.72                                    |
| 46-299           | End          | North            | 40     | 12.2   | 0.73             | 0.72                           | 1.03                | 1.05                           |                     |                                | 0.88                                    |
| 46-300           | End          | South            | 40     | 12.2   | 0.62             | 0.62                           | 0.75                | 0.78                           |                     |                                | 0.70                                    |
| 46-300           | Int.         | S. Center        | 64     | 19.5   | 0.66             | 0.66                           | 0.80                | 0.83                           |                     |                                | 0.75                                    |
| 46-300           | Int.         | N. Center        | 64     | 19.5   | 0.66             | 0.66                           | 0.69                | 0.73                           |                     |                                | 0.70                                    |
| 46-300           | End          | North            | 40     | 12.2   | 0.68             | 0.68                           | 0.57                | 0.61                           |                     |                                | 0.64                                    |
| 46-301           | End          | West             | 55     | 16.8   | 1.06             | 1.05                           | 0.96                | 0.98                           |                     |                                | 1.01                                    |
| 46-301           | Int.         | W. Center        | 90     | 27.4   | 0.86             | 0.85                           | 0.69                | 0.71                           |                     |                                | 0.78                                    |
| 46-301           | Int.         | E. Center        | 90     | 27.4   | 0.70             | 0.69                           | 0.55                | 0.57                           |                     |                                | 0.63                                    |
| 46-301           | End          | East             | 55     | 16.8   | 0.76             | 0.75                           | 0.90                | 0.93                           |                     |                                | 0.84                                    |
| 75-1             | End          | West             | 128    | 39.0   | 0.44             | 0.39                           | 0.34                | 0.33                           |                     |                                | 0.36                                    |
| 75-1             | Int.         | Center           | 160    | 48.8   | 0.57             | 0.52                           | 0.51                | 0.51                           |                     |                                | 0.52                                    |
| 75-1             | End          | East             | 128    | 39.0   | 0.43             | 0.38                           | 0.22                | 0.22                           |                     |                                | 0.30                                    |
| 75-49            | End          | West             | 128    | 39.0   | 0.46             | 0.41                           | 0.40                | 0.40                           |                     |                                | 0.40                                    |
| 75-49            | Int.         | Center           | 160    | 48.8   | 0.44             | 0.39                           | 0.47                | 0.47                           |                     |                                | 0.43                                    |
| 75-49            | End          | East             | 128    | 39.0   | 0.30             | 0.25                           | 0.45                | 0.44                           |                     |                                | 0.34                                    |
| 81-49            | End          | South            | 77     | 23.5   | 0.88             | 0.84                           | 0.73                | 0.73                           |                     |                                | 0.79                                    |
| 81-49            | Int.         | Center           | 110    | 33.5   | 0.68             | 0.64                           | 0.60                | 0.61                           |                     |                                | 0.63                                    |
| 81-49            | End          | North            | 77     | 23.5   | 0.87             | 0.83                           | 0.79                | 0.80                           |                     |                                | 0.82                                    |
|                  |              |                  |        |        |                  |                                |                     |                                |                     |                                |                                         |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |        |        | Curi                | ent Study                      | Miller and          | Darwin (2000)                  | Schmitt and         | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|--------|--------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span 1 | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                  |              |                  |        | 160    |                     |                                |                     |                                | 0.22                |                                | 0.04                                    |
| 89-179           | End          | West             | 55     | 16.8   |                     |                                |                     |                                | 0.32                | 0.34                           | 0.34                                    |
| 89-179           | Int.         | Center           | 70     | 21.3   |                     |                                |                     |                                | 0.14                | 0.16                           | 0.16                                    |
| 89-179           | End          | East             | 55     | 16.8   |                     |                                |                     |                                | 0.25                | 0.27                           | 0.27                                    |
| 89-180           | End          | West             | 55     | 16.8   |                     |                                |                     |                                | 0.28                | 0.30                           | 0.30                                    |
| 89-180           | Int.         | Center           | 70     | 21.3   |                     |                                |                     |                                | 0.33                | 0.35                           | 0.35                                    |
| 89-180           | End          | East             | 55     | 16.8   |                     |                                |                     |                                | 0.50                | 0.52                           | 0.52                                    |
| 89-183           | End          | South            | 67     | 20.4   | 0.66                | 0.61                           | 0.51                | 0.50                           |                     |                                | 0.56                                    |
| 89-183           | Int.         | S. Center        | 88     | 26.8   | 0.57                | 0.52                           | 0.56                | 0.55                           |                     |                                | 0.53                                    |
| 89-183           | Int.         | N. Center        | 88     | 26.8   | 0.55                | 0.50                           | 0.48                | 0.46                           |                     |                                | 0.48                                    |
| 89-183           | End          | North            | 67     | 20.4   | 0.58                | 0.53                           | 0.45                | 0.44                           |                     |                                | 0.48                                    |
| 89-185           | End          | West             | 49     | 14.9   | 0.62                | 0.57                           | 0.63                | 0.62                           | 0.90                | 0.93                           | 0.71                                    |
| 89-185           | Int.         | W. Center        | 84     | 25.6   | 0.59                | 0.54                           | 0.50                | 0.49                           | 0.53                | 0.56                           | 0.53                                    |
| 89-185           | Int.         | E. Center        | 71     | 21.6   | 0.88                | 0.83                           | 0.77                | 0.76                           | 0.93                | 0.96                           | 0.85                                    |
| 89-185           | End          | East             | 51     | 15.5   | 1.24                | 1.19                           | 0.94                | 0.93                           | 0.47                | 0.50                           | 0.87                                    |
| 89-186           | End          | West             | 45     | 13.7   | 0.86                | 0.82                           | 0.84                | 0.83                           | 0.56                | 0.59                           | 0.74                                    |
| 89-186           | Int.         | W. Center        | 60     | 18.3   | 0.74                | 0.70                           | 0.67                | 0.66                           | 0.59                | 0.62                           | 0.66                                    |
| 89-186           | Int.         | E. Center        | 60     | 18.3   | 0.62                | 0.58                           | 0.64                | 0.63                           | 0.39                | 0.42                           | 0.54                                    |
| 89-186           | End          | East             | 45     | 13.7   | 0.70                | 0.66                           | 0.76                | 0.75                           | 0.54                | 0.57                           | 0.66                                    |
| 89-196           | End          | South            | 46     | 14.0   | 0.66                | 0.63                           | 0.54                | 0.54                           |                     |                                | 0.58                                    |
| 89-196           | Int.         | Center           | 68     | 20.7   | 0.47                | 0.44                           | 0.41                | 0.41                           |                     |                                | 0.42                                    |
|                  |              |                  |        |        |                     |                                |                     |                                |                     |                                |                                         |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |        |        | Curr             | ent Study                      | Miller and          | Darwin (2000)                  | Schmitt and         | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|--------|--------|------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span l | Length | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | $(m/m^2)$        | $(m/m^2)$                      | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
| 89-196           | End          | North            | 46     | 14.0   | 0.71             | 0.68                           | 0.71                | 0.71                           |                     |                                | 0.69                                    |
| 89-198           | End          | South            | 66     | 20.1   | 0.46             | 0.46                           | 0.42                | 0.38                           | 0.40                | 0.43                           | 0.42                                    |
| 89-198           | Int.         | S. Center        | 97     | 29.6   | 0.51             | 0.48                           | 0.41                | 0.42                           | 0.68                | 0.71                           | 0.54                                    |
| 89-198           | Int.         | N. Center        | 97     | 29.6   | 0.59             | 0.55                           | 0.38                | 0.38                           | 0.52                | 0.55                           | 0.49                                    |
| 89-198           | End          | North            | 80     | 24.4   | 0.33             | 0.33                           | 0.30                | 0.26                           | 0.51                | 0.54                           | 0.38                                    |
| 89-199           | End          | South            | 66     | 20.1   | 0.60             | 0.56                           | 0.54                | 0.54                           | 0.63                | 0.66                           | 0.59                                    |
| 89-199           | Int.         | S. Center        | 97     | 29.6   | 0.69             | 0.65                           | 0.66                | 0.65                           | 0.83                | 0.86                           | 0.72                                    |
| 89-199           | Int.         | N. Center        | 97     | 29.6   | 0.81             | 0.77                           | 0.73                | 0.73                           | 0.67                | 0.70                           | 0.73                                    |
| 89-199           | End          | North            | 80     | 24.4   | 0.64             | 0.60                           | 0.65                | 0.64                           | 0.52                | 0.55                           | 0.60                                    |
| 89-200           | End          | South            | 84     | 25.6   | 0.85             | 0.81                           | 0.70                | 0.69                           | 0.60                | 0.63                           | 0.71                                    |
| 89-200           | Int.         | Center           | 150    | 45.7   | 0.49             | 0.45                           | 0.40                | 0.40                           | 0.45                | 0.48                           | 0.44                                    |
| 89-200           | End          | North            | 84     | 25.6   | 0.73             | 0.69                           | 0.68                | 0.68                           | 0.55                | 0.58                           | 0.65                                    |
| 89-201           | End          | South            | 84     | 25.6   | 0.78             | 0.74                           | 0.77                | 0.76                           | 0.99                | 1.02                           | 0.84                                    |
| 89-201           | Int.         | Center           | 150    | 45.7   | 0.54             | 0.50                           | 0.41                | 0.41                           | 0.44                | 0.47                           | 0.46                                    |
| 89-201           | End          | North            | 84     | 25.6   | 0.95             | 0.91                           | 0.83                | 0.83                           | 0.76                | 0.79                           | 0.84                                    |
| 105-021          | End          | South            | 74     | 22.6   |                  |                                |                     |                                | 0.14                | 0.20                           | 0.20                                    |
| 105-021          | End          | North            | 67     | 20.4   |                  |                                |                     |                                | 0.06                | 0.12                           | 0.12                                    |
| 105-225          | End          | South            | 51     | 15.5   |                  |                                |                     |                                | 0.25                | 0.24                           | 0.24                                    |
| 105-225          | Int.         | Center           | 76     | 23.2   |                  |                                |                     |                                | 0.10                | 0.09                           | 0.09                                    |
| 105-225          | End          | North            | 60     | 18.3   |                  |                                |                     |                                | 0.23                | 0.22                           | 0.22                                    |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |          |        | Curr                | ent Study                      | Miller and          | Darwin (2000)                  | Schmitt and         | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|----------|--------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span l   | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)     | (m)    | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
| 105 226          | End          | C au th          | (0)      | 10.2   |                     |                                |                     |                                | 0.26                | 0.25                           | 0.25                                    |
| 105-226          | End          | South            | 60<br>76 | 18.3   |                     |                                |                     |                                | 0.26                | 0.25                           |                                         |
| 105-226          | Int.         | Center           | 76       | 23.2   |                     |                                |                     |                                | 0.05                | 0.04                           | 0.04                                    |
| 105-226          | End          | North            | 45       | 13.7   |                     |                                |                     |                                | 0.27                | 0.26                           | 0.26                                    |
| 105-230          | End          | South            | 47       | 14.3   |                     |                                |                     |                                | 0.22                | 0.20                           | 0.20                                    |
| 105-230          | Int.         | S. Center        | 66       | 20.1   |                     |                                |                     |                                | 0.04                | 0.02                           | 0.02                                    |
| 105-230          | Int.         | N. Center        | 66       | 20.1   |                     |                                |                     |                                | 0.00                | 0.00                           | 0.00                                    |
| 105-230          | End          | North            | 47       | 14.3   |                     |                                |                     |                                | 0.16                | 0.14                           | 0.14                                    |
| 105-231          | End          | South            | 47       | 14.3   |                     |                                |                     |                                | 0.25                | 0.23                           | 0.23                                    |
| 105-231          | Int.         | S. Center        | 66       | 20.1   |                     |                                |                     |                                | 0.04                | 0.02                           | 0.02                                    |
| 105-231          | Int.         | N. Center        | 66       | 20.1   |                     |                                |                     |                                | 0.05                | 0.03                           | 0.03                                    |
| 105-231          | End          | North            | 47       | 14.3   |                     |                                |                     |                                | 0.17                | 0.15                           | 0.15                                    |
| 105-262          | End          | South            | 67       | 20.4   |                     |                                |                     |                                | 0.14                | 0.12                           | 0.12                                    |
| 105-262          | Int.         | Center           | 135      | 41.1   |                     |                                |                     |                                | 0.18                | 0.16                           | 0.16                                    |
| 105-262          | End          | North            | 67       | 20.4   |                     |                                |                     |                                | 0.20                | 0.18                           | 0.18                                    |
| 105-263          | End          | South            | 67       | 20.4   |                     |                                |                     |                                | 0.17                | 0.13                           | 0.13                                    |
| 105-263          | Int.         | Center           | 135      | 41.1   |                     |                                |                     |                                | 0.17                | 0.13                           | 0.13                                    |
| 105-263          | End          | North            | 67       | 20.4   |                     |                                |                     |                                | 0.00                | 0.00                           | 0.00                                    |
| 105-265          | End          | South            | 43       | 13.1   |                     |                                |                     |                                | 0.04                | 0.01                           | 0.01                                    |
| 105-265          | Int.         | Center           | 57       | 17.4   |                     |                                |                     |                                | 0.00                | 0.00                           | 0.00                                    |
| 105-265          | End          | North            | 43       | 13.1   |                     |                                |                     |                                | 0.01                | 0.00                           | 0.00                                    |
|                  |              |                  |          |        |                     |                                |                     |                                |                     |                                |                                         |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |         |        | Curi                | ent Study                      | Miller and          | Darwin (2000)                  | Schmitt and         | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|---------|--------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span l  | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)    | (m)    | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | (m/m <sup>2</sup> )                     |
| 105 260          | г 1          | 117              | <i></i> | 17.4   |                     |                                |                     |                                | 0.60                | 0.50                           | 0.50                                    |
| 105-268          | End          | West             | 57      | 17.4   |                     |                                |                     |                                | 0.60                | 0.59                           | 0.59                                    |
| 105-268          | Int.         | Center           | 57      | 17.4   |                     |                                |                     |                                | 0.72                | 0.71                           | 0.71                                    |
| 105-268          | End          | East             | 75      | 22.9   |                     |                                |                     |                                | 0.54                | 0.53                           | 0.53                                    |
| 105-269          | End          | West             | 122     | 37.2   |                     |                                |                     |                                | 0.45                | 0.44                           | 0.44                                    |
| 105-269          | End          | East             | 122     | 37.2   |                     |                                |                     |                                | 0.45                | 0.44                           | 0.44                                    |
|                  |              |                  |         |        |                     | Monolithic <b>E</b>            | Bridges             |                                |                     |                                |                                         |
| 3-045            | End          | West             | 64      | 19.5   | 0.43                | 0.32                           |                     |                                |                     |                                | 0.32                                    |
| 3-045            | Int.         | W. Center        | 80      | 24.4   | 0.20                | 0.09                           |                     |                                |                     |                                | 0.09                                    |
| 3-045            | Int.         | E. Center        | 80      | 24.4   | 0.31                | 0.20                           |                     |                                |                     |                                | 0.20                                    |
| 3-045            | End          | East             | 64      | 19.5   | 0.39                | 0.28                           |                     |                                |                     |                                | 0.28                                    |
| 3-046            | End          | West             | 100     | 30.5   | 0.40                | 0.30                           |                     |                                |                     |                                | 0.30                                    |
| 3-046            | Int.         | Center           | 120     | 36.6   | 0.34                | 0.24                           |                     |                                |                     |                                | 0.24                                    |
| 3-046            | End          | East             | 100     | 30.5   | 0.53                | 0.43                           |                     |                                |                     |                                | 0.43                                    |
| 56-142           | End          | South            | 88      | 26.8   | 0.08                | 0.00                           |                     |                                |                     |                                | 0.00                                    |
| 56-142           | Int.         | S. Center        | 112     | 34.1   | 0.21                | 0.13                           |                     |                                |                     |                                | 0.13                                    |
| 56-142           | Int.         | N. Center        | 112     | 34.1   | 0.27                | 0.19                           |                     |                                |                     |                                | 0.19                                    |
| 56-142           | End          | North            | 88      | 26.8   | 0.06                | 0.00                           |                     |                                |                     |                                | 0.00                                    |
| 56-148           | End          | West             | 72      | 21.9   | 0.64                | 0.60                           | 0.37                | 0.36                           |                     |                                | 0.48                                    |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |        |        | Curr             | ent Study                      | Miller and          | Darwin (2000)                  | Schmitt and      | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|--------|--------|------------------|--------------------------------|---------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span I | Length | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | $(m/m^2)$        | $(m/m^2)$                      | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                  |              |                  |        |        |                  |                                |                     |                                |                  |                                |                                         |
| 56-148           | Int.         | Center           | 100    | 30.5   | 0.49             | 0.45                           | 0.32                | 0.32                           |                  |                                | 0.38                                    |
| 56-148           | End          | East             | 72     | 21.9   | 0.50             | 0.46                           | 0.25                | 0.24                           |                  |                                | 0.35                                    |
| 70-095           | End          | South            | 74     | 22.6   | 0.10             | 0.00                           |                     |                                |                  |                                | 0.00                                    |
| 70-095           | Int.         | Center           | 90     | 27.4   | 0.15             | 0.05                           |                     |                                |                  |                                | 0.05                                    |
| 70-095           | End          | North            | 74     | 22.6   | 0.13             | 0.03                           |                     |                                |                  |                                | 0.03                                    |
| 70-101           | End          | West             | 80     | 24.4   |                  |                                |                     |                                | 0.02             | 0.00                           | 0.00                                    |
| 70-101           | Int.         | Center           | 100    | 30.5   |                  |                                |                     |                                | 0.06             | 0.04                           | 0.04                                    |
| 70-101           | End          | East             | 80     | 24.4   |                  |                                |                     |                                | 0.08             | 0.06                           | 0.06                                    |
| 70-103           | End          | South            | 80     | 24.4   | 0.88             | 0.77                           |                     |                                | 0.54             | 0.52                           | 0.65                                    |
| 70-103           | Int.         | Center           | 100    | 30.5   | 0.77             | 0.66                           |                     |                                | 0.54             | 0.52                           | 0.59                                    |
| 70-103           | End          | North            | 80     | 24.4   | 0.58             | 0.47                           |                     |                                | 0.36             | 0.34                           | 0.41                                    |
| 70-104           | End          | South            | 56     | 17.1   | 0.16             | 0.06                           |                     |                                | 0.17             | 0.15                           | 0.10                                    |
| 70-104           | Int.         | S. Center        | 70     | 21.3   | 0.08             | 0.00                           |                     |                                | 0.08             | 0.06                           | 0.03                                    |
| 70-104           | Int.         | N. Center        | 70     | 21.3   | 0.05             | 0.00                           |                     |                                | 0.06             | 0.04                           | 0.02                                    |
| 70-104           | End          | North            | 56     | 17.1   | 0.11             | 0.01                           |                     |                                | 0.04             | 0.02                           | 0.01                                    |
| 70-107           | End          | South            | 60     | 18.3   | 0.92             | 0.88                           | 0.46                | 0.46                           | 0.45             | 0.48                           | 0.61                                    |
| 70-107           | Int.         | Center           | 80     | 24.4   | 0.60             | 0.56                           | 0.39                | 0.39                           | 0.36             | 0.39                           | 0.45                                    |
| 70-107           | End          | North            | 60     | 18.3   | 0.70             | 0.66                           | 0.40                | 0.39                           | 0.19             | 0.22                           | 0.43                                    |
| 75-044           | End          | South            | 37     | 11.3   | 0.25             | 0.19                           |                     |                                | 0.12             | 0.14                           | 0.17                                    |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                  |              |                  |        |        | Curr             | ent Study                      | Miller and       | Darwin (2000)                  | Schmitt and      | d Darwin (1995)                | All Studies                             |
|------------------|--------------|------------------|--------|--------|------------------|--------------------------------|------------------|--------------------------------|------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number | Span<br>Type | Span<br>Location | Span l | Length | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                  |              |                  | (ft)   | (m)    | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$        | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
|                  |              |                  |        |        |                  |                                |                  |                                |                  |                                |                                         |
| 75-044           | Int.         | Center           | 46     | 14.0   | 0.22             | 0.16                           |                  |                                | 0.16             | 0.18                           | 0.17                                    |
| 75-044           | End          | North            | 37     | 11.3   | 0.39             | 0.33                           |                  |                                | 0.27             | 0.29                           | 0.31                                    |
| 75-045           | End          | South            | 62     | 18.9   | 0.36             | 0.30                           |                  |                                | 0.26             | 0.28                           | 0.29                                    |
| 75-045           | Int.         | S. Center        | 77     | 23.5   | 0.42             | 0.36                           |                  |                                | 0.77             | 0.79                           | 0.58                                    |
| 75-045           | Int.         | N. Center        | 77     | 23.5   | 0.51             | 0.45                           |                  |                                | 0.58             | 0.60                           | 0.53                                    |
| 75-045           | End          | North            | 62     | 18.9   | 0.51             | 0.45                           |                  |                                | 0.34             | 0.36                           | 0.41                                    |
| 89-204           | End          | West             | 70     | 21.3   | 1.06             | 1.02                           | 0.86             | 0.89                           |                  |                                | 0.96                                    |
| 89-204           | End          | Center           | 88     | 26.8   | 1.16             | 1.12                           | 0.99             | 0.98                           |                  |                                | 1.05                                    |
| 89-204           | End          | East             | 70     | 21.3   | 0.90             | 0.86                           | 0.63             | 0.66                           |                  |                                | 0.76                                    |
| 89-208           | End          | West             | 68     | 20.7   | 0.10             | 0.10                           | 0.01             | 0.05                           |                  |                                | 0.08                                    |
| 89-208           | Int.         | W. Center        | 106    | 32.3   | 0.11             | 0.11                           | 0.03             | 0.07                           |                  |                                | 0.09                                    |
| 89-208           | Int.         | E. Center        | 106    | 32.3   | 0.12             | 0.12                           | 0.04             | 0.07                           |                  |                                | 0.10                                    |
| 89-208           | End          | East             | 83     | 25.3   | 0.08             | 0.08                           | 0.02             | 0.05                           |                  |                                | 0.07                                    |
| 99-76            | End          | South            | 75     | 22.9   |                  |                                |                  |                                |                  |                                |                                         |
| 99-76            | Int.         |                  | 100    | 30.5   |                  |                                |                  |                                |                  |                                |                                         |
| 99-76            | Int.         |                  | 128    | 39.0   |                  |                                |                  |                                |                  |                                |                                         |
| 99-76            | Int.         |                  | 128    | 39.0   |                  |                                |                  |                                |                  |                                |                                         |
| 99-76            | Int.         |                  | 128    | 39.0   |                  |                                |                  |                                |                  |                                |                                         |
| 99-76            | Int.         |                  | 128    | 39.0   |                  |                                |                  |                                |                  |                                |                                         |

Table E.4 (con't) – Crack Densities and Data for Individual Spans

|                     |              |                  |        |        | Curr                | ent Study                      | Miller and       | l Darwin (2000)                | Schmitt and         | d Darwin (1995)                | All Studies                             |
|---------------------|--------------|------------------|--------|--------|---------------------|--------------------------------|------------------|--------------------------------|---------------------|--------------------------------|-----------------------------------------|
| Bridge<br>Number    | Span<br>Type | Span<br>Location | Span I | Length | Crack<br>Density    | Age-Corrected<br>Crack Density | Crack<br>Density | Age-Corrected<br>Crack Density | Crack<br>Density    | Age-Corrected<br>Crack Density | Mean Age-<br>Corrected<br>Crack Density |
|                     |              |                  | (ft)   | (m)    | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$        | $(m/m^2)$                      | (m/m <sup>2</sup> ) | (m/m <sup>2</sup> )            | $(m/m^2)$                               |
| -                   |              |                  |        |        |                     |                                |                  |                                |                     |                                |                                         |
| 99-76               | Int.         |                  | 128    | 39.0   |                     |                                |                  |                                |                     |                                |                                         |
| 99-76               | Int.         |                  | 100    | 30.5   |                     |                                |                  |                                |                     |                                |                                         |
| 99-76               | Int.         |                  | 75     | 22.9   |                     |                                |                  |                                |                     |                                |                                         |
| $105-000^{\dagger}$ | Int.         |                  | 74     | 22.6   |                     |                                |                  |                                | 0.17                | 0.22                           | 0.22                                    |
| $105-000^{\dagger}$ | Int.         |                  | 74     | 22.6   |                     |                                |                  |                                | 0.42                | 0.47                           | 0.47                                    |
| $105-000^{\dagger}$ | Int.         |                  | 48     | 14.5   |                     |                                |                  |                                | 0.12                | 0.17                           | 0.17                                    |
| $105-000^{\dagger}$ | End          | North            | 87     | 26.4   |                     |                                |                  |                                | 0.33                | 0.38                           | 0.38                                    |

 Table E.4 (con't) – Crack Densities and Data for Individual Spans

<sup>†</sup>Bridge has no assigned serial number. Project No. is 105-U-1262-01.

-- Denotes bridges that were not surveyed or missing data.

|                  |                                           | Curren                                 | t Study                        | Miller and D                           | arwin (2000)                   | Schmitt and I                          | Darwin (1995)                  |
|------------------|-------------------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|
| Bridge<br>Number | Average<br>Traffic<br>Volume <sup>†</sup> | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    |
|                  | (AADT)                                    | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ |
|                  |                                           |                                        | 7% Silica F                    | ume Overlay B                          | ridges                         |                                        |                                |
| 30-93            | 16000                                     | 22                                     | 10.6                           |                                        |                                |                                        |                                |
| 40-92            | 21200                                     | 21                                     | 13.6                           |                                        |                                |                                        |                                |
| 40-93            | 21200                                     | 21                                     | 13.8                           |                                        |                                |                                        |                                |
| 46-332           | 16400                                     | 13                                     | 6.7                            |                                        |                                |                                        |                                |
| 81-53            | 6400                                      | 39                                     | 7.6                            |                                        |                                |                                        |                                |
| 85-148           | 13000                                     | 21                                     | 8.1                            |                                        |                                |                                        |                                |
| 85-149           | 13000                                     | 10                                     | 3.8                            |                                        |                                |                                        |                                |
| 89-269           | 10700                                     | 23                                     | 7.5                            |                                        |                                |                                        |                                |
| 89-272           | 10700                                     | 15                                     | 4.9                            |                                        |                                |                                        |                                |
| 103-56           | 3600                                      | 21                                     | 2.3                            |                                        |                                |                                        |                                |
|                  |                                           |                                        | 5% Silica F                    | ume Overlay B                          | ridges                         |                                        |                                |
| 23-85            | 10445                                     | 76                                     | 24.1                           | 29                                     | 9.1                            |                                        |                                |
| 46-302           | 4311                                      | 75                                     | 9.8                            | 28                                     | 3.7                            |                                        |                                |
|                  |                                           |                                        |                                |                                        |                                |                                        |                                |

Table E.5 – Bridge Traffic Data

|        |       |    | 5% Silica Fu | ume Overlay B | ridges |      |
|--------|-------|----|--------------|---------------|--------|------|
| 23-85  | 10445 | 76 | 24.1         | 29            | 9.1    | <br> |
| 46-302 | 4311  | 75 | 9.8          | 28            | 3.7    | <br> |
| 46-309 | 150   | 81 | 0.4          | 33            | 0.2    | <br> |
| 46-317 | 8600  | 72 | 18.9         | 25            | 6.7    | <br> |
| 81-50  | 11448 | 90 | 31.4         | 32            | 11.3   | <br> |
| 87-453 | 3770  | 61 | 7.0          | 15            | 1.8    | <br> |
| 87-454 | 3770  | 70 | 8.0          | 24            | 2.7    | <br> |

|                  |                                           | Current Study                          |                                | Miller and D                           | arwin (2000)                   | Schmitt and Darwin (1995)              |                                |  |
|------------------|-------------------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|--|
| Bridge<br>Number | Average<br>Traffic<br>Volume <sup>†</sup> | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    |  |
|                  | (AADT)                                    | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ |  |
|                  |                                           |                                        |                                |                                        |                                |                                        |                                |  |
| 89-184           | 12877                                     | 142                                    | 55.8                           | 94                                     | 36.81                          | 39.00                                  | 15.29                          |  |
| 89-187           | 14273                                     | 132                                    | 57.6                           | 4                                      | 42.1                           | 41                                     | 17.8                           |  |
| 89-206           | 4085                                      | 91                                     | 11.3                           | 97                                     | 4.1                            |                                        |                                |  |
| 89-207           | 4085                                      | 91                                     | 11.4                           | 33                                     | 4.1                            |                                        |                                |  |
| 89-210           | 5235                                      | 70                                     | 11.1                           | 33                                     | 5.1                            |                                        |                                |  |
| 89-234           | 7545                                      | 87                                     | 20.1                           | 32                                     | 5.6                            |                                        |                                |  |
| 89-235           | 7545                                      | 77                                     | 17.7                           | 24                                     | 3.2                            |                                        |                                |  |
| 89-240           | 7758                                      | 68                                     | 16.1                           | 14                                     | 2.5                            |                                        |                                |  |
| 89-244           | 8870                                      | 67                                     | 18.1                           | 11                                     | 2.3                            |                                        |                                |  |
| 89-245           | 9465                                      | 68                                     | 19.5                           | 8                                      | 2.5                            |                                        |                                |  |
| 89-246           | 6898                                      | 61                                     | 12.9                           | 9                                      | 2.1                            |                                        |                                |  |
| 89-247           | 6898                                      | 72                                     | 15.1                           | 10                                     | 3.0                            |                                        |                                |  |
| 89-248           | 5930                                      | 62                                     | 11.2                           | 14                                     | 0.7                            |                                        |                                |  |
|                  |                                           |                                        | Conventio                      | nal Overlay Bri                        | dges                           |                                        |                                |  |
| 46-289           | 9473                                      | 118                                    | 34.1                           | 72                                     | 20.7                           |                                        |                                |  |
| 46-290           | 9473                                      | 118                                    | 34.0                           | 71                                     | 20.6                           |                                        |                                |  |
| 46-294           | 12955                                     |                                        |                                |                                        |                                | 20                                     | 7.9                            |  |
| 46-295           | 12955                                     |                                        |                                |                                        |                                | 24                                     | 9.5                            |  |
| 46-299           | 6613                                      | 95                                     | 19.1                           | 49                                     | 9.8                            |                                        |                                |  |

Table E.5 (con't) – Bridge Traffic Data

|                  |                                           | Current Study                          |                                | tudy Miller and Darwin (2000)          |                                |                                        | Schmitt and Darwin (1995)      |  |  |
|------------------|-------------------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|--|--|
| Bridge<br>Number | Average<br>Traffic<br>Volume <sup>†</sup> | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    |  |  |
|                  | (AADT)                                    | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ |  |  |
| 16.000           | ((1))                                     | 50                                     | 1.4.4                          | 24                                     | 5.0                            |                                        |                                |  |  |
| 46-300           | 6613                                      | 72                                     | 14.4                           | 36                                     | 7.2                            |                                        |                                |  |  |
| 46-301           | 245                                       | 94                                     | 0.7                            | 49                                     | 0.4                            |                                        |                                |  |  |
| 75-1             | 7063                                      | 139                                    | 29.9                           | 82                                     | 17.7                           |                                        |                                |  |  |
| 75-49            | 7063                                      | 143                                    | 30.8                           | 87                                     | 18.7                           |                                        |                                |  |  |
| 81-49            | 17690                                     | 127                                    | 68.4                           | 70                                     | 37.5                           |                                        |                                |  |  |
| 89-179           | 6865                                      |                                        |                                |                                        |                                | 45                                     | 9.4                            |  |  |
| 89-180           | 6865                                      |                                        |                                |                                        |                                | 51                                     | 10.7                           |  |  |
| 89-183           | 6410                                      | 142                                    | 27.7                           | 94                                     | 18.3                           |                                        |                                |  |  |
| 89-185           | 16293                                     | 145                                    | 72.1                           | 97                                     | 48.2                           | 41                                     | 20.3                           |  |  |
| 89-186           | 16293                                     | 130                                    | 64.6                           | 94                                     | 46.8                           | 42                                     | 20.8                           |  |  |
| 89-196           | 11028                                     | 124                                    | 41.5                           | 75                                     | 25.2                           |                                        |                                |  |  |
| 89-198           | 13462                                     | 133                                    | 54.6                           | 83                                     | 34.1                           | 33                                     | 13.5                           |  |  |
| 89-199           | 13462                                     | 133                                    | 54.5                           | 83                                     | 34.1                           | 35                                     | 14.3                           |  |  |
| 89-200           | 13300                                     | 133                                    | 53.8                           | 83                                     | 33.8                           | 33                                     | 13.4                           |  |  |
| 89-201           | 13300                                     | 133                                    | 53.8                           | 84                                     | 33.8                           | 34                                     | 13.8                           |  |  |
| 105-021          | 9189                                      |                                        |                                |                                        |                                | 74                                     | 20.7                           |  |  |
| 105-225          | 6140                                      |                                        |                                |                                        |                                | 94                                     | 17.6                           |  |  |
| 105-226          | 6140                                      |                                        |                                |                                        |                                | 94                                     | 17.6                           |  |  |
| 105-230          | 6710                                      |                                        |                                |                                        |                                | 98                                     | 20.0                           |  |  |
| 105-231          | 6710                                      |                                        |                                |                                        |                                | 98                                     | 20.0                           |  |  |

Table E.5 (con't) – Bridge Traffic Data

|                  |                                           | Curren                                 | t Study                        | Miller and D                           | arwin (2000)                   | Schmitt and Darwin (1995)              |                                |  |
|------------------|-------------------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|--|
| Bridge<br>Number | Average<br>Traffic<br>Volume <sup>†</sup> | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    |  |
|                  | (AADT)                                    | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ |  |
|                  |                                           |                                        |                                |                                        |                                |                                        |                                |  |
| 105-262          | 4665                                      |                                        |                                |                                        |                                | 108                                    | 15.3                           |  |
| 105-263          | 4665                                      |                                        |                                |                                        |                                | 128                                    | 18.2                           |  |
| 105-265          | 780                                       |                                        |                                |                                        |                                | 116                                    | 2.8                            |  |
| 105-268          | 1135                                      |                                        |                                |                                        |                                | 88                                     | 3.0                            |  |
| 105-269          | 1135                                      |                                        |                                |                                        |                                | 96                                     | 3.3                            |  |
|                  |                                           |                                        | Mon                            | olithic Bridges                        |                                |                                        |                                |  |
| 3-45             | 705                                       | 220                                    | 4.7                            |                                        |                                | 112                                    | 2.4                            |  |
| 3-46             | 705                                       | 210                                    | 4.5                            |                                        |                                | 102                                    | 2.2                            |  |
| 56-142           | 5333                                      | 188                                    | 30.6                           |                                        |                                | 80                                     | 13.0                           |  |
| 56-148           | 718                                       | 133                                    | 2.9                            | 85                                     | 1.9                            | 36                                     | 0.8                            |  |
| 70-101           | 520                                       |                                        |                                |                                        |                                | 108                                    | 1.7                            |  |
| 70-103           | 3643                                      | 219                                    | 24.3                           |                                        |                                | 102                                    | 11.3                           |  |
| 70-104           | 950                                       | 212                                    | 6.1                            |                                        |                                | 106                                    | 3.1                            |  |
| 70-107           | 2117                                      | 130                                    | 8.4                            | 82                                     | 5.3                            | 34                                     | 2.2                            |  |
| 70-95            | 910                                       | 212                                    | 5.9                            |                                        |                                | 106                                    | 2.9                            |  |
| 75-44            | 2675                                      | 155                                    | 12.7                           |                                        |                                | 48                                     | 3.9                            |  |
| 75-45            | 2675                                      | 154                                    | 12.6                           |                                        |                                | 47                                     | 3.8                            |  |
| 89-204           | 11003                                     | 132                                    | 44.3                           | 82                                     | 27.5                           | 34                                     | 11.4                           |  |
| 89-208           | 0                                         | 73                                     | 0.0                            | 36                                     | 0.0                            |                                        |                                |  |

# Table E.5 (con't) – Bridge Traffic Data

|                      |                                           | Current Study                          |                                | Miller and Darwin (2000)               |                                | Schmitt and Darwin (1995)              |                                |
|----------------------|-------------------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------|
| Bridge<br>Number     | Average<br>Traffic<br>Volume <sup>†</sup> | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    | Bridge Age at<br>the Time of<br>Survey | Load Cycles                    |
|                      | (AADT)                                    | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ | (months)                               | $(\times 10^6 \text{ cycles})$ |
|                      |                                           |                                        |                                |                                        |                                |                                        |                                |
| 99-76                | 2988                                      | 157                                    | 14.3                           |                                        |                                | 42                                     | 3.8                            |
| 105-000 <sup>‡</sup> | 4582                                      |                                        |                                |                                        |                                | 12                                     | 1.7                            |
| 105-46               | 4582                                      |                                        |                                |                                        |                                | 240                                    | 33.5                           |

#### Table E.5 (con't) – Bridge Traffic Data

<sup>†</sup>Calculated using data from the Kansas Department of Transportation Bridge Log at the time of each survey.

<sup>‡</sup>Bridge has no assigned serial number. Project No. is 105-U-1262-01.

-- Denotes bridges that were not surveyed during a particular study or missing data.



# KANSAS TRANSPORTATION RESEARCH AND NEW - DEVELOPMENTS PROGRAM



A COOPERATIVE TRANSPORTATION RESEARCH PROGRAM BETWEEN:

KANSAS DEPARTMENT OF TRANSPORTATION

THE UNIVERSITY OF KANSAS







KANSAS STATE UNIVERSITY